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Abstract. Clustering, classification and Pattern Recognition in a set
of data are between the most important tasks in statistical researches
and in many applications. In this paper, we propose to use a mixture
of Student-t distribution model for the data via a hierarchical graph-
ical model and the Bayesian framework to do these tasks. The main
advantages of this model is that the model accounts for the uncertainties
of variances and covariances and we can use the Variational Bayesian
Approximation (VBA) methods to obtain fast algorithms to be able to
handle large data sets.

1 Introduction

Clustering and classification of a set of data are not trivial problems. In fact,
we can consider them as ill-posed inverse problems in which the solutions are
not unique. Mixture models are natural ones for classification and clustering
[1–8]. The Mixture of Gaussians (MoG) models have been used very extensively
[9–11]. In this paper, we propose to use a mixture of Student-t model and a
Bayesian framework for these tasks. The main advantages of this model is that
the model accounts for the uncertainties of variances and covariances and we
can use the Variational Bayesian Approximation (VBA) methods to obtain fast
algorithms as well. Even if this model may have been used before [12–26], here
we propose a novel unifying presentation for all the steps: training, supervised
or semi-supervised classification and clustering (non-supervised). We also use
VBA framework and some simplifications to develop fast algorithms to be able
to handle big data sets.

2 Mixture models for classification and clustering

A mixture model is generally given as:

p(x|a,Θ,K) =

K∑
k=1

ak pk(xk|θk), (1)



where K is the number of classes, a = {ak, k = 1, · · · ,K} the proportion param-
eters andΘ = {θk, k = 1, · · · ,K} all the other parameters of the model. If we as-
sume different classes can be modelled by the same family pk(xk|θk) = p(xk|θk)
and introduce a hidden class variable cn ∈ {1, · · · ,K}, then for a given sample
xn in class k we can write:

p(xn|cn = k,θk) = p(xn|θk) (2)

or

p(xn, cn = k|ak,θk,K) = ak p(xn|θk). (3)

The Mixture of Gaussians (MoG) corresponds to the case where p(xn|cn =
k,θk) = N (x|µk,Σk) with θk = (µk,Σk).

Now, imagine a set of data X = {xn, n = 1, · · · , N} where each element xn
can be in one of these classes. Then, we can write:

p(Xn, cn = k|a,θ) =

N∏
n=1

p(xn, cn = k|a,θ). (4)

Noting by c = {cn, n = 1, N} with cn ∈ {1, · · · ,K}, a = {ak, k = 1, · · · ,K} and
Θ = {θk, k = 1, · · · ,K}, we have:

p(Xn, c|a,Θ,K) =
∏N
n=1

∏K
k=1 p(cn = k) p(xn|θk)

=
∏N
n=1

∏K
k=1 ak p(xn|θk).

(5)

The classification problems can then be summarized as follows:

Training:
Given a set of (training) data X and classes c, estimate the parameters a and
Θ. The classical frequentist method is the Maximum Likelihood (ML) which
defines the solution as

(â, Θ̂) = arg max
(a,Θ)

{p(X, c|a,Θ,K)} . (6)

The Bayesian way is to assign priors p(a|K) and p(Θ|K) =
∏K
k=1 p(θk), then

the joint posterior laws is given by:

p(a,Θ|X, c,K) =
p(X, c|a,Θ,K) p(a|K) p(Θ|K)

p(X, c|K)
(7)

where

p(X, c|K) =

∫∫
p(X, c|a,Θ|K)p(a|K) p(Θ|K) da dΘ (8)

from which we can deduce â and {θ̂k, k = 1, · · · ,K} either as the Maximum A
Posteriori (MAP) or Posterior Mean (PM).



Supervised classification:
For a given sample xm and given the parameters K, a and Θ determine

p(cm = k|xm,a,Θ,K) =
p(xm, cm = k|a,Θ,K)

p(xm|a,Θ,K)
(9)

where p(xm, cm = k|a,Θ,K) = akp(xm|θk) and

p(xm|a,Θ,K) =

K∑
k=1

ak p(xm|θk) (10)

and its best class k∗, for example the MAP solution:

k∗ = arg max
k
{p(cm = k|xm,a,Θ,K)} . (11)

Semi-supervised classification:
For a given sample xm and given the parameters K and Θ, determine the
probabilities

p(cm = k|xm,Θ,K) =
p(xm, cm = k|Θ,K)

p(xm|Θ,K)
(12)

where

p(xm, cm = k|Θ,K) =

∫∫
p(xm, cm = k|a,Θ,K)p(a|K) da (13)

and

p(xm|Θ,K) =

K∑
k=1

p(xm, cm = k|Θ,K) (14)

and its best class k∗, for example the MAP solution:

k∗ = arg max
k
{p(cm = k|xm,Θ,K)} . (15)

Clustering or non-supervised classification:
Given a set of data X, determine K and c. When these are determined, we can
also determine the characteristics of those classes a and Θ. To do this we need
the following relations:

p(K = L|X) =
p(X,K = L)

p(X)
=
p(X|K = L) p(K = L)

p(X)
(16)

and

p(X) =

L0∑
L=1

p(K = L) p(X|K = L), (17)

where L0 is the a priori maximum number of classes and

p(X|K = L) =

∫∫ ∫∫ ∏
n

L∏
k=1

akp(xn, cn = k|θk)p(a|K) p(Θ|K) da dΘ. (18)

As we will see later the main difficulty is the computation of these two last
equations. The Variational Bayesian Approximation technics try to find upper
and lower bounds for them.



