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Bayesian Approach With the Maximum
Entropy Principle in Image Reconstruction
From Microwave Scattered Field Data

Mai Khuong Nguyen and Ali Mohammad-Djafari

Abstract— Microwave imaging is of great interest in medical
applications owing to its high sensitivity with respect to dielectric
properties. It allows detection of very small inhomogeneities. The
image reconstruction employing the microwave inverse scatter-
ing consists of reconstructing the image of an object from the
scattered field measured behind the object. This reconstruction
runs up against the nonuniqueness of the solution of the in-
verse scattering problem. In this communication, we propose to
solve the ill-posed inverse problem by a statistical regularization
method based on the Bayesian maximum a posteriori (MAP)
estimation where the principle of maximum entropy (ME) is used
for assigning the a priori laws. The results obtained demonstrate
the power and potential of this method in image reconstruction.

I. INTRODUCTION

N AN IMAGING SYSTEM using inverse scattering, the

object is illuminated by an electromagnetic wave of known
characteristics. A multidimensional inverse scattering of wave-
fields is used as a means of obtaining information on the
geometric structure or the interior parameters of the scatterer
in a homogeneous environment. By definition, the scattered
field is the difference between the fields in absence and
in presence of the object. This field behaves as if it were
created by an equivalent current source J which depends on
the difference of the dielectric properties (conductivity and
permittivity) between the object and the background medium
[1], of which the amplitude J is:

J #0 inside the object
J =0 outside the object.

Therefore, the object is entirely represented by the equivalent
current distribution,

The aim of our study is to determine the shape and the
location of the object, hence to determine the equivalent
current distribution. This distribution is related to the scattered
field £ by the following expression:

E(@ = —iwou/// G(F M) J(dv+B Q)
@)
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Fig. 1. Principal schema of the imaging system.

where

E is a vectorial and complex representation of the scattered
field,

J is the vector which represents the equivalent current
distribution,

G(7,77) is a Green’s dyadic which is given by

= - = ] — —
G(rr')y=|I - ﬁgradrgradr,}fb

@ is a Green’s scalar function having the following form

e—tk|F—77|

- - =
r | 7— 7' |

T is the identity dyadic,

k is the wave number,

7(@,y, 2) is the vector which marks an observation point,

(',y,2') is the vector which locates a point inside the

source,

v is the volume of the object,

wo is the angular frequency of the time harmonic incident

wave,

i is the magnetic permeability of the medium, and

B is a vectorial and complex representation of the measure-

ment noise.
The principle of the imaging system can be seen in Fig. 1.

The reconstruction of the equivalent current distribution
from the scattered field is in general an ill-posed inverse prob-
lem because of nonuniqueness in the solution. This nonunique-
ness exactly reflects the ambiguity of a physical phenomenon
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in the problems of “Inverse Source™ and of “Inverse Scatter-
ing”: indeed, there is an infinity of current densities which
can create the same field, or there are several objects which
can produce the same scattered field. Therefore, the scattered
field data are not sufficient to specify a unique reconstruction
[2], {9]. [10]. Furthermore, in reality the measurement data are
often corrupted by noise. These factors lead us to search a solu-
tion which is not only unique but also stable. Analogous prob-
lems have been discussed in [6], [15], [20], [23], [24], [30].
Integral equation (1) when discretized becomes

e=Gj+b 2)

where

e = {e1,ea....,epr} is the data vector whose element

er is the scattered field sample at the kth point on the

measurement surface, and M is the number of measurement
points;

j={41.J2.....J~} is the unknown vector whose element

J& represents the unknown equivalent current distribution at

the kth pixel of the object, and N is the number of pixels;

G = {gnpm=1,...,M.n = 1,...,N} is a matrix

of size M x N_whose elements are calculated from the

Green’s dyadic G(7.77);

b = {b1,ba,..., bar} is the noise vector whose elements

represent the noise at the different points of measurement.
The objective is to obtain a unique and stable estimate jof
the object j from the data e.

However, the ill-posed nature of integral equation (1) leads
to the matrix &G of (2) being in general ill-conditioned or even
singular. Thus, a naive solutionj = (~le is unrealistic.

The generalized-inverse solution or the least-squares solu-
tion with minimum norm:

3: arg min {||e - Gj||2} =(G'G)7'G'e
J

seems to be a reasonable choice (this solution is unbiased and
of minimum variance from a statistical standpoint), but it is
usually unacceptable because it resolves only the uniqueness
but not the stability of the solution with respect to erroneous
or noisy data [8].

