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Seeing outside of a body: Making an image with a camera,
a microscope or a telescope

» f(x,y) real scene

» g(x,y) observed image

» Forward model: Convolution

g(x.y) = // F(xy') hx — Xy — y') i dy’ + e(x, )

h(x,y): Point Spread Function (PSF) of the imaging system
> Inverse problem: Image restoration
Given the forward model H (PSF h(x,y)))

and a set of data g(x;,y;), i =1,--- ,M
find f(x,y)
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Making an image with an unfocused camera
Forward model: 2D Convolution

glx.y) = // F(xy') lx — Xy — y') dx dy’ + e(x, )

e(x,y)

%_g(x?
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Different ways to see inside of a body
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» f(x,y) a section of a real 3D body f(x,y,z)
> g,(r) a line of observed radiographe gy(r, z)

» Forward model:
Line integrals or Radon Transform

gs(r) = /L f(x,y) dl 4+ €4(r)
ro
— //f(x,y)é(r—xcosqb—ysind)) dx dy + €4(r)

> Inverse problem: Image reconstruction

Given the forward model H (Radon Transform) and
a set of data gy, (r),i=1,--- , M
find f(x,y)
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2D and 3D Computed Tomography

ppppppppppp
80
- = 0
v S
S P 20
e B
% o
e, °
. ~.
P e o
By o
Y 2 -4
-60)
-a0)

g¢(r17r2):/ f(Xv.va) d/ g¢(r):/ f(va) d/
[*rl,r2,¢ Er,d)
Forward probelm: f(x,y) or f(x,y,z) — gy(r) or gs(r1, )

Inverse problem: g,(r) or gy(ri, ) — f(x,y) or f(x,y,z)
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Microwave or ultrasound imaging
Mesaurs: diffracted wave by the object ¢4(r;)

Unknown quantity: f(r) = k3(n?(r) — 1) Y et
Intermediate quantity : Iciert
oa(ri) = // Gm(ri,¥) f(r'ydr, r;e S ﬁ
D X
= 6o(r)+ [ Galeu)ole) () e /</ V
D
Born approximation ( ~ ¢o(r)) ): L

da(ri) = //D Gm(ri,¥)po(¥)f(r)dr', rieS .
H o

Discretization : ¢9 .
{¢d:G F ¢d:H(f) ° .g
m — ¢ with F = diag(f) °* L, °
= ¢@o + G,F

H(f) = G,,F(1 — GoF) 1o
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Fourier Synthesis in X ray Tomography
g(r,9) = //f(xay)5(f—xcosqf>—ysin¢) dx dy

G(R.0) = / g(r, 0) exp {—jr} dr

Flwx,wy) = //f(x,y)exp{—ijx,wyy} dx dy

F(wx,wy) = P(Q, ¢) for wy=Qcos¢ and w, =Qsing
Ky
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Fourier Synthesis in X ray tomography

Flwx,wy) = // f(x,y)exp{—jwex,wyy} dx dy
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Fourier Synthesis in Diffraction tomography
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Fourier Synthesis in Diffraction tomography

Fwx,wy) = // f(x,y)exp{—jwxx,wyy} dx dy
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Fourier Synthesis in different imaging systems

Flwx,wy) = // f(x,y)exp{—jwex,wyy} dx dy

X ray Tomography  Diffraction Eddy current SAR & Radar
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Invers Problems: other examples and applications

v

X ray, Gamma ray Computed Tomography (CT)

» Microwave and ultrasound tomography

» Positron emission tomography (PET)

» Magpnetic resonance imaging (MRI)

» Photoacoustic imaging

» Radio astronomy

» Geophysical imaging

» Non Destructive Evaluation (NDE) and Testing (NDT)
techniques in industry

» Hyperspectral imaging
» Earth observation methods (Radar, SAR, IR, ...)