3 Mixture of Student-t model

Let us consider the following representation of the Student-t probability density
function (pdf):

T (x|ν,µ,Σ) =

∫ ∞
0

N (x|µ, z−1Σ)G(z|ν
2
,
ν

2
) dz, (19)

where

N (x|µ,Σ)= |2πΣ|− 1
2 exp

[
− 1

2 (x− µ)′Σ−1(x− µ)
]

= |2πΣ|− 1
2 exp

[
− 1

2Tr
{

(x− µ)Σ−1(x− µ)′
}]
,

(20)

and

G(z|α, β) =
βα

Γ (α)
zα−1 exp [−βz] . (21)

Let us also consider the finite mixture of Student-t model:

p(x|{νk,ak,µk,Σk, k = 1, · · · ,K},K) =

K∑
k=1

ak T (xn|νk,µk,Σk). (22)

Introducing the hidden variables znk this model can be written via:

p(xn, cn = k, znk|µk,Σk,K) = akN (xn|µk, z−1n,kΣk)G(zn,k|
νk
2
,
νk
2

). (23)

Noting by: Z = {znk}, zk = {znk, n = 1, · · · , N}, c = {cn, n = 1, · · · , N},
θk = {νk,ak,µk,Σk}, Θ = {θk, k = 1, · · · ,K} and assigning the priors
p(Θ) =

∏
k p(θk), we can write:

p(X, c,Z,Θ|K) =
∏
n

∏
k akN (xn|µk, z−1n,kΣk)G(znk|νk2 ,

νk
2 ) p(θk) (24)

Then, the joint posterior law of all the unknowns (c,Z,Θ) given the data X
and K can be written as

p(c,Z,Θ|X,K) =
p(X, c,Z,Θ|K)

p(X|K)
. (25)

The main task now is to propose some approximations to it in such a way that we
can use it easily in all the above mentioned tasks of classification or clustering.
The main idea behind the VBA technics is exactly this.

4 Variational Bayesian Approximation (VBA)

4.1 Main idea

The main idea behind the VBA is to propose an approximation q(c,Z,Θ) for
p(c,Z,Θ|X,K). This approximation can be in such a way that KL(q : p) be min-
imized. Interestingly, by noting that p(c,Z,Θ|X,K) = p(X, c,Z,Θ|K)/p(X|K),
it is easy to showed that

KL(q : p) = −F(q) + ln p(X|K) (26)



where
F(q) = 〈− ln p(X, c,Z,Θ|K)〉q (27)

is called free energy of q and we have the following properties:
– Maximizing F(q) or minimizing KL(q : p) are equivalent and both give un
upper bound to the evidence of the model ln p(X|K).
– When the optimum q∗ is obtained, F(q∗) can be used as a criterion for model
selection.
– If p is in the exponential family, then choosing appropriate conjugate priors, the
structure of q will be the same and we can obtain appropriate fast optimization
algorithms.

In our case, noting that

p(X, c,Z,Θ|K) =
∏
n

∏
k

p(xn, cn, znk|ak,µk,Σk, νk)∏
k

[p(αk) p(βk) p(µk|Σk) p(Σk)]
(28)

with

p(xn, cn, znk|ak,µk,Σk, νk) = N (xn|µk, z−1n,kΣk)G(znk|αk, βk) (29)

is separable, in one side for [c,Z] and in other size in components of Θ, we
propose to use

q(c,Z,Θ) = q(c,Z) q(Θ). (30)

With this decomposition, the expression of the Kullback-Leibler divergence be-
comes:

KL(q1(c,Z)q2(Θ) : p(c,Z,Θ|X,K) =∑
c

∫∫ ∫∫
q1(c,Z)q2(Θ) ln

q1(c,Z)q2(Θ)

p(c,Z,Θ|X,K)
dΘ dZ

(31)

and the expression of the Free energy becomes:

F(q1(c,Z)q2(Θ)) =
∑
c

∫∫ ∫∫
q1(c,Z)q2(Θ) ln

p(X, c,Z|Θ,K)p(Θ|K)

q1(c,Z)q2(Θ)
dΘ dZ.

(32)
In the following we propose appropriate priors and obtain the expressions of

q and appropriate fast algorithms.

5 Proposed VBA for Mixture of Student-t priors model

As we discussed in previous section, here we consider the Mixture of Student-t
priors model and propose appropriate conjugate priors and appropriate factor-
ized form for the testing or approximation q and finally give the details of the
parameters updating algorithm. To be able to propose conjugate priors for all the
parameters, we change slightly the model by replacing νk in the Gamma expres-
sion G(zn,k|νk2 ,

νk
2 ) of the Student-t expression by two parameters G(zn,k|αk, βk):



p(xn, cn = k, znk|ak,µk,Σk, αk, βk,K) = akN (xn|µk, z−1n,kΣk)G(zn,k|αk, βk).
(33)

The final hierarchical model that we propose is shown in the Figure 1.
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Fig. 1. Graphical representation of the model.

