Image Reconstruction Methods in Medical Imaging

Ali Mohammad-Djafari

Groupe Problèmes Inverses
Laboratoire des Signaux et Systèmes
UMR 8506 CNRS - SUPELEC - Univ Paris Sud 11
Supélec, Plateau de Moulon, 91192 Gif-sur-Yvette, FRANCE.

djafari@lss.supelec.fr
http://djafari.free.fr
http://www.lss.supelec.fr

European School of Medical Physics, Oct.-Nov. 2012

Content

- Seeing outside of a body
- Seeing inside of a body: Image reconstruction in Computed Tomography
- Different Imaging systems
- Common Inverse problem
- Analytical Methods
- Algebraic Deterministic Methods
- Probabilistic Methods
- Bayesian approach
- Examples and case studies
- Questions and Discussion

Seeing outside of a body: Making an image with a camera, a microscope or a telescope

- ightharpoonup f(x,y) real scene
- g(x, y) observed image
- ► Forward model: Convolution

$$g(x,y) = \iint f(x',y') h(x-x',y-y') dx' dy' + \epsilon(x,y)$$

h(x,y): Point Spread Function (PSF) of the imaging system

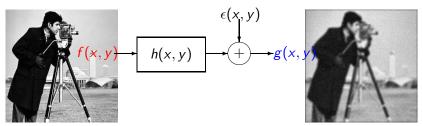
► Inverse problem: Image restoration

Given the forward model \mathcal{H} (PSF h(x, y))) and a set of data $g(x_i, y_i), i = 1, \dots, M$ find f(x, y)

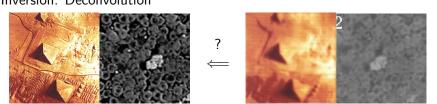
Making an image with an unfocused camera

Forward model: 2D Convolution

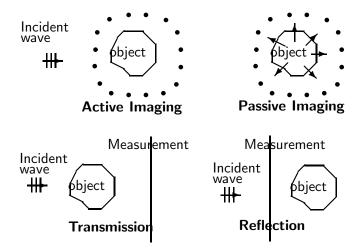
$$g(x,y) = \iint f(x',y') h(x-x',y-y') dx' dy' + \epsilon(x,y)$$



Inversion: Deconvolution

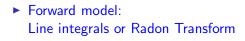


Different ways to see inside of a body



Seeing inside of a body: Computed Tomography

- f(x,y) a section of a real 3D body f(x,y,z)
- $ightharpoonup g_\phi(r)$ a line of observed radiographe $g_\phi(r,z)$



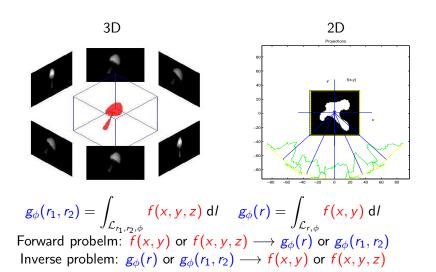
$$g_{\phi}(r) = \int_{L_{r,\phi}} f(x,y) \, \mathrm{d}I + \epsilon_{\phi}(r)$$

$$= \iint f(x,y) \, \delta(r - x \cos \phi - y \sin \phi) \, \mathrm{d}x \, \mathrm{d}y + \epsilon_{\phi}(r)$$

► Inverse problem: Image reconstruction

Given the forward model \mathcal{H} (Radon Transform) and a set of data $g_{\phi_i}(r), i=1,\cdots,M$ find f(x,y)

2D and 3D Computed Tomography



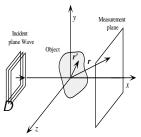
Microwave or ultrasound imaging

Mesaurs: diffracted wave by the object $\phi_d(\mathbf{r}_i)$ Unknown quantity: $f(\mathbf{r}) = k_0^2 (n^2(\mathbf{r}) - 1)$

Intermediate quantity : $\phi(\mathbf{r})$

$$\phi_{d}(\mathbf{r}_{i}) = \iint_{D} G_{m}(\mathbf{r}_{i}, \mathbf{r}')\phi(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \ \mathbf{r}_{i} \in S$$

$$\phi(\mathbf{r}) = \phi_{0}(\mathbf{r}) + \iint_{D} G_{o}(\mathbf{r}, \mathbf{r}')\phi(\mathbf{r}') f(\mathbf{r}') d\mathbf{r}', \ \mathbf{r} \in D$$



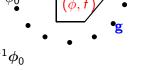
Born approximation
$$(\phi(\mathbf{r}') \simeq \phi_0(\mathbf{r}'))$$
):

$$\phi_d(\mathbf{r}_i) = \iint_{\mathcal{D}} G_m(\mathbf{r}_i, \mathbf{r}') \phi_0(\mathbf{r}') \, f(\mathbf{r}') \, d\mathbf{r}', \, \mathbf{r}_i \in S$$

Discretization:

$$\begin{cases} \phi_d = \mathbf{G}_m \mathbf{F} \phi \\ \phi = \phi_0 + \mathbf{G}_o \mathbf{F} \phi \end{cases}$$

Discretization:
$$\begin{cases} \phi_d = \mathbf{G}_m \mathbf{F} \phi \\ \phi = \phi_0 + \mathbf{G}_o \mathbf{F} \phi \end{cases} \begin{cases} \phi_d = \mathbf{H}(\mathbf{f}) \\ \text{with } \mathbf{F} = \text{diag}(\mathbf{f}) \\ \mathbf{H}(\mathbf{f}) = \mathbf{G}_m \mathbf{F} (\mathbf{I} - \mathbf{G}_o \mathbf{F})^{-1} \phi_0 \end{cases}$$



