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ABSTRACT

We propose a new method to solve the nonlinear in-
verse problem of tomographic imaging using microwave
or ultrasound probing, beyond the classical first order
Born or Rytov approximations. The relation between
the data and the measurement is given by two coupled
nonlinear equations.

We set this problem as one of estimation and pro-
pose a solution within the Bayesian probability frame-
work. The Maximum A Posteriori estimate determi-
nation leads to a multi-modal criterion minimisation.
Global minimisation using Simulated Annealing is not
practicable due to the high calculation cost. We pro-
pose a feasible deterministic relaxation algorithm in-
spired by the Graduated Non Convexity principle to
perform this minimisation.

1. INTRODUCTION

Tomographic imaging with scattering waves such as ul-
trasound or microwave arises in various areas such as
medical imaging, non-destructive testing and geophys-
ical remote sensing. The purpose is to construct an
image representing some physical properties of an ob-
ject from a set of measured field data. The image -
data relation is not linear and is given by two coupled
equations. It is linearised customarily using the Born
or Rytov approximations. These approximations, how-
ever, break down when the object to be reconstructed
is too large or has a too high contrast.

Several authors have tried to circumvent the non-
linearity by solving iteratively and independently the
two coupled linear equations [1], others have proposed
methods for solving these equations by defining and
minimising an intuitive criterion [2].

In our work, we try to find a regularised solution of
this nonlinear ill-posed inverse problem within a Bayes-
ian probability framework. We define the solution as
the Maximum A Posteriori (MAP) estimate, which
takes into account the measurement noise, supposed
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to be white and Gaussian, and the correlated nature of
the image.

The MAP estimate computation requires the min-
imisation of a criterion which may have local minima.
Techniques such as Simulated Annealing (SA) can not
be used in our case due to their high calculation cost.
This is due to the fact that the relation between the
data and the object is not local.

We propose a deterministic relaxation algorithm in
order to perform this minimisation. We have no theo-
retical guarantee of convergence of this algorithm, but
it has been shown to give satisfactory experimental re-
sults.

2. MODELLING AND BACKGROUND

The two-dimensional diffraction tomography or inverse
scattering problem is a classical one, and the forward
modelling equations and their establishment can be
found in many text books and other works. See for
example [1]. The geometrical configuration of the prob-
lem is shown in Fig. 1. We want to reconstruct the com-
plex permittivity profile 2 of an object from the obser-
vation of the scattered field y. From Maxwell equations
we can derive the following coupled equations relating
z and y in an operator form:

y = Gtm(““¢’>' .
$ = "+ Golr.d), )

where ¢"¢ and ¢ are the incident and the total field
on the object, and Gp,, G, are linear operators with
respect to x and ¢, related to the (Green functions.

The classical Born approximation neglects the scat-
tered field on the object in Eq. (2) which amounts to
G = 0. This leads to the linear equation relating z
and y:

y=Gm ((1:, CV)“]C) .

This linear inverse problemn has preoccupied many re-
searchers in the past and different solutions, for most
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favourable experimental conditions, can be found in the
literature. However, this approximation is too restric-
tive, and several authors have recently tried to go be-
yond this limitation.

The Born Iterative Method (BIM) [1] (or related
methods) treats this nonlinear problem by solving iter-
atively (once discretised) the Eq. (1) with respect to z
for fixed ¢, and the Eq. (2) with respect to ¢ for fixed
2,. This leads to solve successively linear inverse prob-
lems. The limits of convergence of such an algorithm
are still to be specified. It has given satisfactory results
in some experiments, but failed in others.

R.E. Kleinman [2] proposed recently a new method.
He established intuitively a quadratic criterion, related
to the errors on the equations (1) and (2):

_ ly =G (@, 0)°, = ¢"™ ~ Co(z,9)1|"

J, = .
k(@) WE T e

Then he tried to minimise it simultaneously with re-
spect to z and ¢ using a gradient descent type algo-
rithm. The solution found with this algorithm can be
a local minimum of the given criterion.

