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ABSTRACT

In many applications such as non destructive testing (NDT),
we search for an anomaly (air hole. inclusion) inside a ho-
mogeneous region (metal). This problem classically is done
in three steps: detection, localization and characterization.
The present industrial technigues do well in the two first
steps, but the exact determination of the shape of the de-
fault region is still in the research domain. The computa-
tional cost of the classical tomographic reconstruction using
the pizel (2D) or the vozel (3D) representation of the exam-
ined body still hinders its use in industrial applications. In
this work, we propose modelling the contour (or the surface)
of the default region by a polygon (or by a polyhedron) and
estimating directly the coordinates of its vertices from very
limited tomographic projection data.

1. INTRODUCTION

Tomographic image reconstruction, which has recently been
applied to non destructive testing (NDT), consists of deter-
mining an object f(z,y,z) from its projections. In many
NDT applications, we know that f(r.y,z) has a constant
value ¢, inside a region {default region D) and another con-
stant value c» outside that region (safe region), e.g. metal
& air.

if (x,4.%) €D,
elsewhere
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f(r,y,z):{ (1)

The image reconstruction problem then becomes the deter-
mination of the shape of the default region. In this work,
without loss of generality, we assume that ¢, =landcy; =0
and model the shape of the object either by its contour in
2D case and by its surface in 3D case.

There has been much work in image reconstruction deal-
ing with this problem. To emphasize the originality and the
context of this work, we give here a summary of the different
approaches for this problem:

o The first approach consists of modelling the whole body
by a 2D array of pixels (or 3D array of voxels) and then
relating the projection data p to them by the linear equation
p = Hf+n, where f is a vector containing all the pixel or
voxel values, p is a vector containing the projection data,
n is a vector representing the measurement errors and H
is the discretized transform operator. Then the solution is
defined as the minimizer of a compound criterion

J(F)=Qlp — HF) + QS (2)

where A is the regularization parameter and  and 2 have
to be chosen appropriately to reflect our prior knowledge
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of the noise and the image. This is the classical regulariza-
tion approach to the general image reconstruction problem.
One can also interpret J(f) as the maximum a posteri-
ori (MAP) criterion in the Bavesian estimation framework
where —Q( f) represents the log-likelihood term and —Q( f)
is the log of the a prior: prior probability law. This ap-
proach has been used with success in many applications [1]
but the cost of its calculation is great due to the dimension

of f.

o The second approach starts by giving a parametric model
for the object and then tries to estimate the parameters us-
ing least squares (LS} or maximum likelihood (ML) meth-
ods. In general. in this approach one chooses a paramet-
ric model such as a superposition of circles and/or ellipses
(spheres and ellipsoids) to be able to relate analytically the
projections to the parameters. It is then easy to calculate
analyvtically the projection data p(0) and to define the so-
lution either as the ML or as the LS estimate :

§=argm3n{llp-p(9)||2} (3)

This approach has also been used with success in image
reconstruction [2, 3], but the range of applicability of these
methods is limited to cases in which the parametric models
are actually appropriate.

e The third approach, which is more appropriate to our
problem of shape reconstruction. consists of using a func-
tion to directly model the contour of the object and esti-
mating it directly from the data. This method has been
used in image restoration [4], but appears to be new in im-
age reconstruction applications. Our proposed method falls
into this category.

The originality of our work is to model the shape of the
object by a polygon in 2D and by a polyhedral surface in 3D
and to estimate the coordinates of its vertices directly from
the projection data. Some similar work in 2D has been
published by Milanfar, Karl & Wilsky [5, 6, 7], but their
method is based on specific relations between the moments
of the projection data and coordinates of the vertices of the
polygon. In recent work [8], we showed limitations of their
approach, which result from the fact that using only the
low-order moments of the projection data omits important
information.

