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ABSTRACT
In this contribution, we propose a discrete-continuous recon-
struction method for Positron Emission Tomography (PET).
The goal is to reconstruct a continuous radiotracer activity
distribution from a finite set of measurements (namely, the
discrete projections of detected random emissions). Our ap-
proach can be viewed as an indirect density estimation prob-
lem, i.e, the problem of recovering a probability density func-
tion based on indirect observations. We cast the reconstruc-
tion problem in a Bayesian nonparametric estimation frame-
work where regularization of the ill-posed inverse problem is
achieved by putting a prior on the investigated radiotracer ac-
tivity distribution.

We propose a hierarchical model and use it for the MCMC
schemes to generate samples from the posterior activity distri-
bution and compute its functionals (mean, standard deviation
etc.). Results will illustrate the performances of the proposed
method and we compare our approach to another Bayesian
method, the maximum a posteriori estimation (MAP), which
is based on a fully discrete-discrete problem formulation.

Index Terms— Bayesian nonparametrics, indirect density
estimation, MCMC sampling, Positron Emission Tomogra-
phy

1. INTRODUCTION

An interesting feature of Emission computed Tomography
is in producing 3D images that give information about the
metabolic activity of an organ (the brain, for example). In
Positron Emission Tomography (PET), the subject is injected
with a molecule labelled with a positron emitter radionuclide.
The emitted positrons travel a small distance before anni-
hilating with an electron. This annihilation generates two
gamma photons that fly-off at the speed of light in opposite
directions. These photons are detected by rings of detectors
around the subject. If two photons are detected within a short
time interval, a coincidence event is recorded revealing that
a positron emission occurred in the virtual line joining both
detectors (called line-of-response (LOR)). Tomographic algo-
rithms are used to reconstruct 3D images of the radioactivity
distribution from the collected data sets.

Conventional image reconstruction algorithms in Emis-
sion Tomography are roughly divided into two categories: an-
alytical and statistical methods. Analytical methods like fil-
tered back-projection algorithms are based on the direct inver-
sion of the X-ray transform [1] and address the reconstruction
problem (at least theoretically) in continuous data and image
spaces. They provide fast reconstructions, however they are
based on over-simplified models of the physical processes and

do not account for the stochastic nature of positron emission
and photon detection. As a consequence, reconstructed im-
ages suffer from a lot of artifacts and significant noise. To
overcome these deficiencies, statistical methods have been
proposed to model more realistically the process of acquir-
ing data by taking into account the random nature of the phe-
nomenon. They are based on optimization methods, typi-
cally maximum likelihood approaches (ML) ([2], [3]). They
usually provide reconstructed images with a higher signal-to-
noise ratio than analytical methods but nevertheless have high
noise due to ill-conditioned nature of the problem. This can
be solved by adding a regularization term in the form of a pri-
ori density for the image using Bayesian approaches.When
Bayesian methods are used in Emission Tomography, they
are based on the maximum a posteriori approach (MAP) ([4],
[5]). However, all these statistical methods require a discrete
formulation of the radiotracer distribution in the space over
which the reconstruction is needed, which is not natural be-
cause emission distribution is continuous.

The approach presented in this paper is a statistical one
but is fundamentally different from those mentioned above.
The continuous radioactivity distribution is directly recon-
structed from the discrete data. Thus, this can be viewed as
a third category in image reconstruction algorithms for Emis-
sion Tomography. We consider the radiotracer activity distri-
bution as being a probability density on R3 and infer on it.
This approach is called nonparametric because the parame-
ter of interest, which is a probability distribution, is infinite
dimensional and it is Bayesian since we put a prior on this
distribution and infer on its posterior. So, the advantage of
this approach is in offering a Bayesian regularization context
for nonparametric estimation. In addition, we have access
to the entire distribution of the posterior activity distribution,
not only a point estimate like in ML and MAP approaches.
Therefore, any posterior uncertainty (like variance, highest
posterior density regions etc.) can be estimated, which is well
suited for quantitative imaging in “small samples” (referred
to as “low doses” in PET).