5.1 Conjugate priors

In the following, noting by Θ = {(ak,µk,Σk, αk, βk), k = 1, · · · ,K}, we propose
to use the factorized prior laws:

p(Θ) = p(a)
∑
k

[p(αk) p(βk) p(µk|Σk) p(Σk)] (34)

with the following components:
p(a) = D(a|k0), k0 = [k0, · · · , k0] = k01
p(αk) = E(αk|ζ0) = G(αk|1, ζ0)
p(βk) = E(βk|ζ0) = G(αk|1, ζ0)
p(µk|Σk) = N (µk|µ01, η−10 Σk)
p(Σk) = IW(Σk|γ0, γ0Σ0)

(35)

where

D(a|k) =
Γ (
∑
l kk)∏

l Γ (kl)

∏
l

akl−1l (36)

is the Dirichlet pdf,
E(t|ζ0) = ζ0 exp [−ζ0t] (37)

is the Exponential pdf,

G(t|a, b) =
ba

Γ (a)
ta−1 exp [−bt] (38)



is the Gamma pdf and

IW(Σ|γ, γ∆) =
| 12∆|

γ/2 exp
[
− 1

2Tr
{
∆Σ−1

}]
ΓD(γ/2)|Σ| γ+D+1

2

. (39)

is the inverse Wishart pdf.
With these prior laws and the likelihood: p(xn|c(n), zk(n),Θ, k) we can ob-

tain the joint posterior law:

pk(c,Z,Θ|X) =
p(X, c,Z,Θ)

p(X)
. (40)

Now, we have to choose a factored form for q in such a way that we can
transform the optimization of the KL(q : p) or the free energy F(q) to the
updating of the parameters of the different components of q. We propose to use
the following decomposition:

q(c,Z,Θ) = q(c,Z) q(Θ) =∏
n

∏
k[q(cn = k|znk) q(znk)]∏

k[q(αk) q(βk) q(µk|Σk) q(Σk)] q(a).

(41)

with: 

q(a) = D(a|k̃), k̃ = [k̃1, · · · , k̃K ]

q(αk) = G(αk|ζ̃k, η̃k)

q(βk) = G(βk|ζ̃k, η̃k)

q(µk|Σk) = N (µk|µ̃, η̃−1Σk)

q(Σk) = IW(Σk|γ̃, γ̃Σ̃)

(42)

With these choices, we have

F(q(c,Z,Θ)) = 〈ln p(X, c,Z,Θ|K)〉q(c,Z,Θ)

=
∏
k

∏
n F1kn +

∏
k F2k

(43)

with
F1kn = 〈ln p(xn, cn, znk,θk)〉q(cn=k|znk)q(znk)
F2k = 〈ln p(xn, cn, znk,θk)〉

q(θk)
(44)

Now, to obtain the expressions of the updating expressions of the tilded param-
eters, we need to go to the following three steps:

– E step: Optimizing F with respect to q(c,Z) when keeping q(Θ) fixed, we

obtain the expression of q(cn = k|znk) = ãk, q(znk) = G(znk|α̃k, β̃k).
– M step: Optimizing F with respect to q(Θ) when keeping q(c,Z) fixed,

we obtain the expression of q(a) = D(a|k̃), k̃ = [k̃1, · · · , k̃K ], q(αk) =

G(αk|ζ̃k, η̃k), q(βk) = G(βk|ζ̃k, η̃k), q(µk|Σk) = N (µk|µ̃, η̃−1Σk), and q(Σk) =

IW(Σk|γ̃, γ̃Σ̃), which gives the updating algorithm for the corresponding
tilded parameters.



– F evaluation After each E step and M step, we can also evaluate the expres-
sion of F(q) which can be used for stopping rule of the iterative algorithm.
Also, final value of this expression for each value of K, noted Fk, can be used
as a criterion for the model selection, i.e.; the determination of the number
of clusters.

The expressions of all the tilded parameters update as well as the expres-
sion of FK are easily obtained thanks to the properties of the conjugate priors.
However, these expressions are cumbersome and will be given in the appendix.

6 Conclusion

Clustering and classification of a set of data are between the most important
tasks in statistical researches for many applications such as data mining in biol-
ogy. Mixture models and in particular Mixture of Gaussians are classical models
for these tasks. In this paper, we proposed to use a mixture of Student-t distri-
bution model for the data via a hierarchical graphical model. Then, we proposed
a Bayesian framework to do these tasks. The main advantages of this model is
that the model accounts for the uncertainties of variances and covariances and
we can use the Variational Bayesian Approximation (VBA) methods. To obtain
fast algorithms and be able to handle large data sets, we used conjugate priors
everywhere it was possible. The proposed algorithm has been used for cluster-
ing, classification and discriminent analysis of some biological data, but in this
paper, we only presented the main algorithm.
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