2. PROPOSED METHOD

[n this work we propose to model the contour or the surface
of the object (default region) as a polygon or a polyhedron
with a large number N of vertices to be able to approximate
any practical shape. Then we propose directly estimating



the coordinates {(x,,y,,2,),J = 1,---, .V} of its vertices
from the projection data.

The idea of modeling the shape of the object as a polyg-
onal disc is not new and some work has been done in image
reconstruction applications, but, in general in these works,
a hypothesis of convexity of the polygonal disc has been
used, which is very restrictive in real applications. In our
work we do not make this assumption.
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Figure 1: Proposed shape reconstruction modeling.

We define the solution of the problem as the minimizer the
criterion
J(v) = {lp = R(o)II* + AQ(v), (1)

where v = {(x,,y;,%,),7 = 1,---,N} is a vector whose
components v, (z;,Yyj, ;) represent the spatial coordi-
nates of the polygon vertices, h(v) represents the direct
operator which calculates the projections for any given »
and (v) is chosen to be a function which reflects the reg-
ularity of the object contour.

In 2D case, we can represent v = {(z,,y;),7=1,---, N}
by a complex vector. In this case we use the following reg-
ularizing function:

N
Q) = Z|UJ—1—3'UJ+UJ+1!2
J=1
1w 1 2
= ZZ vj = ;(UJ—I +u41)| - (5)
=1

Note that ’UJ - Hvy—1 + U,_H)l is just the Buclidian dis-
tance between the point v; and the mid-point of the line
segment joiming v; 1 and v;1, so this choice favors a shape
whose local curvature is limited. We can also give a proba-
bilistic interpretation to this choice. In fact we can consider
v; as complex random variables with the following Marko-
vian law:

plyslv) = p(uslvie1,v541)

1
X  exp [—?M—l — 2v; +Ua+l|2] - (6)

Other functions are possible and are studied in this work.
In 3D case, by the same reasoning, we use

N

1 1

Qv) = 1 E YT TR
=1

where j € Vi stands for neighborhood, K is the number
of vertices v; in the neighborhood of the vertice v; and
+* Z]E\)x v;j gives the coordinates of a point which is the
geometric center of all the vertices v; in the neighborhood
of the vertice v;. Thus, the defined Q(v) in this case also
favors a shape whose local curvature is limited.

The criterion J{v) is multimodal essentially due to the
fact that hA(v) is a nonlinear function of ». Calculating
the optimal solution corresponding to its global minimum
requires carefully designed algorithms. For this we propose
the two following strategies:

2
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o The first is a global optimization technique such as sim-
ulated annealing. This technique gives satisfactory resuits,
as can be seen from the simulations in the next section.
but requires a great number of iterations and some skill in
choosing the first temperature and cooling schedule. Still,
the overall computational cost is not very large, due to the
fact that we do not need to calculate the gradient of the
criterion.

¢ The second is to find an initial solution in the attractive
region of the global optimum and to use a local descent type
algorithm such as ICM (Iterated Conditional Modes) to find
the solution. The main problem here is how to find this
initial solution. We use a moment based method proposed
by Milanfar, Karl & Wilsky {5, 6] which is accurate enough
to obtain an initial solution which is not very far from the
optimum. The basic idea of this method is to relate the
moments of the projections to the moments of a class of
polygons obtained by an affine transformation of a regular
polygon, and so to estimate a polygon whose vertices are
on an ellipse and whose moments up to the second order
match those of the projections.

However, there is no theoretical proof that this initial
solution will be in the attractive region of the global opti-
mum. The next section will show some results comparing
the performances of these two methods as well as a com-
parison with some other classical methods.

3. SIMULATION RESULTS

To measure the performances of the proposed method and
keeping the objective of using this method for NDT applica-
tions where the number of projections are very limited. we
simulated a case where the object is a polygon with .V = 40
corners (hand-made) and calculated its projections for only
5 directions
(¢ = —45.—22.5.0.22.5. 45 degrees) (see Figure 1).