» Survey and tracking in security systems
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Computed tomography (CT)

A Multislice CT Scanner

‘Fan beam Xfray‘ Tomography
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Magnetic resonance imaging (MRI)

Nuclear magnetic resonance imaging (NMRI), Para-sagittal MRI of
the head

PHILPS




X ray Tomography

g(r,¢) = //

1! & ’

f(x,

g(r,¢)=—In (é) = /L,,¢ f(x,y) dl

f(x,y)d(r —xcos¢ — ysing) dx dy
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Analytical Inversion method
S'\

Xy

Radon:

g(r,9) = //Df(x,y)&(r—xcosqb—ysingb)dxdy

_ LN [T 58(r.¢)
fx,y) = <_2—7r2>/0 /_OO (r —xcos¢ — ysing) drdo
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Filtered Backprojection method

+oo 0
Eg(ra(b)
f(x,y) = ( 27r2>/ / (r — xcos ¢ — ysin ) drdo

Derivation D : g(r,¢) = w
Hilbert Transform® : gl(f/mf)) = l/ (Er(n Qrf)/)) dr
™ 0 -

1 s
Backprojection B : f(x,y) = o / gi(r' = xcos ¢ + ysing, ¢) do
0

f(x,y)=BHDg(r,¢) =B F Q| Fig(r.d)

e Backprojection of filtered projections:

-~

Backprojection | f(x.y)

; FT Filt IFT ;
g(r,9) ilter gilrg oy
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Limitations : Limited angle or noisy data
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» Limited angle or noisy data
» Accounting for detector size

» Other measurement geometries: fan beam, ...
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CT as a linear inverse problem

T T
Fan beam X-ray Tomography

051

1r Source positions IR Detector positions

g(si) = / f(r) dl; + €(s;j) — Discretization — g = Hf + €
L;

» g, f and H are huge dimensional
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Algebraic methods: Discretization

Hij
S Ay
| ;
7 N
) /\/* .
0 > fn
X
\<‘ 4 D Z fj bj (x,¥)
1 if (x,y) € |
A y) { ' Ielsex ,y) € pixel j
N
g(ro) = [ flxna —S Hyif e
j=1

g=Hf +¢€
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Inversion: Deterministic methods
Data matching

» Observation model
g;:h;(f)+6;, iZl,...,M—>g:H(f)—|—€
» Misatch between data and output of the model A(g, H(f))

f= arg mfin {A(g,H(f))}

» Examples:
LS AgH(R) = llg = HOI* = > _lei — hi(H)P

- L, AgH(f) =llg —H()I" = Z lgi — hi(F)]", 1< p<2

-KL  A(g, H() = Zg; In h,-g(if)

> In general, does not give satisfactory results for inverse
problems.
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Deterministic Inversion Algorithms

Least Squares Based Methods

f=arg min {J(F)}  with J(F) = ||g — HFf|]?

VJ(f) = —2H(g — Hf)

Gradient based algorithms:

» Initialize:  £(©)

> lterate: flkt1) — £k _ o v J(FK)
At each iteration:  f(kT1) = f(k) 4 oH? (g — Hf(k))
we have to do the following operations:

» Compute g = Hf (Forward projection)

» Compute dg =g — g (Error or residual)

» Distribute §f = H'dg (Backprojection of error)

» Update fkt1) = ¢(k) 4 5f
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Gradient based algorithms

Operations at each iteration: f+1) — £(K) 4 oH? (g — Hf(k)>

» Compute g = Hf (Forward projection)

» Compute dg =g — g (Error or residual)

» Distribute §f = H'dg (Backprojection of error)
» Update fkt1) = §(k) 4 s¢

Initial estimated Forward projections of Measured
guess—| image | — | projection | — | estimated image | —| - |« | projections
£(0) (k) H g = Hf(kK g
T N
update compare
T 4
correction term Backprojection correction term in
in image space | <+— pHﬂ — projection space
5f = Hisg bg=g—&
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Gradient based algorithms

» Fixed step gradient:
ﬂ””zﬂ“+aH%g—HWU
> Steepest descent gradient:
ﬂwn:ﬂm+awH%g_ng

with (k) = arg min, {J(f 4 adf)}
» Conjugate Gradient

flk1) — f(K) | (k) g(k)

The successive directions d¥) have to be conjugate to each
other.
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Algebraic Reconstruction Techniques

» Main idea: Use the data as they arrive
fltD) = §00) 4 o (DK, (g,. _ [Hf(k)]l.)

which can also be written as:

i — [HFR];

hi h;, i
(k)
- f(k)+< EH”'S >h¢
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Algebraic Reconstruction Techniques

