
Bayesian Variational Approximation Implementation
for linear inverse problem with infinite Gaussian

mixture model

Ali Mohammad Djafari, Leila Gharsalli, Mircea Dumitru

Laboratoire des signaux et systems (L2S)
UMR 8506 CNRS-SUPELEC-Univ. Paris Sud 11

Supelec, Plateau de Moulon 01192 Gif-sur-Yvette, FRANCE
e-mail: djafari, leila.gharsalli, mircea.dumitru @lss.supelec.fr,

Abstract

We consider a Bayesian approach to linear inverse problems where an Infinite Gaus-
sian Mixture Model (IGMM) is used as the a priori to enforce the sparsity of the
solution. This IGMM is used in a hierarchical way via the hidden variables rep-
resenting the inverse variances which we want to estimate jointly with with the
unknowns. For this the joint posterior probabilistic low of the unknowns and these
hidden variables is approximated by a fully separable probabilistic law via the Vari-
ational Bayesian Approximation (VBA) approach where the criterion used is the
Kullback-Leibler divergence. To obtain the solution this criterion can be optimized
either by a classical alternate optimization or by a gradient based algorithm [1] [2].
In this paper we focus on the implementation issues of this algorithms for great di-
mensional linear inverse problems where we do not have access directly to the huge
dimensional matrix representing the forward operator. In many real applications of
inverse problems we have access to the results of the forward and the adjoint oper-
ators without needing to have explicitly the matrix corresponding to the operators.
We consider then particularly these algorithms in this context. At the end we show
the results of two applications: estimating the components of a periodic signal and
the image reconstruction in X-ray computed tomography.
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