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Abstract— A tomographic approach is proposed for the in-
homogeneities imaging in conductive media. We propose
a linear discrete model for the resolution of the Forward
problem and a Bayesian probabilistic approach for the reso-
lution of the inverse problem. Some results (simulated and
real data) are presented to show the efficiency of the pro-
posed method in spite of the modelization errors due to the
Born approximation for linearizing the problem. Our spe-
cific application concerns the Eddy current non—destructive
evaluation of pipes.

I. INTRODUCTION

This paper concerns the implementation of a tomographic
imaging procedure to invert eddy current data. eddy cur-
rent imaging methods consist of dividing the defective re-
gion using a regular mesh and then considering the non-
destructive evaluation (NDE) problem in the same way
as that of tomographic reconstruction problem for hetero--
geneous media. In opposition to the qualitative imaging
methods which consist of reconstructing the flaw’s contours
by estimating the density of the induced currents [5], our
objective is to reconstruct directly the quantitative map
of the relative conductivity of the flawed region (object).
This imaging approach requires, first, to construct a model
(Forward problem) which can be able to regenerate the
responses supplied by the sensors. This model must be
constructed faithfully to be as simple as possible. Next
step is the experimental design to make and to measure
the data (instrumentation). Finally, an image of the in-
terested region must be reconstructed from the measured
data (inverse problem).

These three problems are commonly not independent
and the resolution of the inverse problem requires to solve
many times the Forward problem. Unfortunately, forward
models are inherently nonlinear, because they involve two
linear coupled integral equations where the observed data
are related, by an integral equation, to the products of
two unknowns, the flaw conductivity and the true electric
field within the flawed region. The Born approximation is
therefore introduced to linearize the problem by assuming
that the perturbation of the electric field within the flawed
region is small. In this paper, we first derive such a lin-
earized model which makes a relatively good compromise
between the fidelity to measured data and the simplicity of
the model. Next, we propose an inversion method to recon-
struct the object. We show in particular the way we have
introduced an a priori information by using a Bayesian ap-
proach in order to obtain a satisfactory solution in spite of
the modelization errors inherently due to the Born approx-
imation. Some simulation results are presented to show the

efficiency of the proposed method. First, we compare our
results with real data and with the results obtained by a fi-
nite element method. Then, we present some reconstructed
images of artificial objects from real data.

II. RESOLUTION OF THE FORWARD PROBLEM

Let us consider an anomalous region within the wall of
a cylindrical tube, with conductivity ¢y and permeability
to and consider a flaw which has axial symmetry. The
flawed region is assumed to have the same permeability jo
but different conductivity o(r,z). An exciting coil and a
probe coil are in the interior of the tube and are coaxial
with it. The exciting coil provides eddy current in the
tube wall and the probe coil measures the voltages induced
in the sensing coil. Given the object function f(r,z) =
(o0 =0 (r,2))/00, the determination of the responses of the
sensing coils requires the followings steps:

1. Calculate the field E2(r) inside the wall of the tube
produced by the exciting coil considering the flaw absent:

Gor (7, 7 ') Jo(F)dF’, (1)

inductor

Ego(F) = jwpo /

where Jo(7’) represents the induced current by the source.

2. Calculate the field E5(7) inside the tube wall when the
flaw is present:

Balf) = Buolf) + oy [ G777 £(7) .
)

3. Calculate e(w, z) which is induced in the probe coil:
e(w,z) = / H(w,z;7") o0 FFY Es(F) dF’,  (3)
D
where the function H(w, z;7 ') is given by

H(w,z;7') = —jwpo2m n, G(F, 7y dr'.  (4)
probe

In these equations, (/3;(F,7 ') and Gao(F,7 ') are the
Green’s functions, n, denote the whirls density and w is
the frequency of the exciting source. We have considered
three regions of interest: the interior of the tube R, the
tube’s wall Ry, and the exterior to the tube Rj.

The inverse problem which consists in reconstructing the
object function f(7) from the measured data e(w,z) now
appears like a bi-linear inverse problem. To linearize and
to decouple the equation (2) and (3) one can use the Born
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approximation. Within this approximation and for a two
dimensional problem, the relation between the measured
data and the object function becomes:

e(w, 2) :/ H(w, 27, 2"y a0 f(r',2') Exo(r', ') v dr’ d2'.
D
(5)

The function H(w,z;r’,2') includes the geometry of the
probe coil while the incident field Eso(r', 2') includes the
geometry of the exciting coil. The next step consists of dis-
cretizing this linear integral equation with rectangular ba-
sis functions and Dirac weight functions (point-matching).
The flawed region is partitioned into k layers (1 < k < N),
defining the successive lines fi(z) = f(rx,2) of the image
f(r,z). The measured data e(w, z) are, finally, related to
the object function by the following relation:

e(w,z) = Zwk Je(2) * hig(w, 2) + b(w, 2) (6)
k=1 )