The Bayesian nonparametric approach was first used for
the two-dimensional (2D) PET reconstruction in [6]. In this
paper, we adopt the same approach for the three dimensional
case. The 3D case is, however, more complicated since it
requires to deal with truncated data due to the limited field-
of-view of the system (FOV). The sampling scheme used in
this work is different from that in [6] and is not based on any
truncation of the infinite dimensional distribution.

The rest of this paper is structured as follows. In section 2,
we describe the general problem formulation in the Bayesian
nonparametric context. In section 3, the nonparametric prior
model for the unknown parameter of interest is given. Our hi-
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erarchical model for emission tomographic data is presented
in section 4. Afterwards, the derived MCMC sampling is out-
lined in section 5. Results illustrating the quality of the pro-
posed algorithm compared to MAP-EM are shown in section
6 and we conclude the paper in section 7.

2. PROBLEM STATEMENT IN THE BAYESIAN
NONPARAMETRIC FRAMEWORK

In this section, we develop the statiscal framework for the
Bayesian nonparametric reconstruction applied to PET data.

We are interested in reconstructing the 3D image of the
radiotracer activity distribution from measured data. We as-
sume that data are stored in the so-called list-mode format
such that the coordinates of the detectors receiving two coin-
cident photons are observed (the approach is also applicable
to sinogram mode, see [6]). We denote by the term “LOR”
the virtual line that connects two detectors in coincidence.
A LOR l is parametrized by (sl, $l, rl, ϕl) where sl is the
distance between the z-axis (ring center) and the LOR in a
transaxial plane (xy); the LOR and the x-axis define the az-
imuthal angle $l; rl is the axial coordinate of the LOR (if
the coordinates of the two detector crystals in coincidence are
(z1, z2), rl = (z1 + z2)/2). Finally, the LOR forms the an-
gle ϕl with the transaxial plane. We map LOR parameters to
the index l such that the random variable yi is the index of
the LOR corresponding to the ith observed coincidence. The
inverse problem can be formulated as follows in the Bayesian
nonparametric context [7]

G ∼ G

F (·) =
∫
X
P (·|x) G (dx)

yi
iid∼ F, for i = 1, . . . , n

(1)

where X ⊂ R3 is the object space (i.e, the space over which
reconstruction is carried out);G stands for the spatial distribu-
tion of recorded events we want to estimate from the observed
F -distributed data sets Y = (y1, . . . , yn). In Bayesian non-
parametrics, we must put a prior over the unknown distribu-
tionG. This is given by the prior law G ofG. The relation be-
tween the data yi and the emissions locations xi is embodied
in a probability distribution P(·|x) called projection distribu-
tion, i.e, the probability for detecting photons pair in a LOR l
given that the corresponding positron emission occurred in x.

In the formulation (1) of the inverse problem, G(·) is the
spatial distribution for recorded events. Nevertheless, data
are truncated in the 3D case due to the finite axial extent of
the PET scanner and detector efficiencies. Let introduce the
random variable y∗ := y > 0 to denote a recorded data. So,
G(dx) = G∗(dx|y∗), where G∗(dx|y∗) is the distribution of
x conditioned on the fact that the event has been detected. The
distribution G†(·) for whole events (not only the recorded)
can be expressed using a derivation of Bayes’ rule,

G† (dx) =
G∗ (dx|y∗) Pr(y∗)

Pr (y∗|x)
(2)

where for all x ∈ X , Pr (y∗|x) =
∑L
l=1 Pr(y = l|x) is

the probability for recording an emission located in x by
the system accounting for system’s geometry and physi-
cal properties. Since G†(dx) is a normalized version of

G∗(dx|y∗)/Pr (y∗|x), posterior inference on G∗(dx|y∗) is
sufficient to estimate the posterior of G†(dx) as soon as
Pr (y∗|x) > 0, for all x ∈ X . For sake of simplicity in the
notations, in the rest of this paper we omit the condition-
ing since we deal with the recorded events in the inference.
We use G(dx) to stand for G∗(dx|y∗), the distribution of a
recorded event.
We model the detection probability using Bayes’ theorem:

Pr(y = l|x) =
fgeom(x|y = l)Pr(y = l)∑L
l=0 fgeom(x|y = l)Pr(y = l)

(3)

where y = 0 stands for an unobserved event, fgeom(x|y = l)
is the geometric probability density that a photons pair de-
tected in a LOR l originated from a spatial location x. This
distribution accounts for the fact that the probability to de-
tect in coincidence emissions from inside the system’s FOV
is position-dependent. Indeed, if we consider perfect detec-
tors, the probability to record true events is merely geometric.
It is determined by computing for each location x, the solid
angle subtended from this point to the faces of the detectors.
Other effects such as non-collinearity of photons and positron
range due to the small distance the emitted positron travels
before annihilating with an electron can also be included in
fgeom.
The probability for observing an event in a LOR l is modeled
as follows, for any l > 0

Pr(y = l) ∝ n(l) a(l). (4)

For each detector pair l, n(l) is a normalizing factor standing
for its detection efficiency and is obtained from calibration
procedures; a(l) is the attenuation factor and can be estimated
by a preliminary transmission scan of the object. In absence
of attenuation and imperfections in detectors, Pr(y = l) =
1/L, where L is the total number of possible LORs.

3. NONPARAMETRIC PRIOR FOR THE RANDOM
ACTIVITY DISTRIBUTION

The formulation (1) requires to put a prior distribution G over
the random activity distribution G of recorded events. We
choose the prior on the density of G (denoted fG), as being a
Dirichlet process mixture (DPM). We refer to [7] for more de-
tails and [6] for a short introduction to this process and its ap-
plication to 2D PET reconstruction. We briefly recall that this
is obtained by first generating a random discrete distribution
from a Dirichlet process (DP) with parameters α > 0 which
tunes the prior number of components and G0 a probability
distribution of components locations. Second, the realization
H is smoothed out with a parametric kernel. We choose this
kernel as being a multivariate normal distribution (with den-
sity fN , whose parameters are the mean m and the covari-
ance matrix Σ), and G0 the Normal-Inverse Wishart model
(NIWρ,n0,µ0,Σ0 ).

H ∼ DP (α,G0)⇒ H(·) =
∞∑
k=1

wkδθk
(·)

fG (x) =
∫
fN (x|θ)H (dθ) =

∞∑
k=1

wk fN (x|mk, Σk)

(5)

where
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• the sequence of weights w = (w1, w2, . . .) is con-
structed as follows: for all i, Vi ∼ Beta (1, α) and
w1 = V1 and for all k ≥ 2, wk = Vk

∏k−1
j=1 (1− Vj).

This is called GEM distribution, written w ∼ GEM(α),

• θk = (mk, Σk) ∼ G0

In the following section, we introduce our hierarchical
model for PET data.

4. THE BAYESIAN HIERARCHICAL MODEL

Let X = (x1, . . . ,xn) be n emissions locations in the do-
main of interest. In emission imaging systems, these loca-
tions are never observed directly, only their projections y =
(y1, . . . , yn) are seen. Then our problem is an indirect den-
sity estimation since observations are not distributed accord-
ing to the distribution of interest G but instead according to
F , which is related to G via the integral in (1). We introduce
emissions locations as hidden variables to complete the data.
We also introduce allocation variables c = (c1, c2, . . . , cn)
such that ci = k if θi = (m, Σ)i = θk. Then the joint
distribution of all variables in the model can be written as

f(y,X, c,Θ,w) =P (y|X)× f(X|c,Θ)
×P (c|w)× f(w)× f(Θ)

(6)

with distributions given by the following generative hierarchi-
cal model

yi|xi
ind∼ P (yi|xi)

xi|ci,Θ
ind∼ N (xi|θci

)

ci|w
iid∼
∞∑
k=1

wkδk(·)

w ∼ GEM(α)

θk
iid∼ NIWρ,n0,µ0,Σ0

(7)

5. MCMC SAMPLING

Having our hierarchical model (7), we can obtain samples
from the posterior distribution of the random activity G(·)|y.
For this purpose, we need to get draws from the posterior laws
of model variables. Since these posteriors have intractable
forms, we opted for a MCMC sampling to generate these
draws. The algorithm will update each block of variables in
turn according to its conditional posterior as follows

Proposal of annihilations locations: X|w,Θ,y
Allocation of locations to components: c|w,Θ,X
Updating of the components parameters: Θ|c,X
Updating of the components weights: w|c.