> Use the data as they arrive

i — [HFKR);
fltD) g0 (g [ ]>

R
(k)
= f(k)_|_< Z HU)S )hF

» Update each pixel at each time

(k)
f'(k'f‘l) _ f(k) + ( Z HU)S )H..
J J Zj Hij? Y
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Algebraic Reconstruction Techniques (ART)

. £(K)
8i — Zj HIJC’ ) h?
SHE

flk+1) — glk) 4 (

or
k)
S L
FUD) _ ) (g’ 2 Hif o,
b SoHE
J
Initial estimated Forward projections of Measured
guess—| image | —s | projection | —» | estimated i |mage — - <— | projections
£(0) (k) H Zj i J gi
T '
update compare
T 4

<.20I’.I’ECtI0n term Backprojection correction term in

In image space Hg — projection space
5 = 2 Hy i =8 — &
i Hy ZJ 7 ogi = gi — 8
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Algebraic Reconstruction using KL distance

~

Pf:

argming {J(f)} with J(f) =

(
f

(k)

k+1) Hy— 8
Z Hij 2

i

- giIn <8
Z’g' Zj Hijf;

'Y Huf

Interestingly, this is the OSEM (Ordered subset
Expectation-Maximization) algorithm which is based on
Maximum Likelihood and proposed first by Shepp & Vardi.

. estimated .
Initial image £(k) Forward projections of Measured
guess —| k) — | projection | — | estimated i |mage — - < | projections
£(0) fern) G =2 H &i
= i i
. by J J
T +
update compare
t .
correction term . correction term in
in imlage space Backp}r_:)gectlon projection zpace
8fi = —— >, Hjjdg; Sg = &
'j Zj H/'j Z, ijO8i 8i Z
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Inversion: Regularization theory

Inverse problems = Il posed problems
—  Need for prior information
Functional space (Tikhonov):

g =H(f) +e— J(f) = lg — H(F)I3 + NIDF||3

Finite dimensional space (Philips & Towmey): g = H(f) + €
e Minimum norme LS (MNLS):  J(f) = ||g — H(f)||?> + A||f]|?
e Classical regularization: J(f) = ||lg — H(F)||? + \||Df||?
e More general regularization:
J(f) = Q(g — H(f)) + AQ(Df)

J(F) = Ay(g, H(F)) + Ao (F, o)

or

Limitations:
e Errors are considered implicitly white and Gaussian

e Limited prior information on the solution

e Lack of tools for the determination of the hyperparameters
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Bayesian estimation approach
M g=Hf te€
» Observation model M + Hypothesis on the noise € —
p(g|f; M) = pe(g — HF)
» A priori information p(f|M)

. gy P(glf; M) p(FIM)
» Bayes : p(flg; M) = (& M)

Link with regularization :

Maximum A Posteriori (MAP) :
f= ag max {p(flg)} = argmax {p(glf) p()}

= argmin {—Inp(g|f) — In p(F)}

with  Q(g,Hf) = —Inp(g|f) and AQ(f) = —Inp(f)
But, Bayesian inference is not only limited to MAP
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Case of linear models and Gaussian priors
g=Hf +¢€

Hypothesis on the noise: € ~ N(0,c21)

1
pllf) o exp {—ﬁng - w2}
Hypothesis on f : f ~ N(0,02l) o

1
f —=—|If|I?
pl6) o exp { ~ 1}

v

v

v

A posteriori:

1
pllg) x exp {52 I~ W12 + S5 7 }

» MAP: f=arg maxg {p(f|g)} = arg ming {J( )}
with J(F) = ||g — HF||2 + \|If|%, A=

Advantage : characterization of the solution

flg ~ N(F,P) with f=PH!g, P = (H'H+ )

*.M|

v

-1
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MAP estimation with other priors:

f=arg mfin{J(f)} with J(f) = ||g — Hf||2 + \Q(F)

Separable priors:
» Gaussian: p(fj) o exp {—a|7§-|2} — Q(F) = |If||? = azj \6\2
> Gamma: p(fj) o< £ exp {—pBf;} — Q(f) = a ) ;Inf; + Bf;
> Beta:
p(5) o F°(1~ £)7 — 9(f) = a X, nfi + 5, (1~ §)
» Generalized Gaussian:
p(fi) cxexp{—alfilP}, 1<p<2-— Qf)=ad [,