All these methods give some good practical results
as long as the contrast is not too high and as long as
the signal to noise ratio (SNR) is not too low.

As an alternative, we propose to define an objec-
tive criterion to minimise, which takes into account the
modelling and measurement noise and the prior infor-
mation on the image to reconstruct.

3. PROPOSED METHOD

3.1. Definition of an objective criterion

The discretisation of the Eq. (1-2) gives, in a compact
notation:

Gde)v
d)lnc + GOquJ

y =
b =

where Gn,, G, are matrices related to the Green func-
tions, X is a diagonal matrix with the components of
the vector @ (a n length vector) as its diagonal elements
and y, ¢ arec respectively m and n length vectors rep-
resenting the measured data and the total wave com-
ponents on the object (n > m).

These two equations can be combined to obtain a
symbolic explicit relation between the data y and the
unknowns x:

Y= GmX (I — GoX)™! ¢ = A(z),

where the considered matrix is supposed to be invert-

ible.

Finding = for given data y is an inherently ill-posed
problem and its resolution requires prior information
on the solution and on the errors.

In a probabilistic framework, to take into account
the unavoidable uncertainties on the data, we consider
the equation:

y = Afz) +b,

where b stands for the errors (modelling and discreti-
sation errors as well as the noise), which is considered
to be Gaussian b ~ N (0, Ugf), with a known variance
o2. From this assumption we deduce the conditional
law:

piole) = (- ) o (~ghsly - A@IP).

The Bayesian approach gives us a coherent setting
to introduce the information on the solution by defining
a prior probability law p(x) [3]. For feasibility require-
ments we take a prior law of the form:

ple) = 5 exp -l (2)],

with Z a normalising factor, and U an energy function.
Then, Bayes’ rule allows to exhibit the posterior law:

p(zly) < plylz)p(z).

We then define the solution to be the Maximum A Pos-
tertori estimate of x:

& = arg max{p(zly)} = argmin{J(2)},

with 1
J(z) = %gﬂy — A@)|]* + pU (),

where p plays the role of a regularisation parameter.
The choice of the energy function U is essential
in the Bayesian framework. It has to incorporate our
knowledge on the object to reconstruct. A very pow-
erful class of models for images is the Markov Random
Fields (MRF) [4], its goal is to take into account the
correlated nature of the image to reconstruct. Gibbs
distributions are used to explicitly write MRF’s distri-
butions. Their energy functions could be written:

Um) =Y Ve(e),

where V. is a function (called potential) of local groups
of points ¢ (cliques).

In this work, we only took into account potential
functions of the form:

Ufz) = >

{i,7 neighbours}

lz; — 2P, 1<p<2,
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which restricts us to a class of MRFs called Gener-
alised Gauss Markov Random Fields [5], and horizontal
and vertical neighbourhood (first order). For p near or
equal 2, it severely penalises large differences between
the values of the neighbours and is useful to reconstruct
smooth objects, on the other hand, for p near to 1, it al-
lows such differences, and could be used to reconstruct
discontinuous objects.

3.2. Proposed optimisation method

The criterion J(#) may have many local minima. It’s
minimisation should be done with a global optimisation
algorithm.

Simulated annealing is a global optimisation tech-
nique which has been used in image restoration [4]. It
updates successively the pixel values of the image ac-
cording to the conditional posterior probability law. It
is particularly efficient when this distribution has local
properties, which makes the cost of calculation very low
for each update. However, in our problem, due to the
large support of the operator A, the SA is practically
inextricable. In fact, the posterior distribution is still
a Gibbs distribution but the neighbourhood of a pixel
becomes practically the whole image.

