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Abstract—In this paper, first a Bayesian estimation approach is
proposed for sources separation which is viewed as an inference
problem where we want to estimate the mixing matrix, the
sources and all the hyperparameters associated to modeling
(likelihood and prios). Then, the sources separation problem is
considered in three steps: i) Estimation of the sources whenthe
mixing matrix is known; ii) Estimation of the mixing matrix w hen
the sources are known; and iii) Joint estimation of sources and
the mixing matrix. In each of these cases, we consider also the
cases where we do not know the hyperparameters and we want to
estimate them too. In all cases, one of the main steps is modeling
of sources and the mixing matrix prior laws. We propose to
use sparsity enforcing probability laws (such as Generalized
Gaussians, Student-t, Elastic net and mixture models) both
for the sources and the mixinig matrix. For algorithmic and
computational aspects, we consider either Joint MAP, MCMC
Gibbs sampling and Variational Bayesian Approximation tools.

I. I NTRODUCTION

The general sources separation problem can be viewed as an
inference problem where first we provide a model linking the
observed data (mixed signals)g(t) to unknown sourcesf (t)
through a forward model. In this paper, we only consider the
instantaneous mixing model:

g(t) = Af(t) + ǫ(t), t ∈ [1, · · · , T ] (1)

whereǫ(t) represents the errors of modelling and measure-
ment.A is called mixing matrix and when it is invertible, its
inverseB = A−1 is called the separating matrix. The second
step is to write down the expression of the joint posterior law:

p(f ,A, θ|g) =
p(g|f ,A, θ1) p(f |θ2) p(A|θ3) p(θ)

p(g)
(2)

where p(g|f ,A, θ1) is the likelihood andp(f |θ2) and
p(A|θ3) are the priors on sources and the mixing matrix,
θ = (θ1, θ2, θ3) represent the hyperparameters of the problem
andp(θ) = p(θ1) p(θ2) p(θ3) their associated prior laws.

In this paper, we will consider different prior modelling for
sourcesp(f |θ2) and different priors for the mixing matrix
p(A|θ3) and use conjugate prios forp(θ). In particular,
we consider the Generalized Gaussian (GG), Student-t (St),
Elastic net (EN) and Mixture of Gaussians (MoG) models.
Some of these models are well-known [?], [?], [?], [?], [?],
[?], [?], some others less. In general, we can classify them in
two categories: i) Simple Non Gaussian models with heavy
tails and ii) Mixture models with hidden variablesz which
result to hierarchical models.

The second main step in the Bayesian approach is to do the
computations. The Bayesian computations in general can be:
• Joint optimization ofp(f ,A, θ|g) which needs optimisation
algorithms;
• MCMC Gibbs sampling methods which need generation of
samples from the conditionalsp(f |A, θ, g), p(A|f , θ, g) and
p(θ|f ,A, g);
• Bayesian Variational Approximation (BVA) methods which
approximatep(f ,A, θ|g) by a separable

q(f ,A, θ|g) = q1(f |Ã, θ̃, g) q2(A|f̃ , θ̃, g) q3(θ|f̃ , Ã, g)

one and then using them for the estimation.
The rest of the final paper will be organized as follows: In

section II, we review a few prior models which are frequently
used in particular when sparsity has to be enforced [?] and
select a few most importan ones such as the Generalized
Gaussian (GG) with two particular cases of Gaussian (G)
and Double Exponential (DE) or Laplace, the Student-t model
which can be interpreted as an infinite mixture with a variance
hidden variable, Elastic net and the mixture modeld. In Section
III, first we examine in details the estimation of the sourcesf

when the mixing matrixA is known, then the estimation of
the mixing matrixA when the sourcesf are known, then the
joint estimation of the mixing matrixA and the sourcesf , and
finally, the more realistic case of joint estimation of the mixing
matrix A, the sourcesf , their hidden variablesz and the
hyperparametersθ. In section IV, we give principal practical
algorithms which can be used in real applications, and finally,
in section V we show some results and real applications.