Fourier Synthesis in X ray Tomography

$$g(r,\phi) = \iint f(x,y) \, \delta(r - x \cos \phi - y \sin \phi) \, dx \, dy$$

$$G(\Omega,\phi) = \int g(r,\phi) \exp\{-j\Omega r\} \, dr$$

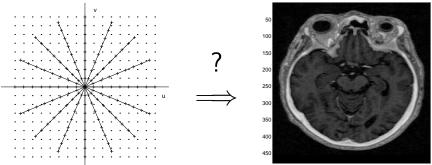
$$F(\omega_x,\omega_y) = \iint f(x,y) \exp\{-j\omega_x x, \omega_y y\} \, dx \, dy$$

$$F(\omega_x,\omega_y) = P(\Omega,\phi) \qquad \text{for } \omega_x = \Omega \cos \phi \quad \text{and } \omega_y = \Omega \sin \phi$$

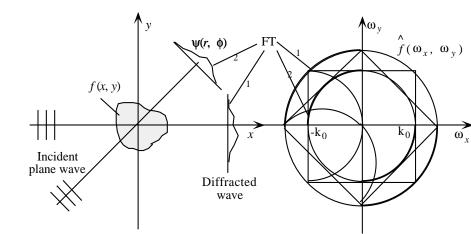
A. Mohammad-Djafari, Image Reconstruction Methods in Medical Imaging, European School of Medical Physics, Nov. 2012, 9/56

Fourier Synthesis in X ray tomography

$$F(\omega_x, \omega_y) = \iint f(x, y) \exp\{-j\omega_x x, \omega_y y\} dx dy$$

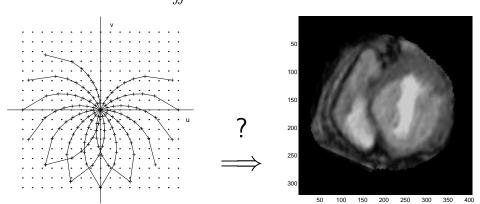


Fourier Synthesis in Diffraction tomography



Fourier Synthesis in Diffraction tomography

$$F(\omega_x, \omega_y) = \iint f(x, y) \exp\{-j\omega_x x, \omega_y y\} dx dy$$



Fourier Synthesis in different imaging systems

$$F(\omega_{x},\omega_{y})=\int f(x,y)\exp\left\{-j\omega_{x}x,\omega_{y}y\right\} \,\mathrm{d}x\,\mathrm{d}y$$

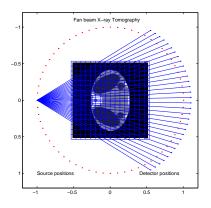
$$X \text{ ray Tomography} \quad \text{Diffraction} \qquad \text{Eddy current} \qquad \text{SAR \& Radar}$$

Invers Problems: other examples and applications

- X ray, Gamma ray Computed Tomography (CT)
- Microwave and ultrasound tomography
- Positron emission tomography (PET)
- Magnetic resonance imaging (MRI)
- Photoacoustic imaging
- Radio astronomy
- Geophysical imaging
- Non Destructive Evaluation (NDE) and Testing (NDT) techniques in industry
- Hyperspectral imaging
- ► Earth observation methods (Radar, SAR, IR, ...)
- Survey and tracking in security systems

Computed tomography (CT)

A Multislice CT Scanner

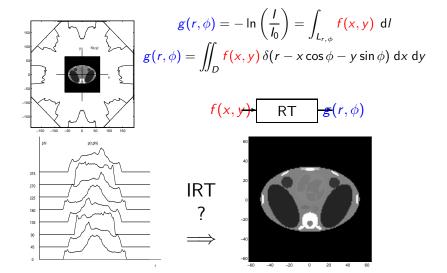


$$g(s_i) = \int_{L_i} \mathbf{f(r)} \ dl_i + \epsilon(s_i)$$
Discretization
 $\mathbf{g} = \mathbf{Hf} + \epsilon$

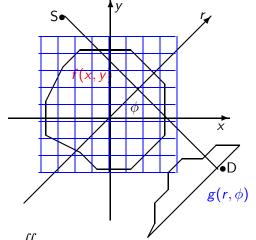
Magnetic resonance imaging (MRI)

Nuclear magnetic resonance imaging (NMRI), Para-sagittal MRI of the head

X ray Tomography



Analytical Inversion methods



Radon:

$$g(r,\phi) = \iint_D f(x,y) \, \delta(r - x \cos \phi - y \sin \phi) \, dx \, dy$$

$$f(x,y) = \left(-\frac{1}{2\pi^2}\right) \int_0^{\pi} \int_{-\infty}^{+\infty} \frac{\frac{\partial}{\partial r} g(r,\phi)}{(r - x \cos \phi - y \sin \phi)} \, dr \, d\phi$$

Filtered Backprojection method

$$f(x,y) = \left(-\frac{1}{2\pi^2}\right) \int_0^{\pi} \int_{-\infty}^{+\infty} \frac{\frac{\partial}{\partial r} g(r,\phi)}{(r - x\cos\phi - y\sin\phi)} dr d\phi$$

Derivation
$$\mathcal{D}: \overline{g}(r,\phi) = \frac{\partial g(r,\phi)}{\partial r}$$

Hilbert Transform
$$\mathcal{H}: g_1(r',\phi) = \frac{1}{\pi} \int_0^\infty \frac{\overline{g}(r,\phi)}{(r-r')} dr$$

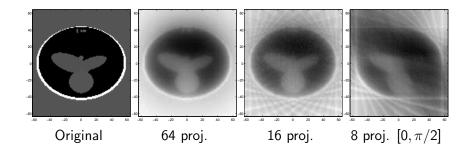
Backprojection
$$\mathcal{B}: \ f(x,y) = rac{1}{2\pi} \int_0^\pi g_1(r'=x\cos\phi + y\sin\phi,\phi) \ \mathrm{d}\phi$$

$$f(x, y) = \mathcal{B} \mathcal{H} \mathcal{D} g(r, \phi) = \mathcal{B} \mathcal{F}_1^{-1} |\Omega| \mathcal{F}_1 g(r, \phi)$$