Since the ill-posed characteristics of the inverse problem
are due to the lack of information, one needs to complete the
data with all other available information. The existing regu-
larization methods consist of combining a priori knowledge
with the information from the data in order to yield a unique
and stable solution. In such methods, a compound criterion
is introduced and optimized. The @ priori information can
be in a deterministic form (positivity, etc.) or in a stochastic
form (means, variances, expectations, etc.). Different a priori
information can lead to markedly different results.

For example, if the a priori knowledge concerns the smooth-
ness of the solution j, the Tikhonov regularization can be
consistently used [27], [31]. This traditional regularization
method consists of defining the solution which satisfies a
mixed quadratic criterion:

i= argmjin {lle - GjlI* + /\||JHQ}

where A is the regularization parameter. This solution is

unique, stable, linear with respect to the data and can be cal-
culated explicitly, but there is no guarantee that it is positive,
a point which is required in many imaging applications.

A priori knowledge of the positivity of the solution j
historically leads to the so-called “ME methods”. The use
of entropy is rigorously founded and applied in different
situations, see [4], [5]. [7], [11]-[14], [17]. [18], [25], [32]
among others. While the arguments for ME appear similar in
several applications, the ME principle is used in different ways
and the ME solutions are not mathematically equivalent. We
discuss here three techniques applying the ME principle.

The first technique consists of considering the unknown as
a probability distribution and of choosing, among the possible
solutions of the equation e = Gj, the one which maximizes
the entropy

N
S=- ij log ji-
k=1

This problem can be solved when using Lagrange multipli-
ers and gives a guaranteed positive and smooth solution, if it
exists. Methods based on this concept are known as “classical
ME” methods [21].

The second technique applying the ME principle is to
consider the unknown j as the mean values of a random
vector X with a probability density function (PDF) p(r), i.e.,
j = E{X} = (X) and consider the data e = Gj = G(X) as
the linear constraints on these mean values. Among the PDF
p(x) satisfying the data constraints we choose the one that
maximizes the entropy

S == /p(.):)l()gp(:l')d:l:.
Once p(x) is determined, the solution is deduced as follows:
3: E{X} = / xp(x)dr.

Methods based on this concept are referred to as “ME in mean”
methods [21].

The above two methods use the principle of ME directly as
a criterion for choosing a unique solution. However, they do
not explicitly take noise into account.

We propose here a third technique in which the ME principle
is used for assigning the a priori probability distribution
needed in the Bayesian approach. If we can represent the a
priori knowledge about the unknown j by a PDF p(j) and
the uncertainty on the data ¢ by a conditional PDF p(¢/j),
Bayes’ theorem allows us to combine them in the a posteriori
probability distribution

p(i/e) x p(j)p(e/j)

and the solution can be determined by maximizing p(j/e)
(the MAP criterion). Now before applying Bayes’ rule, it is
necessary to assign the a priori probability law p(j) and the
conditional PDF p(e/j) of the data. This is a difficult task
since these probabilities are in general not available. It is to
resolve this difficulty that we propose using the ME principle
to translate our a priori knowledge about the object j and about
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the noise b into probabilistic terms if this a priori knowledge
is in the form of statistical constraints (the expected values or
the moments, etc). Methods based on this concept are called
“Bayesian ME” methods [21]. In this paper, we propose a
regularization method which is based on the Bayesian MAP
estimation with the ME a priori laws: the Bayesian approach
allows both the data and the a priori information to be
incorporated into the estimation process, and the ME principle
is used to translate, in a coherent way, the a priori knowledge
into an a priori probability law.

In the following are presented (1) a brief description of the
Bayesian approach, (2) the use of the ME principle in deducing
the parametric a priori probability laws from the available
knowledge, (3) the Bayesian ME solution, (4) the choice of
the regularizing functions, (5) the simultaneous estimation
of the unknowns and of the hyperparameters (regularization
parameters or parameters of the a priori laws), and (6) the
extension of the proposed method in the case of complex
quantities.

II. BASICS OF THE PROPOSED METHOD

A. Bayesian Approach

The problem we would like to solve is: “what are the best
estimates of parameters that one can make from the imperfect
data and the a priori information”. We solve this problem using
a Bayesian approach in which the basic steps are summarized
as follows:

* Assign an a priori probability law p(j) to the unknown

object j according to the a priori knowledge of this latter.

* Assign a conditional probability law p(e/j) to the data

according to the knowledge of the noise statistics.