We introduce a deterministic relaxation algorithm
inspired by the Graduated Non Convexity (GNC) prin-
ciple proposed by Blake and Zisserman in [6] for noise
cancellation and segmentation and extended to the gen-
eral linear ill-posed inverse problem in [7]. The prin-
ciple of this algorithm is very simple. It consists in
approximating the non convex criterion J(z) with a
sequence of continuously derivable criteria J,(z) con-
verging toward it for n — oo, by taking care to choose
the first one Jo(z) to be convex. Then we minimise
each criterion J,(2), with a local optimisation tech-
nique such as adaptive gradient, using as starting point
the minimum of the precedent criterion.

Up to now, such a principle has only been studied
for linear inverse problems where the log-likelihood 1s
a convex function and the multi-modality of the MAP
criterion is due to the prior law part. In this work, we
consider prior laws such that U(z) is convex, so that
the multi-modality of J(®) is due to the non-convexity
of the log-likelihood, which comes from the nonlinearity
of the operator A(x).

To introduce the GNC technique, we consider the
sequence:

Ap(x) = GuX(I = raGoX) L ¢,
with 7o = 0, and limp_400 7n = 1. Note that the first

term (rp = 0) corresponds to the case of Born approx-
imation with a linear relation between the data and

the unknowns, which results to the following convex
criterion:

1 .
Jo(z) = —Q?Hy - GmX¢mCH2 + pU ().
b

The sequence J, () corresponding to A, () converges
toward Jy (x) for n — co.

4. SIMULATIONS AND RESULTS

The main objectives of these simulations were to show
that:

e The criterion may have many local minima. This
has been shown empirically by choosing many arbitrary
initialisations and noting that a gradient descent tech-
nique gives notably different solutions.

o The proposed GNC based optimisation algorithm
permits always to reach the same solution, for any ar-
bitrary initialisation, and we can hopefully assume this
solution to be a global minimum.

e The solution is not very sensitive to the choice of
the relaxation scheme r, and to the parameter g. In
practical experiments, a low number of relaxation steps
has been sufficient. For example », = {5,n=10...10.

e The obtained results are more satisfactory than
the solutions obtained by the BIM or by Kleinman’s
method. In fact, in some cases where the contrast is
too high, the last two methods do not give satisfactory
results.

In the following figures we give examples of ob-
tained results. The simulated object has a diameter
of one wavelength, discretised in 11 x 11 points. There
are 6 sources-receivers equally spaced around the ob-
ject which gives 36 measurement data. The SNR is
of 20dB. We present the results given by the proposed
method, Born iterative and Kleinman’s method for a
smooth object with relative peak contrast of 3, and the
results given by the proposed method and BIM for a
non smooth object with relative peak contrast of 2.

Our method gives better results than the others and
permits to take into account the discontinuity with bet-
ter efficiency than the BIM, even with the same type of
regularisation, while Kleinman’s method can not take
them into account.

5. CONCLUSION

We proposed a new method, based on the Bayesian
estimation framework, to solve the classical scattering
waves diffraction tomography imaging. The main ad-
vantage of an inversion method based on this approach
is to be able to define an objective criterion to opti-
mise and tools to characterise the obtained solution.
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Furthermore, it gives a powerful tool to introduce prior

information on the image to reconstruct.

The MAP estimate computation leads to a multi-
modal criterion. Its minimisation is performed with
a new deterministic relaxation method, based on the

GNC principle, which gives good practical results.

unt« Lambds

Figure 2: Reconstruction results for a smooth object with

a maximum contrast peak of 3.

a) Original contrast: real and imaginary part,
b) Proposed method with p = 2, D = 0.02,

c) Kleinman’s method D = 0.84,

d) Born Iterative Method D = 0.78,

D is the relative quadratic distance of the reconstruction to

the original, D = ﬂ%ﬁlﬁ

Figure 3: Reconstruction results for a non smooth object
with a maximum peak contrast of 2.

a) Original contrast: real and imaginary part,

b) Proposed method with p = 1.1,

c) Born Iterative Method with same type of regularization.
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