• Backprojection of filtered projections:

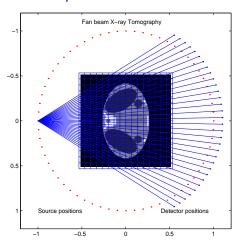
$$\stackrel{\mathbf{g}(r,\phi)}{\longrightarrow} \left[\begin{array}{c} \mathrm{FT} \\ \mathcal{F}_1 \end{array} \right] \longrightarrow \left[\begin{array}{c} \mathrm{Filter} \\ |\Omega| \end{array} \right] \longrightarrow \left[\begin{array}{c} \mathrm{IFT} \\ \mathcal{F}_1^{-1} \end{array} \right] \stackrel{\mathbf{g_1}(r,\phi)}{\longrightarrow} \left[\begin{array}{c} \mathrm{Backprojection} \\ \mathcal{B} \end{array} \right] \stackrel{\mathbf{f}(x,y)}{\longrightarrow}$$

Limitations: Limited angle or noisy data



- ► Limited angle or noisy data
- ► Accounting for detector size
- ▶ Other measurement geometries: fan beam, ...

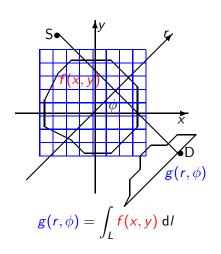
CT as a linear inverse problem

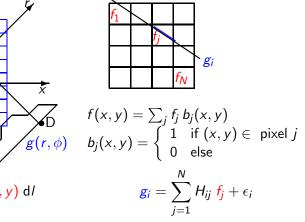


$$g(s_i) = \int_{L_i} f(\mathbf{r}) \, \mathrm{d}l_i + \epsilon(s_i) \longrightarrow \mathsf{Discretization} \longrightarrow \mathbf{g} = \mathbf{Hf} + \epsilon$$

▶ g, f and H are huge dimensional

Algebraic methods: Discretization





 H_{ij}

$$\mathbf{g} = \mathbf{Hf} + \boldsymbol{\epsilon}$$

Inversion: Deterministic methods

Data matching

► Observation model

$$g_i = h_i(\mathbf{f}) + \epsilon_i, \quad i = 1, \dots, M \longrightarrow \mathbf{g} = \mathbf{H}(\mathbf{f}) + \epsilon$$

▶ Misatch between data and output of the model $\Delta(\mathbf{g}, \mathbf{H}(\mathbf{f}))$

$$\hat{\mathbf{f}} = \arg\min_{\mathbf{f}} \left\{ \Delta(\mathbf{g}, \mathbf{H}(\mathbf{f})) \right\}$$

Examples:

- LS
$$\Delta(\mathbf{g}, \mathbf{H}(\mathbf{f})) = \|\mathbf{g} - \mathbf{H}(\mathbf{f})\|^2 = \sum_i |g_i - h_i(\mathbf{f})|^2$$

$$-L_{p} \qquad \Delta(\mathbf{g}, \mathbf{H}(\mathbf{f})) = \|\mathbf{g} - \mathbf{H}(\mathbf{f})\|^{p} = \sum_{i} |g_{i} - h_{i}(\mathbf{f})|^{p}, \ 1$$

- KL
$$\Delta(\mathbf{g}, \mathbf{H}(\mathbf{f})) = \sum_{i} g_{i} \ln \frac{g_{i}}{h_{i}(\mathbf{f})}$$

In general, does not give satisfactory results for inverse problems.

Deterministic Inversion Algorithms

Least Squares Based Methods

$$\mathbf{\hat{f}} = \arg\min_{\mathbf{f}} \{J(\mathbf{f})\}$$
 with $J(\mathbf{f}) = \|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2$
$$\nabla J(\mathbf{f}) = -2\mathbf{H}^t(\mathbf{g} - \mathbf{H}\mathbf{f})$$

Gradient based algorithms:

- ▶ Initialize: $\mathbf{f}^{(0)}$
- ▶ Iterate: $\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} \alpha \nabla J(\mathbf{f}^{(k)})$

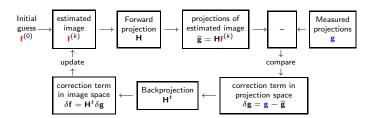
At each iteration: $\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha \mathbf{H}^t \left(\mathbf{g} - \mathbf{H} \mathbf{f}^{(k)} \right)$ we have to do the following operations:

- ▶ Compute $\hat{\mathbf{g}} = \mathbf{Hf}$ (Forward projection)
- ► Compute $\delta \mathbf{g} = \mathbf{g} \widehat{\mathbf{g}}$ (Error or residual)
- ▶ Distribute $\delta \mathbf{f} = \mathbf{H}^t \delta \mathbf{g}$ (Backprojection of error)
- Update $\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \delta \mathbf{f}$

Gradient based algorithms

Operations at each iteration:
$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha \mathbf{H}^t \left(\mathbf{g} - \mathbf{H} \mathbf{f}^{(k)} \right)$$

- ▶ Compute $\hat{\mathbf{g}} = \mathbf{Hf}$ (Forward projection)
- ► Compute $\delta \mathbf{g} = \mathbf{g} \widehat{\mathbf{g}}$ (Error or residual)
- ▶ Distribute $\delta \mathbf{f} = \mathbf{H}^t \delta \mathbf{g}$ (Backprojection of error)
- Update $\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \delta \mathbf{f}$



Gradient based algorithms

Fixed step gradient:

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha \mathbf{H}^t \left(\mathbf{g} - \mathbf{H} \mathbf{f}^{(k)} \right)$$

Steepest descent gradient:

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha^{(k)} \mathbf{H}^t \left(\mathbf{g} - \mathbf{H} \mathbf{f}^{(k)} \right)$$

with
$$\alpha^{(k)} = \arg\min_{\alpha} \{ J(\mathbf{f} + \alpha \delta \mathbf{f}) \}$$

► Conjugate Gradient

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$$

The successive directions $\mathbf{d}^{(k)}$ have to be conjugate to each other.