» Bayes’ theorem determines the @ posteriori probability

law p(j/e):

p(§)p(e/i)

. 3
p(e) @

pi/e) =
Clearly, (3) combines the a priori information in terms
of the a priori probability p(j) with the data information
in terms of the probability of the data conditioned on the
real solution p(e/j).
* When using the MAP criterion as a decision rule, the
solution is obtained by maximizing this a posteriori
distribution:

j=arg mjax{p(j/e)}. (4)

Further information about the Bayesian approach can be
found in (3], [16], [19], [28], [29] among others.

The resolution of (4) requires a calculation of two terms of
(3): the @ priori probability distribution p(j) of the parameter
to be estimated and the conditional probability distribution
p(e/j) of the data (the denominator of (3) p(e) is a constant
and does not affect the optimization).

Assuming that measurement equation (1) and the noise sta-
tistics are known, determination of p(e/j) is usually straight-
forward.
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The calculation of the first term p(j) in (3), i.e., how to
deduce an a priori probability p(j) for the image from the
a priori knowledge, is the main difficulty in the Bayesian
approach. In general, the a priori information is not directly
given in a probability form and does not yield a unique @
priori law either. In the cases where the a priori knowledge
takes the form of statistical constraints, we propose to use the
ME principle for assigning the a priori probability law.

B. Principle of ME for Assigning the Probability Law

The idea of the ME principle is that if the information
is not sufficient to determine uniquely a probability law, we
choose, among the possible distributions satisfying the given
constraints, the one which maximizes the Shannon entropy

pj) = arg max {— /m’) log p(j)dj} (5)

where P is the set of probability distributions satisfying the
constraints.

The justification for the use of ME lies in the fact that
the ME distribution exactly reflects the state of a priori
knowledge, in other words it does not introduce any other ex-
traneous information. The ME description has been interpreted
as the description most objective or maximally noncommittal
with respect to missing information [5], [32]. Moreover, the
ME principle translates in a coherent manner the a priori
information into a probability law.

Indeed, let us consider the case where our a priori knowl-
edge is in the form:

E{(HG)} =h
{E{su)} =5 ©

where H(j) and S(j) are two known functions, / and s are
constant.

Maximizing entropy (5) subjected to constraints (6) gives a
solution in exponential form for the a priori probability law
[26]:

1

p(j) = 700 [=AH() — 11S(j)] (7

where the partition function Z(, i) is given by

2000 = [ expl=AHG) - w8 ()

and the Lagrange multipliers A. y are deduced from (k. s) by
solving the system of equations

_9mZ(hpu) 4

O =An g
{ OmZ0gw) (8)
—eniba) o

Expression (7) represents a family of ME a priori laws that
depend on two parameters (A. ). Such a priori probability
laws are completely consistent with the a priori knowledge.
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Fig. 2. The objects of different shapes {01, 02, 03, and 04} are in the first row, the modules of the corresponding complex scattered fields are in the second row.

C. Conditional Probability of the Data

Making the standard assumptions about the noise, i.e., an
independent white noise with zero-mean and variance o2,
the ME principle leads to a Gaussian distribution for the
probability law of the data p(e/j):

ple/i) x exp[-Q()]
where Q(j) = [e—Gj)tW[e—Gj] and W

diag[L.... ).

D. Bayesian ME Solution

Taking into account expressions (7) and (9) for p(j) and
ple/j), respectively, the MAP solution (4) is equivalent to

j=arg min{ F(j) = Q) + AH() + S} (10

in which both noise and « priori information are present.

Thus, the image to be recovered is one which satisfies
criterion (10). In summary, the Bayesian estimation with the
ME principle gives a solution which is regularized thanks
to the @ priori knowledge introduced in the form of the
regularizing functions H and S, or equivalently translated into
the a priori probability law in a coherent way.

E. Hyperparameters

In practice, to solve problem (10), it is important to de-
termine the hyperparameters (A, ). Several cases may be
considered:

Firstly, (A, i) are given or can be directly deduced in an
empirical manner from some physical conditions.

Secondly, the expectations (h. s) are known and thus (A, )
can be calculated from (8).

Thirdly, the most general case, where only the regularizing
functions (H.S) are known but not the expectations (h, s),
one must estimate (A. ) as well as 3 To do this, there are
two statistical methods: successive and simultaneous estima-
tion [22]. In this paper, we propose using the simultaneous
estimation because the successive estimation method requires
the calculation of the marginalized likelihood which is often
impracticable (the Gaussian case excepted).