- where * means the convolution operator and wy is related

to the incident field values Ezo(rx) at each layer k. The
point spread functions Ax(w, 2) to the sensor are defined
from the Green’s functions depending only to the geom-
etry of the measurement system and the frequency w of
the exciting waves. This equation shows the dependence
of e(w, z) and hi(w,z) on the frequency w, whereas fi(2)
is independent of w. By acquiring data at several frequen-
cies and writing down equation (6) for each frequency, we
obtain a system of N; equations that we call the multifre-
quency linear model. For each frequency we have:

Ine(z

f2(z)

S1(z)

In our application we have chosen four frequencies occur-
ring in octave steps. This choice improves the condition
number of the resulting linear system due-to the physi-
cal phenomenon “skin effect” which contributes to confine
high frequency eddy currents near to the exciting source.
Furthermore, the inverse problem is underdetermined since
the number of measurement data is smaller than the num-
ber of unknowns. For these reasons, we have to complete
the information provided by the data with a priori infor-
mation on the object f(r,z). One way to achieve this is to
adopt a Bayesian approach.

I11. A BAYESIAN APPROACH FOR THE INVERSE PROBLEM

The observation model (6) is given by a set of linear integral
equations whose kernels are translation invariant along the
measuring axis. When discretized we have:

y=Az+b )

where A is a known attenuating matrix whose components
depend only on the geometry of the experimental system
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through the functions hx(w, 2). @ is a vector whose compo-
nents represent the unknown parameters to estimate (the
pixel values of the image f(r, 2)). y is a vector whose com-
ponents are the samples of the measured data e(w, z) col-'
lected from several frequencies. b is a vector whose compo-
nents represent both the measurement noise and any other
unmodeled error like quadrature errors resulting from the
discretization and model approximation errors. In this pa-
per, we propose a Bayesian approach which is based on the
use of a priori information on ® and b and involves the
following steps [3,2]: .

1. Assign a probability law p(z) to the unknown parame-
ters @ to translate our a priori knowledge about them.

2. Assign a conditional probability law p(y/z) to the mea-
sured data to translate our uncertainty on the observation
model and on the noise that corrupts the measured data.

3. Use the Bayes rule to obtain the a posteriori disttibu-
tion p(x/y) which completely sums up all the knowledge
we can have about the objet =:

p(/y) = ply/=)p(=)/p(y) (®)
4. Use a decision rule to attribute a value to each pixel.
There are three classical estimators: the maximum a pos-
teriori (MAP), the posterior mean (PM) and the marginal
maximum a posteriori (MMAP). This choice is often trans-
lated into the choice of a cost function C(®*,«) and the
solution Z is obtained by minimizing its mean value.

Several difficulties still remain. First, how to assign the
probability law p(«) to the unknown parameters because
the a priori knowledge is not given to us directly in a
probabilistic terms. Second, the choice of a cost function
is not obvious. In the next section, we describe the choices
we have made to implement this inversion method in our
eddy current imaging context.

IV. THE PROPOSED METHOD

A. Assigning the a priori law p(x)

To assign p(z), we have to translate the a priori knowl-
edge that we have about the solution in probabilistic terms.
If the a priori knowledge can be written down as some
constraints on p(e), the Maximum Entropy (ME) princi-
ple can be used. In practical applications, we don’t have
such constraints, so we often translate constraints such as
positivity, or roughness of the desired solution to choose a
family of laws which are determined by some hyperparam-
eters. These parameters may be fixed in advance or may
be estimated from data in the same time that the solution.
In our case, the image represents the values of the rela-
tive conductivity f(r,2) = (00 — o(r, 2)) /o0 at each pixel
position. These values are included in the interval [0, 1].
Furthermore, most of these pixel values are close to zero
(homogeneous region f(r,z) = 0) while the flawed region
is almost constituted by air (f(r,z) = 1). We translated
these information by using a Beta probability distribution
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function for the pixel values.

Pz} =

27 (1 —ay)7*

©)

NI =N =

exp [-Alogz; — plog(l — z;)],

where Z is the normalization constant. This prior law fa-
vors the pixel values around 0 and 1 without excluding the
intermediate values which represent the materials which
are less conductive than the homogeneous region and which
are buried in the homogeneous region. The parameters A
and p can be adjusted to take account of the expected
nature and the relative size of the flaw buried into the ho-
mogeneous region.

We have also assumed that the pixels are a priori in-
dependent. So p(z) can be written down in the following
expression:

I N N .
p(x) = N eXP [—AZlogz; - ,uZlog_(l - :r,)] . (10)
i=1 i=1

B. Assigning the conditional probability law p(y/z)

When the noise b is a priori assumed to be white, with a

. . . 1 1 .
covariance matrix W = diag s T] , the ME prin-
1 M

ciple gives us a Gaussian distribution:

p(b) = N (0,07),5 € {1,2,..., M},

where M is the number of samples of the measured signal.
Then, using the observation model (7), we obtain:

P(y/x) o exp[-Q()] with Q(z) = (y-A =)' W (y—A=).