Algebraic Reconstruction Techniques

Main idea: Use the data as they arrive

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \alpha^{(k)} [\mathbf{H}^t]_{i*} \left(\mathbf{g}_i - [\mathbf{H}\mathbf{f}^{(k)}]_i \right)$$

which can also be written as:

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \frac{\left(g_i - [\mathbf{H}\mathbf{f}^{(k)}]_i\right)}{\mathbf{h}_{i*}^t \mathbf{h}_{i*}} \mathbf{h}_{i*}^t$$
$$= \mathbf{f}^{(k)} + \frac{\left(g_i - \sum_j H_{ij} f_j^{(k)}\right)}{\sum_i H_{ii}^2} \mathbf{h}_{i*}^t$$

Algebraic Reconstruction Techniques

Use the data as they arrive

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \frac{\left(g_i - [\mathbf{H}\mathbf{f}^{(k)}]_i\right)}{\mathbf{h}_{i*}^t \mathbf{h}_{i*}} \mathbf{h}_{i*}^t$$
$$= \mathbf{f}^{(k)} + \frac{\left(g_i - \sum_j H_{ij} f_j^{(k)}\right)}{\sum_i H_{ij}^2} \mathbf{h}_{i*}^t$$

Update each pixel at each time

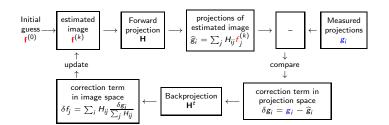
$$f_j^{(k+1)} = f_j^{(k)} + \frac{\left(g_i - \sum_j H_{ij} f_j^{(k)}\right)}{\sum_i H_{ij}^2} H_{ij}$$

Algebraic Reconstruction Techniques (ART)

$$\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \frac{\left(g_i - \sum_j H_{ij} f_j^{(k)}\right)}{\sum_j H_{ij}^2} \mathbf{h}_{i*}^t$$

or

$$f_j^{(k+1)} = f_j^{(k)} + \frac{\left(g_i - \sum_j H_{ij} f_j^{(k)}\right)}{\sum_j H_{ij}^2} H_{ij}$$

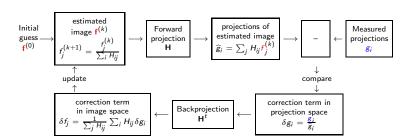


Algebraic Reconstruction using KL distance

$$\widehat{\mathbf{f}} = \arg\min_{\mathbf{f}} \{ J(\mathbf{f}) \} \quad \text{with} \quad J(\mathbf{f}) = \sum_{i} g_{i} \ln \frac{g_{i}}{\sum_{j} H_{ij} f_{j}}$$

$$f_{j}^{(k+1)} = \frac{f_{j}^{(k)}}{\sum_{i} H_{ij}} \sum_{i} H_{ij} \frac{g_{i}}{\sum_{j} H_{ij} f_{j}^{(k)}}$$

Interestingly, this is the OSEM (Ordered subset Expectation-Maximization) algorithm which is based on Maximum Likelihood and proposed first by Shepp & Vardi.



Inversion: Regularization theory

Inverse problems = III posed problems

→ Need for prior information

Functional space (Tikhonov):

$$g = \mathcal{H}(f) + \epsilon \longrightarrow J(f) = ||g - \mathcal{H}(f)||_2^2 + \lambda ||\mathcal{D}f||_2^2$$

Finite dimensional space (Philips & Towmey): $\mathbf{g} = \mathbf{H}(\mathbf{f}) + \epsilon$

- Minimum norme LS (MNLS): $J(\mathbf{f}) = ||\mathbf{g} \mathbf{H}(\mathbf{f})||^2 + \lambda ||\mathbf{f}||^2$
- Classical regularization: $J(\mathbf{f}) = ||\mathbf{g} \mathbf{H}(\mathbf{f})||^2 + \lambda ||\mathbf{D}\mathbf{f}||^2$
- More general regularization:

$$J(\mathbf{f}) = \mathcal{Q}(\mathbf{g} - \mathbf{H}(\mathbf{f})) + \lambda \Omega(\mathbf{Df})$$

or

$$J(\mathbf{f}) = \Delta_1(\mathbf{g}, \mathbf{H}(\mathbf{f})) + \lambda \Delta_2(\mathbf{f}, \mathbf{f}_0)$$

Limitations:

- Errors are considered implicitly white and Gaussian
- Limited prior information on the solution
- Lack of tools for the determination of the hyperparameters

Bayesian estimation approach

$$\mathcal{M}: \quad \mathbf{g} = \mathbf{Hf} + \boldsymbol{\epsilon}$$

- ▶ Observation model \mathcal{M} + Hypothesis on the noise $\epsilon \longrightarrow p(\mathbf{g}|\mathbf{f};\mathcal{M}) = p_{\epsilon}(\mathbf{g} \mathbf{H}\mathbf{f})$
- ▶ A priori information $p(\mathbf{f}|\mathcal{M})$
- ► Bayes : $p(\mathbf{f}|\mathbf{g}; \mathcal{M}) = \frac{p(\mathbf{g}|\mathbf{f}; \mathcal{M}) p(\mathbf{f}|\mathcal{M})}{p(\mathbf{g}|\mathcal{M})}$

Link with regularization:

Maximum A Posteriori (MAP):

$$\hat{\mathbf{f}} = \arg \max_{\mathbf{f}} \{ p(\mathbf{f}|\mathbf{g}) \} = \arg \max_{\mathbf{f}} \{ p(\mathbf{g}|\mathbf{f}) \ p(\mathbf{f}) \}$$

$$= \arg \min_{\mathbf{f}} \{ -\ln p(\mathbf{g}|\mathbf{f}) - \ln p(\mathbf{f}) \}$$

with $Q(\mathbf{g}, \mathbf{Hf}) = -\ln p(\mathbf{g}|\mathbf{f})$ and $\lambda \Omega(\mathbf{f}) = -\ln p(\mathbf{f})$ But, Bayesian inference is not only limited to MAP

Case of linear models and Gaussian priors

$$\mathbf{g} = \mathbf{Hf} + \boldsymbol{\epsilon}$$

▶ Hypothesis on the noise: $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I})$

$$p(\mathbf{g}|\mathbf{f}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2}\|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2\right\}$$

▶ Hypothesis on \mathbf{f} : $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \hat{\sigma}_f^2 \mathbf{I})$

$$p(\mathbf{f}) \propto \exp\left\{-rac{1}{2\sigma_f^2}\|\mathbf{f}\|^2
ight\}$$

A posteriori:

$$p(\mathbf{f}|\mathbf{g}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2}\left[\|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2 + \frac{\sigma_{\epsilon}^2}{\sigma_f^2}\|\mathbf{f}\|^2\right]\right\}$$

MAP: $\hat{\mathbf{f}} = \arg\max_{\mathbf{f}} \{p(\mathbf{f}|\mathbf{g})\} = \arg\min_{\mathbf{f}} \{J(\mathbf{f})\}$ with $J(\mathbf{f}) = \|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2 + \lambda \|\mathbf{f}\|^2$, $\lambda = \frac{\sigma_e^2}{e^2}$

► Advantage : characterization of the solution

$$\mathbf{f}|\mathbf{g} \sim \mathcal{N}(\widehat{\mathbf{f}}, \widehat{\mathbf{P}}) \ \ \text{with} \ \ \widehat{\mathbf{f}} = \widehat{\mathbf{P}}\mathbf{H}^t\mathbf{g}, \quad \widehat{\mathbf{P}} = \left(\mathbf{H}^t\mathbf{H} + \lambda\mathbf{I}\right)^{-1}$$

MAP estimation with other priors:

$$\widehat{\mathbf{f}} = \arg\min_{\mathbf{f}} \left\{ J(\mathbf{f}) \right\} \quad \text{with} \quad J(\mathbf{f}) = \|\mathbf{g} - \mathbf{H}\mathbf{f}\|^2 + \lambda \Omega(\mathbf{f})$$

Separable priors:

- ▶ Gaussian: $p(f_j) \propto \exp\{-\alpha |f_j|^2\} \longrightarrow \Omega(\mathbf{f}) = \|\mathbf{f}\|^2 = \alpha \sum_i |f_j|^2$
- ► Gamma: $p(f_j) \propto f_i^{\alpha} \exp \{-\beta f_j\} \longrightarrow \Omega(\mathbf{f}) = \alpha \sum_i \ln f_j + \beta f_j$
- ▶ Beta: $p(f_j) \propto f_i^{\alpha} (1 - f_j)^{\beta} \longrightarrow \Omega(\mathbf{f}) = \alpha \sum_i \ln f_j + \beta \sum_i \ln(1 - f_j)$
- ► Generalized Gaussian: $p(f_j) \propto \exp\{-\alpha |f_j|^p\}, \quad 1$

Markovian models:

$$p(f_j|\mathbf{f}) \propto \exp \left\{-\alpha \sum_{i \in N_i} \phi(f_j, f_i)\right\} \longrightarrow \Omega(\mathbf{f}) = \alpha \sum_{i} \sum_{i \in N_i} \phi(f_j, f_i),$$

Main advantages of the Bayesian approach

- ► MAP = Regularization
- Posterior mean ? Marginal MAP ?
- More information in the posterior law than only its mode or its mean
- Meaning and tools for estimating hyper parameters
- Meaning and tools for model selection
- More specific and specialized priors, particularly through the hidden variables
- More computational tools:
 - Expectation-Maximization for computing the maximum likelihood parameters
 - MCMC for posterior exploration
 - Variational Bayes for analytical computation of the posterior marginals
 - •

MAP estimation and Compressed Sensing

$$\left\{ egin{array}{l} \mathbf{g} = \mathbf{H}\mathbf{f} + \pmb{\epsilon} \ \mathbf{f} = \mathbf{W}\mathbf{z} \end{array}
ight.$$

- ▶ W a code book matrix, z coefficients
- Gaussian:

$$\begin{split} p(\mathbf{z}) &= \mathcal{N}(\mathbf{0}, \sigma_z^2 \mathbf{I}) \propto \exp\left\{-\frac{1}{2\sigma_z^2} \sum_j |\mathbf{z}_j|^2\right\} \\ J(\mathbf{z}) &= -\ln p(\mathbf{z}|\mathbf{g}) = \|\mathbf{g} - \mathbf{H} \mathbf{W} \mathbf{z}\|^2 + \lambda \sum_j |\mathbf{z}_j|^2 \end{split}$$

• Generalized Gaussian (sparsity, $\beta = 1$):

$$p(\mathbf{z}) \propto \exp\left\{-\lambda \sum_{j} |\mathbf{z}_{j}|^{\beta}\right\}$$

$$J(\mathbf{z}) = -\ln p(\mathbf{z}|\mathbf{g}) = \|\mathbf{g} - \mathbf{H}\mathbf{W}\mathbf{z}\|^{2} + \lambda \sum_{i} |\mathbf{z}_{i}|^{\beta}$$