Markovian models:

pfilf) ccexp —a Y o(fi.f) p — Q) =a) > o(ff),

ieN; JieN;

A. Mohammad-Djafari, Image Reconstruction Methods in Medical Imaging, European School of Medical Physics, Nov. 2012, 34/56



Main advantages of the Bayesian approach

» MAP = Regularization

» Posterior mean 7 Marginal MAP 7

» More information in the posterior law than only its mode or
its mean

» Meaning and tools for estimating hyper parameters

» Meaning and tools for model selection

» More specific and specialized priors, particularly through the
hidden variables

» More computational tools:

» Expectation-Maximization for computing the maximum
likelihood parameters

» MCMC for posterior exploration

» Variational Bayes for analytical computation of the posterior
marginals
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MAP estimation and Compressed Sensing

g=Hf +e€
f=Wz

» W a code book matrix, z coefficients

» Gaussian:

p(z) = N(0.021) s exp { 55> 3, |22}
J(z2) = ~Inp(zlg) = llg — HWz|? + A3, |22

» Generalized Gaussian (sparsity, 8 = 1):

plz) o exp { -2 X, 171}
J(z) = —Inp(zlg) = llg = HWz|? + A5, |2

> z=argminz {J(z)} — f =Wz
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Full Bayesian approach
: g=Hf +e€
» Forward & errors model: — p(glf, 01; M)
» Prior models — p(f|62; M)
» Hyperparameters 6 = (01, 02) — p(6|M)

_ p(glf.0:M) p(f10:M) p(O|M)
p(8IM)

» Joint MAP: (F,0) = arg rF;bx {p(f,0|g; M)}
(1,0)

» Bayes: — p(f,0|g; M)

p(flg; M) = [ p(f,0]g; M) df
p(6lgi M) = [ p(f,0|g; M) do

~

= [fp(f,0]g M) df do
0 = [6p(f,0|g; M) df d6

» Evidence of the model:

» Marginalization: {

» Posterior means: {

p(glM) = // p(alf. ; M)p(F|6; M)p(6|M) df do
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Two main steps in the Bayesian approach

> Prior modeling

» Separable:
Gaussian, Generalized Gaussian, Gamma,
mixture of Gaussians, mixture of Gammas, ...
» Markovian: Gauss-Markov, GGM, ...
» Separable or Markovian with hidden variables
(contours, region labels)
» Choice of the estimator and computational aspects
» MAP, Posterior mean, Marginal MAP
MAP needs optimization algorithms
Posterior mean needs integration methods

| 4
» Marginal MAP needs integration and optimization
» Approximations:

v

> Gaussian approximation (Laplace)
» Numerical exploration MCMC
> Variational Bayes (Separable approximation)
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Which images | am looking for?
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Which image | am looking for?

r /\ /\AMA/M
W\NW W\/\f

Gaussian Generalized Gaussian
p(filfi—1 OCGXP{ alfi — fia? } p(flfi- 20<eXP{ affi — fi-1|P}
Wm m‘v.fl“vj‘i Biah]
[ T T \ [ ;i
Piecewize Gaussian Mixture of GM
p(fila;, fi-1) = N ((1 — g;)f-1,07) p(filzi = k) = N (my, o7)
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Gauss-Markov-Potts prior models for images

"In NDT applications of CT, the objects are, in general, composed of a
finite number of materials, and the voxels corresponding to each
materials are grouped in compact regions”

How to model this prior information?

f(r) z(r) e {1,....,K}
p(f(r)|z(r) = k, my, vi) = N (my, vi)
p(f(r)) = Z P(z(r) = k) N'(mg, vk) I\/Iixture of Gaussi ns
p(z(N)|z(¥),r € V(r)) xexpqy Y 6(z ("))

r'ev(r)
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Four different cases

To each pixel of the image is associated 2 variables f(r) and z(r)

F

» f|z Gaussian iid, ziid :
Mixture of Gaussians

» f|z Gauss-Markov, ziid :
Mixture of Gauss-Markov

» f|z Gaussian iid, z Potts-Markov :
Mixture of Independent Gaussians
(MIG with Hidden Potts)

» f|z Markov, z Potts-Markov :
Mixture of Gauss-Markov
(MGM with hidden Potts)

| ,J
4
i

A. Mohammad-Djafari, Image Reconstruction Methods in Medical Imaging, European School of Medical Physics, Nov. 2012, 42/56