F. Choice of the Functions H and §

In general, H and S can be any arbitrary function. However,
if we wish the form of the @ priori law to be independent of
the scale factor of the image (i.e., it remains invariant when
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Fig. 3. Reconstruction of different inhomogeneous objects {01, 02, 03, and 04} from the simulated data without noise. The horizontal and vertical curves
trace the pixel values in the corresponding coordinate axes. The different gray levels represent the range of absolute values.

the scale of the image is changed), and with the hypothesis of
the independence of pixels, the admissible forms for H and S
are restricted to simple combinations of power and logarithmic
functions [26]. In our study, we have considered two typical
forms of (H.S): if the pixel values must be positive

N N
H(j) =) logji and S(G)=3"j (1
k=1 k=1
else
N N
HG) =3 "ji and SG) =Y e (12)
k=1 k=1
Case (11) yields the following a priori law p(j):
1 N N
j) = 5——e =AY log ji — 1
P0) = g o ; 08 ji /Lk;n (13)

which is a multivariate Gamma probability distribution.

Case (12) leads to the Gaussian a priori law:

N N
. 1 . .
p(j) = mexp —AZ_},‘?—#Z]k . (14)
i k=1 k=1

The reason for choosing these forms of ¢ priori laws is that
in these cases it is possible to obtain analytical and explicit
relations between (A, ) and the two first moments of the
probability law. Indeed, denoting the mean: m = E {7} and the
variance: v = E{(j — m)?}, we obtain the following useful

relations:
for the Gamma a priori law, and
{: - ELL (16)

for the Gaussian a priori law.
We have developed an algorithm for calculating (mn, v) from
the estimated image j at each iteration by the moment method
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Fig. 4. Reconstruction of the inhomogeneous square object 01 from the simulated data for different levels of noise: % = {25dB, 20dB, 15dB, 10dB}

from left to right, respectively.

(MM). The hyperparameters (A, p) are thus calculated from
relations (15) and (16).

G. Case of Complex Pixel Values

In general, the data e, the noise b and the matrix G are
complex quantities. The object j can be real or complex.

If j is real, and assuming that the real and imaginary parts
of the noise are independent, (2) becomes:

R R R
e G* . b
- [& o
and the application of the method is unchanged except that the
dimensions of the vectors in (13) are doubled.

If j is complex, the reconstruction method can be extended

when the real and imaginary parts of j are considered as
independent. Then (2) can be rewritten as

MRt

(a7

el

GFR (18)

In this case, the functions H and S in (11) and (12) are defined
for real and imaginary parts of pixel values assumed positive:

N N
H(G) =" (logjf +logjf) and SG)=Y_ (i +4i)
= - (19)
otherwise:
N N
HG) =Y (G +G0?) and SG) =Y (G + i)
k=1 —

(20)

The calculation is performed on both the real and imaginary

parts, the previous development of the reconstruction method
remaining unchanged.

H. Summary of the Bayesian ME Method

The proposed method leads to theoretical solution (10)
which is obtained as a result of the Bayesian MAP estimation
with the ME a priori law: the Bayesian approach is used to
combine both the information from the data and the a priori
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Fig. 5. Reconstruction of a complex object from the simulated data for the signal-to-noise % = 20dB. The first row represents the real part (a) and imaginary
part (b) of the original object. The second row shows the real part (c) and the imaginary part (d) of the reconstructed object.

knowledge in the estimation process. In this approach the
decision rule is the MAP and the ME principle is used in
the first step for deducing the a priori probability from the a
priori information.

The practical resolution of (IO)Ais performed by a simul-
taneous estimation of the solution j and the hyperparameters
(A, ). We have developed an algorithm in which (A, p) are
calculated from the moments (m, v) at each iteration, and the
unknown 3 is estimated according to criterion (10) by the
conjugate gradient method.

III. NUMERICAL SIMULATION PROCESS

According to the above mentioned method, the reconstruc-
tion simulation process is carried out as follows: from the
definition of an object (j), the scattered field (e) is calculated
and the reconstruction (3) of the object is performed according
criterion (10).

The reconstruction procedure is illustrated for a two-
dimensional case. Let us use as incident wave an r-axis
polarized plane-wave propagating in the z-axis, i.e., the

amplitude of incident wave E; is given by
E,(F) = Eu,; CXp(*ikZ) and El‘y = Eiz =0.

The frequency of the incident wave is 2.5 GHz.