We added noise (zero-mean. white, Gaussian) to simulate
measurement errors. with S/N ratio of 20dB. Figure 2 shows
the original object and the simulated projection data. Fi-
nally, from these data we estimated the solution by both of
the two proposed methods.

In Figure 3, we give the reconstruction results obtained
by simulated annealing (SA) algorithm. In this figure we
show the original object. the initial solution, the intermedi-
ate solutions during the SA iterations and the final solution
obtained after 200 iterations.

In Figure 4. we give the reconstruction results obtained
by ICM algorithm initialized by a solution obtained from
the two first moments of the projections. In this figure we
show the original object, the initial solution, the intermedi-
ate solutions during the SA iterations and the final solution
obtained after 200 iterations.

In Figure 5 we show a comparison between the results
obtained by the proposed method and those obtained by
a classical backprojection, and pixel-based estimation ap-
proaches with different regularization functionals ( f), more
specifically:

- the Entropic laws with ¢(z) = —zlogz where we called
it Mazimum entropy reqularized method,

- the Gaussian Markovian laws: with the potential func-
tion ¢(x,y) = |z — y|® which can also be considered as a
quadratic regularization method; and

— the Markovian laws with non convex potential functions:
#(z,y) = min {|z — y|°, 1} and é(z,y) = ﬁ_‘_—y—lj In these
two last cases we used a Graduated Non Convexity (GNC)
based optimization algorithm to find the solution.

For the sake of curiosity, we also show binary segmented
images obtained by thresholding these last images.



In Figures 6 and 7 we show a resuit obtained in 3D case.
Figure 6 shows the object and the 9 simulated projections.
Figure 7 shows the reconstructed object.

Projections.
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Figure 2: Original image and simulated projections data.
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Figure 3: Reconstruction using simulated annealing.
o} Original object, +) Initialization,

.) Evolution of the solution during the iterations and
*) Final reconstructed object,
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Figure 5: A comparison with backprojection and some other

classical methods:

a) Original, b) Proposed method,

c) Backprojection, d) Binary threshold of c,

e) Gaussian Markov modeling MAP reconstruction,

f) Binary threshold of e,

g) Maximum entropy regularized reconstruction,

h) Binary threshold of g,

a0k ) . L B i) Compound Markov modeling and GNC optimization
-0 20 T o 10 30 3 algorithm using truncated quadratic potential function,

3) GNC with Lorentzian potential function.

Figure 4: Reconstruction obtained by ICM algorithm.
o) Original object, +) Initialization,

.) Evolution of the solution during the iterations and
*) Final reconstructed object.
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Figure 6: A 3D object and its 9 projections.

Figure 7: The result of reconstruction obtained by the pro-
posed method.
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4. CONCLUSION

A new method for tomographic image reconstruction of a
compact object from a few number of its projections is pro-
posed. The basic 1dea of the proposed method is modelling
the compact object as a polygonal or a polyhedral body and
to estimate the coordinates of its vertices directly from the
projections using the Bayesian MAP estimation framework
or equivalently by optimizing a regularized criterion.

Unfortunately, this criterion is not unimodal. To find
the optimized solution two methods are examined:
global optimization method based on simulated annealing
(SA) and - a local descent-based method with a good ini-
tialization obtained using a moment based method. This
method can be compared to the Iterated Conditional Modes
(ICM) algorithm proposed by Besag.

The first method seems to yield the best results at
present. The second can also give satisfactory estimates,
but may be trapped in local minima. In both methods the
main computational cost is due to the calculation of the
variation of the criterion when one of the vertices’ coordi-
nates is changed. We have written an efficient program to
do this.

An extension of this work to 3D image reconstruction
from a small number of conic projections is underway. The
final objective of the proposed method is non destructive
testing (NDT) image reconstruction applications where we
can use not only X-rays but also ultrasound or Eddy cur-
rents or a combination of them.
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