Four different cases

g((r) g(r)
f(r)
(1)

e -
A St

o -

Zz{(1) Z=(Tr')
Case 1: Mixture of Gaussians  Case 2: Mixture of Gauss-Markov

g(r) g(r)

L L]
.\ /. £ > < £f(r)
Pans () L g ® )

f(r")

e z(r)
z(1r) z(r')

Case 3: MIG with Hidden Potts Case 4: MGM with hidden Potts
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Summary of the two proposed models

f|z Gaussian iid f|z Markov
z Potts-Markov z Potts-Markov

(MIG with Hidden Potts) (MGM with hidden Potts)

A. Mohammad-Djafari, Image Reconstruction Methods in Medical Imaging, European School of Medical Physics, Nov. 2012, 44/56



Bayesian Computation

p(f,z,0lg) < p(glf,z, ve) p(f|z,m,v) p(z]7, &) p(6)

0 = {ve, (ax, me,v), k=1, K} p(0) Conjugate priors

» Direct computation and use of p(f,z, 0|g; M) is too complex
» Possible approximations :
» Gauss-Laplace (Gaussian approximation)

» Exploration (Sampling) using MCMC methods
» Separable approximation (Variational techniques)

» Main idea in Variational Bayesian methods:

Approximate
p(f,z,0lgiM) by q(f,z,0) = qi(f) q2(2) 93(0)

» Choice of approximation criterion : KL(q : p)
» Choice of appropriate families of probability laws

for g1(f), g2(z) and q3(0)
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MCMC based algorithm

p(f,z,0lg) < p(glf,z,0) p(f|z,0) p(z) p(0)
General scheme:
f~p(f2,0,8) — 2~ p(2|f.0,8) — 6 ~ (6ff . 2. 8)

» Sample f from p(f|z, 5, g) x p(glf,0) p(f|z, /é)
Needs optimisation of a quadratic criterion.

> Sample z from p(z[f, 0, g) o p(g[f. 2. 6) p(2)
Needs sampling of a Potts Markov field.

> Sample 6 from p(6[f,2.g) o p(glf, o21) p(F[Z, (M, vi))) p()
— analytical expressions.
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Application of CT in NDT

Reconstruction from only 2 projections

| -
ﬁ gl(X):/f(Xs)/) dy
]

| | g(y) = / f(x,y) dx
—

n

» Given the marginals gi(x) and g»(y) find the joint distribution

F(x.y)-
» Infinite number of solutions : f(x,y) = g1(x) g2(y) Q(x, y)
Q(x,y) is a Copula:

/Q(x,y) dx=1 and /Q(x,y) dy=1
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Application in CT

glf flz z q
g=Hf +¢€ iid Gaussian id q(r) € {0,1}
g|f ~ N(Hf,o2l) or or 1—d(z(r) — z(r))
Gaussian Gauss-Markov Potts binary

Unsupervised Bayesian estimation:

p(f.z,0\g) < p(glf,z,0) p(f|z, 0) p(0)
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Results: 2D case

Gauss-Markov+pos GM-+Line process

m,
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Some results in 3D case
(Results obtained with collaboration with CEA)
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Some results in 3D case

FeldKamp Proposed method
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Some results in 3D case

Experimental setup
, Générateur de Rayon X
/

A photograpy of metalique esponge

Feldkamp

Notre méthode
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Application: liquid evaporation in metalic esponge

A. Mohammad-Djafari, Image Reconstruction Methods in Medical Imaging, European School of Medical Physics, Nov. 2012, 53/56



Conclusions

» Gauss-Markov-Potts are useful prior models for images
incorporating regions and contours

» Bayesian computation needs often pproximations (Laplace,
MCMC, Variational Bayes)

» Application in different CT systems (X ray, Ultrasound,
Microwave, PET, SPECT) as well as other inverse problems
Work in Progress and Perspectives :
» Efficient implementation in 2D and 3D cases using GPU

» Evaluation of performances and comparison with MCMC
methods

» Application to other linear and non linear inverse problems:
(PET, SPECT or ultrasound and microwave imaging)
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Thanks, Questions and Discussions
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P S. Fékih-Salem (3D X ray Tomography)
My present PhD students:
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