 $ightharpoonup z = \operatorname{arg\,min}_{\mathbf{z}} \{J(\mathbf{z})\} \longrightarrow \widehat{\mathbf{f}} = \mathbf{W}\widehat{\mathbf{z}}$

Full Bayesian approach

$$\mathcal{M}$$
 : $\mathbf{g} = \mathbf{Hf} + \epsilon$

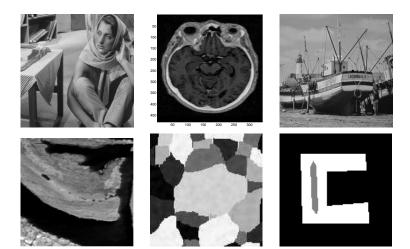
- ▶ Forward & errors model: $\longrightarrow p(\mathbf{g}|\mathbf{f}, \boldsymbol{\theta}_1; \mathcal{M})$
- ▶ Prior models $\longrightarrow p(\mathbf{f}|\boldsymbol{\theta}_2; \mathcal{M})$
- ▶ Hyperparameters $\theta = (\theta_1, \theta_2) \longrightarrow p(\theta | \mathcal{M})$
- ▶ Bayes: $\longrightarrow p(\mathbf{f}, \boldsymbol{\theta}|\mathbf{g}; \mathcal{M}) = \frac{p(\mathbf{g}|\mathbf{f}, \boldsymbol{\theta}; \mathcal{M}) \ p(\mathbf{f}|\boldsymbol{\theta}; \mathcal{M}) \ p(\boldsymbol{\theta}|\mathcal{M})}{p(\mathbf{g}|\mathcal{M})}$
- ▶ Joint MAP: $(\widehat{\mathbf{f}}, \widehat{\boldsymbol{\theta}}) = \arg \max_{(\mathbf{f}, \boldsymbol{\theta})} \{ p(\mathbf{f}, \boldsymbol{\theta} | \mathbf{g}; \mathcal{M}) \}$
- ► Marginalization: $\begin{cases} p(\mathbf{f}|\mathbf{g}; \mathcal{M}) &= \int p(\mathbf{f}, \boldsymbol{\theta}|\mathbf{g}; \mathcal{M}) \text{ df} \\ p(\boldsymbol{\theta}|\mathbf{g}; \mathcal{M}) &= \int p(\mathbf{f}, \boldsymbol{\theta}|\mathbf{g}; \mathcal{M}) \text{ d} \boldsymbol{\theta} \end{cases}$
- ▶ Posterior means: $\begin{cases} \widehat{\mathbf{f}} = \int \mathbf{f} \ p(\mathbf{f}, \boldsymbol{\theta} | \mathbf{g}; \mathcal{M}) \ d\mathbf{f} \ d\boldsymbol{\theta} \\ \widehat{\boldsymbol{\theta}} = \int \boldsymbol{\theta} \ p(\mathbf{f}, \boldsymbol{\theta} | \mathbf{g}; \mathcal{M}) \ d\mathbf{f} \ d\boldsymbol{\theta} \end{cases}$
- Evidence of the model:

$$p(\mathbf{g}|\mathcal{M}) = \iint p(\mathbf{g}|\mathbf{f}, \boldsymbol{\theta}; \mathcal{M}) p(\mathbf{f}|\boldsymbol{\theta}; \mathcal{M}) p(\boldsymbol{\theta}|\mathcal{M}) d\mathbf{f} d\boldsymbol{\theta}$$

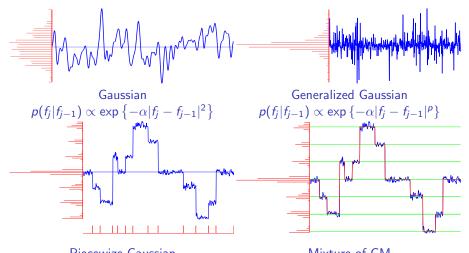
Two main steps in the Bayesian approach

- Prior modeling
 - Separable:
 Gaussian, Generalized Gaussian, Gamma,
 mixture of Gaussians, mixture of Gammas, ...
 - Markovian: Gauss-Markov, GGM, ...
 - Separable or Markovian with hidden variables (contours, region labels)
- ► Choice of the estimator and computational aspects
 - MAP, Posterior mean, Marginal MAP
 - ► MAP needs optimization algorithms
 - ► Posterior mean needs integration methods
 - Marginal MAP needs integration and optimization
 - Approximations:
 - Gaussian approximation (Laplace)
 - Numerical exploration MCMC
 - Variational Bayes (Separable approximation)

Which images I am looking for?



Which image I am looking for?



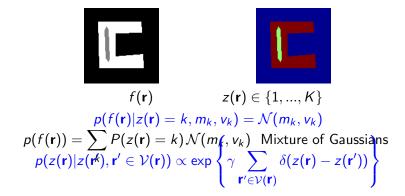
Piecewize Gaussian $p(f_j|q_j, f_{j-1}) = \mathcal{N}\left((1 - q_j)f_{j-1}, \sigma_f^2\right)$

 $\begin{aligned} & \text{Mixture of GM} \\ p(f_j|z_j = k) = \mathcal{N}\left(m_k, \sigma_k^2\right) \end{aligned}$

Gauss-Markov-Potts prior models for images

"In NDT applications of CT, the objects are, in general, composed of a finite number of materials, and the voxels corresponding to each materials are grouped in compact regions"

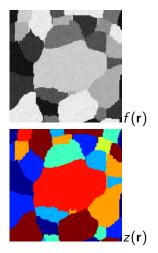
How to model this prior information?