The scattered field is calculated in a plane parallel to the
plane of the incident wave and placed behind the object
(Fig. 1), at a measurement distance of about 10 wavelengths.
The calculation of one component of relation (1), £, and J,
for example, is as follows:

E.(F) ; /// ® L & J.(r)dv. (21
2(7) = —1 — = 1 J.(r)dv.
Wop (1_,) k2 (’).La\L" ! ) v ( )

The reconstruction simulation process is detailed below:

Step 1: the object is constructed from a number of pix-
els traversed by an equivalent current distribution J
{71, 72, ... jn} with j; different from zero inside the object
and equal to zero outside the object.

Step 2: the scattered field is calculated by (17) on a plane
surface and the values are stored as vector e. To simulate
the measurement noise, Gaussian random noise is generated
with a given signal-to-noise ratio and added to vector e.
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TABLE 1 ]
THE VALUES D OF RECONSTRUCTION WITHOUT NOISE (l = 25 dB)
Objects 01 02 03 04
D of Fig. 3 1.142¢-07 1.832¢-06 1.056e-05 127¢-06
TABLE 1[I
THE VALUES D OF RECONSTRUCTION FOR DIFFERENT LEVELS OF NOISE
Levels of Noise 25 dB 20 dB 15 dB 10 dB
D of Fig. 4 1.142e-07 3.606e-05 6.418e-05 114.9¢-05
TABLE 11
THE VALUES D OF RECONSTRUCTION OF
A COMPLEX OBJECT FOR (3 = 20 dB)
Levels of Noise 20 dB
D of Fig. 5 7.222¢-02

=QG)+ AHG) +

Step 3: minimizing the function {F'(
t j. This step uses the

1S(j)} provides the estimated objec
conjugate gradient technique.

)
i

IV. RESULTS

In order to validate the method, the algorithm was tested
with objects of different shapes such as: square (O1), circular
(02), hollow (()3) and compound (()4) objects.

A number of reconstructions were performed: homogeneous
and inhomogeneous objects reconstructed from the simulated
data for different levels of noise (the signal-to-noise ratio %
varies between 25 dB and 10 dB). The data are presented in
Fig. 2. the results in Fig. 3 and 4.

Fig. 2: represents the different objects (O1, O2. 03 et

0O4) in the first row and the modules of the corresponding

scattered fields are in the second row.

Fig. 3: shows the reconstruction of inhomogeneous different

objects (O1. 2. O3 et O4) from the simulated data without

noise.

Fig. 4: gives the reconstruction of the inhomogeneous

square object O1 from the simulated data for different

levels of noise:

S—zrdBSA‘mdB S—rdsﬁﬂodB
i Vel bl :

Fig. 5: shows the reconstruction of a complex object from
the simulated data for the signal-to-noise % = 20dB. The
first row represents the real and imaginary parts of the orig-
inal object. The second row shows the real and imaginary
parts of the reconstructed object.
In Figs. 3. 4, and 5. the horizontal and vertical curves trace
the pixel values in the corresponding coordinate axes. The
different grey levels represent the range of absolute values. It
should be noted that there is excellent agreement between the
original and the reconstructed objects.

In order to estimate the reconstruction quality, we have
calculated the mean energy of reconstruction error for the
image:

_ Sy Gn = in)?
- N
where N is the number of image pixels.

D

Tables I to 111 show the quality measurements of reconstruc-
tion in absence and in presence of noise:

Furthermore, the absolute original and reconstructed (maxi-
mal and minimal) values are visualized and show the similarity
between them.

V. CONCLUSION

The numerical simulation results show the high quality of
the Bayesian ME reconstruction. Even in the case of much
noise or missing data, the absolute values of the pixels can
be changed but the shape of the object is always well recon-
structed. This interesting result can be explained by the fact
that in the case of missing or noisy data, a good reconstruction
is performed as a result of the appropriate regularization
introduced in a coherent way by the ME principle.

Although there exists Fourier relations between the scattered
field and the equivalent current distribution, and although most
of the image reconstruction methods often use Fourier data [1],
[23], [24], we have proposed here a statistical method which
directly operates in the spatial domain. We can thus eliminate
errors coming from the numerical calculation of direct and
inverse Fourier transformations and from the truncation of
signals.

Concerning the computational load, the correct solution is
obtained after a reasonable number of iterations (about ten
iterations for the gradient conjugate technique). In comparison
with conventional Fourier methods, which need one direct
Fourier transformation (FT) and one inverse FT, each iteration
takes about the same CPU time as a FT. Thus the quality of the
reconstruction is acquired at the expense of the computational
time (about 10 times longer).

Nevertheless, the high quality of the reconstructions and
the robustness of the solution under missing or noisy data
demonstrate the power and potential of the proposed method
for image reconstruction.
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