(11)
C. Calculating the a posteriori law p(z/y)

By substituting the equation (10) and (11) into (8), we
obtain:

p(@/y) o« exp [-J ()] with J(z) = Q(2)+AH () +4uS(z),

(12)
where the two functions H(z) and S(=z) are defined by the
following relations:

N N
H(z) = Zlog(z‘i) and S(z) = Zlog(l —z;). (13)

D. Choice of the cost function

When p(x/y) calculated, in general, we need to summa-
rize it by attributing an optimal value to each pixel. One
can choose as the optimal solution Z the mode, the mean
or the mode of the marginal p(z;/y). This choice is often
translated into the choice of a cost function C'(x*, ) and
the solution # is obtained by minimizing its mean value

z= arg;nin{/C(z*,z)p(m*/y) dm*}. (14)

The choice is guided by the fact that it is necessary to
make a compromise between several practical constraints

like: the complexity of the implementation, the quantity

of calculations which are required in order to obtain an ex-

plicit solution. We have adopted the MAP solution:

# = argmax {p(z/y)} which can be interpreted as the
z .

choice of a zero-one cost function. We have adopted it
because it leads to the simplest implementation and, prac-
tically, it leads to a satisfactory solution.

E. Resulting optimization problem

With this choice, the solution of the inverse problem is
obtained by minimizing a mixed criterion:

& = argmin {J () = Q(z) + A\H(2) + uS(@)} . (15)
In a related paper [3], we have presented this approach
and shown that one can give a regularization interpreta-
tion to this criterion where the two functions H(x) and
S(x) appear as regularization functionals and A and p as
regularization parameters.

If A and p are fixed in advance, then J(=) is a convex
function of @ and therefore its optimization does not in-
duce any particular difficulty. Any gradient algorithm can
then be used to obtain the solution. We have implemented
a modified conjugate gradient algorithm which, in each it-
eration, forces the values of Z to be in the interval [0, 1].

IV. NUMERICAL RESULTS

To validate our forward model and our inversion method
artificial axisymmetric flaws in the internal or in the exter-
nal faces of a copper tube are constructed. This tube has
an inner radius of 9mm and an outer radius of 10mm. The
flaws are 0.3mm deep and have a length of 5mm.

Using this tube, the experimental data has been gath-
ered for five frequencies (1,2,4,8,16kHz). Then, a com-
parison is done between these experimental data and those
obtained by using our simplified forward method, as well
as, with those obtained by a finite element method who
does not need the Born approximation.

In Fig. 1 and Fig. 2 we present these results. In these
figures the simulation results obtained by the proposed
method are noted (LSS) and those obtained by a finite
element (FE) method are noted (ECL) and the experimen-
tal data are noted (CEA). Two commonly used represen-
tations in non-destructive testing are used to show these
data. The first is the variation of the amplitude of the
data as a function of z. The second is the variation of the
imaginary part as a function of the real part of the data.
Fig. 1 corresponds to an external flaw and Fig. 2 to an
internal flaw. :

Comparing the results obtained by the proposed method
to those of the FE method, we can see that for an exter-
nal flaw the first one gives a better restitution of the phase
variations and second one gives a better restitution of the
amplitude variations. For an internal flaw these are re-
versed. However these results show a good concordance
between the experimental data and those provided by the
proposed model.

In Fig. 3 the inversion results (reconstructed objects)
we have obtained are, respectively, presented by a non-



regularized method, a quadratic regularization method, and
the proposed method. All these images are obtained from
the real data. The reconstructed objects by the proposed
method are better than the others. It is not surprising
because the latter take account of a pertinent a priori in-
formation which improves naturally the results.

V. CONCLUSIONS
The main objective of this paper was to present a proce-
dure for the imaging of conductive media and which allows
to be applied efficiently for eddy current non-destructive
evaluation. The Bayesian approach we have described have
permitted us to introduce an a priori information which
is a relevant and specific one for our -application. Further-
more, contrary to quadratic regularization methods which

. are usually used by other authors [4,6], the regularization

functionals we have proposed guarantee the positivity of
the solution. In particular, the reconstructed objects ob-
tained from real data show that the proposed method seems
to be very robust relative to modelization errors. Two ex-
tensions for this work are.presently doing: the estimation of
the regularization parameters A and p from the data [3,7]
and the introduction of other a priori information in order
to take account of a priori known correlation between the
adjacent pixel values using a Markov model [8].
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Fig. 1: Validation of the forward model for an external flaw : Com-
parison between the data obtained by the proposed model (LSS),
experimental data (CEA) and the data obtained by a finite element
method (ECL).
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Fig. 2: Validation of the forward model for an internal flaw: a) pro-
posed model, b) experimental data and c) finite element method. '
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Fig. 3: Validation of the inversion method : Comparison between
three reconstruction methods: a least square method (MC), a quadratic
regularization method (RQ) and the proposed method.