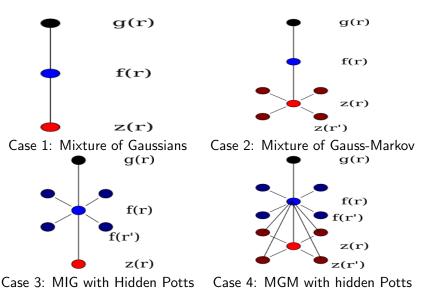
Four different cases

To each pixel of the image is associated 2 variables $f(\mathbf{r})$ and $z(\mathbf{r})$

- ► f|z Gaussian iid, z iid : Mixture of Gaussians
- ▶ f|z Gauss-Markov, z iid : Mixture of Gauss-Markov
- ► f|z Gaussian iid, z Potts-Markov : Mixture of Independent Gaussians (MIG with Hidden Potts)
- ► f|z Markov, z Potts-Markov : Mixture of Gauss-Markov (MGM with hidden Potts)



Four different cases



Summary of the two proposed models



Bayesian Computation

$$p(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta} | \mathbf{g}) \propto p(\mathbf{g} | \mathbf{f}, \mathbf{z}, v_{\epsilon}) p(\mathbf{f} | \mathbf{z}, \mathbf{m}, \mathbf{v}) p(\mathbf{z} | \gamma, \alpha) p(\boldsymbol{\theta})$$

$$\boldsymbol{\theta} = \{ v_{\epsilon}, (\alpha_k, m_k, v_k), k = 1, \cdot, K \} \qquad p(\boldsymbol{\theta}) \quad \text{Conjugate priors}$$

- ▶ Direct computation and use of $p(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta} | \mathbf{g}; \mathcal{M})$ is too complex
- Possible approximations :
 - Gauss-Laplace (Gaussian approximation)
 - ► Exploration (Sampling) using MCMC methods
 - Separable approximation (Variational techniques)
- Main idea in Variational Bayesian methods: Approximate

$$p(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta} | \mathbf{g}; \mathcal{M})$$
 by $q(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta}) = q_1(\mathbf{f}) \ q_2(\mathbf{z}) \ q_3(\boldsymbol{\theta})$

- ▶ Choice of approximation criterion : KL(q : p)
- ► Choice of appropriate families of probability laws for $q_1(\mathbf{f})$, $q_2(\mathbf{z})$ and $q_3(\theta)$

MCMC based algorithm

$$p(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta} | \mathbf{g}) \propto p(\mathbf{g} | \mathbf{f}, \mathbf{z}, \boldsymbol{\theta}) \, p(\mathbf{f} | \mathbf{z}, \boldsymbol{\theta}) \, p(\mathbf{z}) \, p(\boldsymbol{\theta})$$

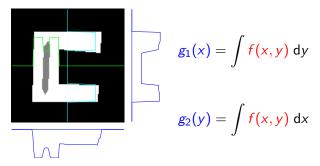
General scheme:

$$\widehat{\mathbf{f}} \sim p(\mathbf{f}|\widehat{\mathbf{z}},\widehat{\boldsymbol{\theta}},\mathbf{g}) \longrightarrow \widehat{\mathbf{z}} \sim p(\mathbf{z}|\widehat{\mathbf{f}},\widehat{\boldsymbol{\theta}},\mathbf{g}) \longrightarrow \widehat{\boldsymbol{\theta}} \sim (\boldsymbol{\theta}|\widehat{\mathbf{f}},\widehat{\mathbf{z}},\mathbf{g})$$

- Sample **f** from $p(\mathbf{f}|\widehat{\mathbf{z}}, \widehat{\boldsymbol{\theta}}, \mathbf{g}) \propto p(\mathbf{g}|\mathbf{f}, \boldsymbol{\theta}) p(\mathbf{f}|\widehat{\mathbf{z}}, \widehat{\boldsymbol{\theta}})$ Needs optimisation of a quadratic criterion.
- ► Sample **z** from $p(\mathbf{z}|\widehat{\mathbf{f}}, \widehat{\boldsymbol{\theta}}, \mathbf{g}) \propto p(\mathbf{g}|\widehat{\mathbf{f}}, \widehat{\mathbf{z}}, \widehat{\boldsymbol{\theta}}) p(\mathbf{z})$ Needs sampling of a Potts Markov field.
- ► Sample θ from $p(\theta|\hat{\mathbf{f}}, \hat{\mathbf{z}}, \mathbf{g}) \propto p(\mathbf{g}|\hat{\mathbf{f}}, \sigma_{\epsilon}^2 \mathbf{I}) p(\hat{\mathbf{f}}|\hat{\mathbf{z}}, (m_k, v_k)) p(\theta)$ Conjugate priors \longrightarrow analytical expressions.

Application of CT in NDT

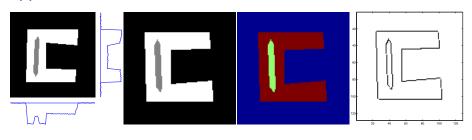
Reconstruction from only 2 projections



- Given the marginals $g_1(x)$ and $g_2(y)$ find the joint distribution f(x, y).
- ▶ Infinite number of solutions : $f(x,y) = g_1(x) g_2(y) \Omega(x,y)$ $\Omega(x,y)$ is a Copula:

$$\int \Omega(x,y) dx = 1$$
 and $\int \Omega(x,y) dy = 1$

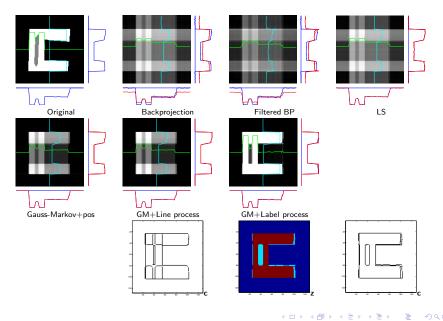
Application in CT



Unsupervised Bayesian estimation:

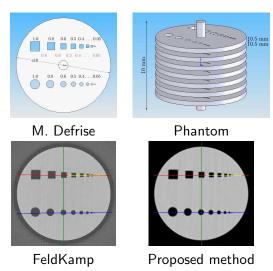
$$p(\mathbf{f}, \mathbf{z}, \boldsymbol{\theta} | \mathbf{g}) \propto p(\mathbf{g} | \mathbf{f}, \mathbf{z}, \boldsymbol{\theta}) p(\mathbf{f} | \mathbf{z}, \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

Results: 2D case

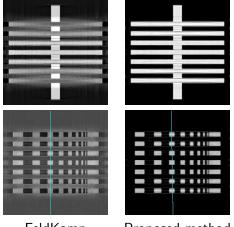


Some results in 3D case

(Results obtained with collaboration with CEA)



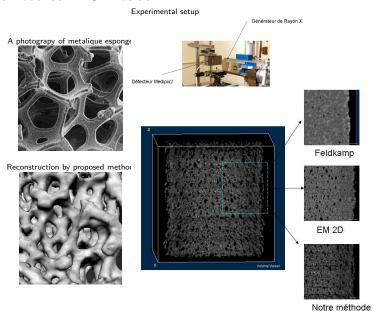
Some results in 3D case



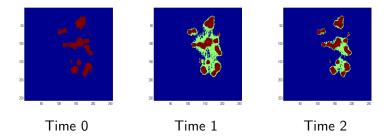
FeldKamp

Proposed method

Some results in 3D case



Application: liquid evaporation in metalic esponge



Conclusions

- Gauss-Markov-Potts are useful prior models for images incorporating regions and contours
- Bayesian computation needs often pproximations (Laplace, MCMC, Variational Bayes)
- Application in different CT systems (X ray, Ultrasound, Microwave, PET, SPECT) as well as other inverse problems

Work in Progress and Perspectives :

- Efficient implementation in 2D and 3D cases using GPU
- Evaluation of performances and comparison with MCMC methods
- ► Application to other linear and non linear inverse problems: (PET, SPECT or ultrasound and microwave imaging)

Some references

- A. Mohammad-Djafari (Ed.) Problèmes inverses en imagerie et en vision (Vol. 1 et 2), Hermes-Lavoisier, Traité Signal et Image, IC2, 2009,
- A. Mohammad-Djafari (Ed.) Inverse Problems in Vision and 3D Tomography, ISTE, Wiley and sons, ISBN: 9781848211728, December 2009, Hardback, 480 pp.
- H. Ayasso and Ali Mohammad-Djafari Joint NDT image Restoration and Segmentation using Gauss-Markov-Potts Prior Models and Variational Bayesian Computation, To appear in IEEE Trans. on Image Processing, TIP-04815-2009.R2, 2010.
- H. Ayasso, B. Duchene and A. Mohammad-Djafari, Bayesian Inversion for Optical Diffraction Tomography Journal of Modern Optics, 2008.
 - A. Mohammad-Djafari, Gauss-Markov-Potts Priors for Images in Computer Tomography Resulting to Joint Optimal Reconstruction and segmentation, International Journal of Tomography & Statistics 11: W09. 76-92, 2008.
 - A Mohammad-Djafari, Super-Resolution: A short review, a new method based on hidden Markov modeling of HR image and future challenges, The Computer Journal doi:10.1093/comjnl/bxn005;, 2008.
- O. Féron, B. Duchène and A. Mohammad-Djafari, Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data, Inverse Problems, 21(6):95-115, Dec 2005.
- M. Ichir and A. Mohammad-Djafari, Hidden markov models for blind source separation, IEEE Trans. on Signal Processing, 15(7):1887-1899, Jul 2006
- 2006.

 F. Humblot and A. Mohammad-Djafari,
 Super-Resolution using Hidden Markov Model and Bayesian Detection Estimation Framework, EURASIP
- Journal on Applied Signal Processing, Special number on Super-Resolution Imaging: Analysis, Algorithms, and Applications:ID 36971, 16 pages, 2006.

 O. Féron and A. Mohammad-Diafari,
- Image fusion and joint segmentation using an MCMC algorithm, Journal of Electronic Imaging, 14(2):paper no. 023014. Apr 2005.
- H. Snoussi and A. Mohammad-Djafari,
 Fast joint separation and segmentation of mixed images, Journal of Electronic Imaging, 13(2):349-361,
 April 2004.
- A. Mohammad-Djafari, J.F. Giovannelli, G. Demoment and J. Idier,
 Regularization, maximum entropy and probabilistic methods in mass spectrometry data processing
 problems, Int. Journal of Mass Spectrometry, 215(1-3):175-193, April 2002.

Thanks, Questions and Discussions

Thanks to:

My graduated PhD students:

- H. Snoussi, M. Ichir, (Sources separation)
- F. Humblot (Super-resolution)
- H. Carfantan, O. Féron (Microwave Tomography)
- S. Fékih-Salem (3D X ray Tomography)

My present PhD students:

- H. Ayasso (Optical Tomography, Variational Bayes)
- D. Pougaza (Tomography and Copula)
- Sh. Zhu (SAR Imaging)
- D. Fall (Emission Positon Tomography, Non Parametric Bayesian)

My colleages in GPI (L2S) & collaborators in other instituts:

- B. Duchêne & A. Joisel (Inverse scattering and Microwave Imaging)
- N. Gac & A. Rabanal (GPU Implementation)
- ► Th. Rodet (Tomography)
- **____**
- A. Vabre & S. Legoupil (CEA-LIST), (3D X ray Tomography)
- E. Barat (CEA-LIST) (Positon Emission Tomography, Non Parametric Bayesian)
- C. Comtat (SHFJ, CEA)(PET, Spatio-Temporal Brain activity)

Questions and Discussions