(8)

By choosing conjugate priors, these conditional posteriors are
directly generated by a Gibbs sampler. However, the sampling
of X|w,Θ,y is more complex since the distribution has no
known form. We use the Metropolis-Hastings algorithm with
a proposal distribution being the product of the Dirichlet pro-
cess mixture and a normal distribution extended in each ob-
served LOR direction. The result is a re-weighted mixture of
Gaussian distributions in the LOR.

The major problem in the sampling is to tackle the infi-
nite number of dimensions that appears in (7), without any
hard truncation. We developed an algorithm belonging to the
class of slice sampling methods [8]. The general idea of the
slice sampling strategy is to introduce latent auxiliary vari-
ables that allow to work with a conditionally finite number of
components at each iteration of the sampler.

6. SIMULATION RESULTS

We applied our algorithm to PET simulated data and com-
pared its performances to those obtained with a Bayesian
voxels-based algorithm using the maximum a posteriori ap-
proach (MAP) with a Gibbs distribution as prior.

We randomly generated decays from a 3D voxelized brain
phantom by a Monte Carlo technique such that n = 107

events were recorded. We have not included scattered and
random coincidences in the model and detection probabilities
were assumed purely geometrical.

We give now the implementation details for the tested
methods.

Proposed method
We choose the parameters of the DPM as follows: α = 500,
Σ0 = 6.25 × I3, n0 = 4. We first computed 5000 iterations
for the burn-in period followed by 10000 for computing func-
tionals of the posterior spatial emission distribution. After the
burn-in, each draw (X(t), c(t),w(t),Θ(t)) obtained at itera-
tion t is used to construct a sample of the random probability
density of recorded events,

fG(t) (x) ≈
K∗∑
k=1

w
(t)
k fN

(
x|θ(t)k

)
(9)

where K∗ is the number of components required by the slice
sampler. Using equations (2), (3) and (4), the probability den-
sity of all events is given by

fG†(t) (x) ∝ fG(t) (x)∑L
l=1 n(l)a(l)fgeom(x|y = l)

. (10)

We choose as estimator for the density the conditional expec-
tation of G†,

E(fG† |y) ≈ 1
N

N∑
t=1

fG†(t)

with N being the number of iterations after the burn in.

MAP method
The Gibbs prior is used to express spatial constraints such
that neighboring voxels must have the same intensity value
while allowing curt changes at tissues boundaries. The po-
tential function used was the log cosh function suggested by
[4]. The parameters of the Gibbs prior were chosen such that
to minimize the mean squared error (MSE) w.r.t to the brain
phantom. We used a 5-voxels neighboorhood, the weights are
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a) b)

c) d)

Fig. 1. Reconstruction results: a) 3D brain fantom; b) pro-
posed estimator; c) MAP-EM estimator; d) proposed estima-
tor standard deviation.

the inverse of the L2-distance between the two voxels consid-
ered. The algorithm used to maximize the posterior distribu-
tion is a modified version of the Expectation Maximization
algorithm.

Results
Results obtained by the two algorithms are depicted in
[Fig.1]. Image a) is the 3D brain phantom used to generate
the data, image b) the conditional mean of our method and
image c) the MAP-EM reconstruction. Since any posterior
functional is available, we display in image d) the conditional
standard deviation w.r.t. the phantom. Credible intervals
are also available for each region of interest (figures not
shown). It is substantially notable on 3D curves [Fig.1] that
our method provides smooth isosurfaces while not removing
boundaries and edges in the image. In contrast, the MAP-EM
approach exhibits very noisy images. This underlines that the
proposed method is suitable to improve signal-to-noise ratio
and image resolution. It is worth noting that in our results,
the discretization of the spatial distribution is only for visu-
alization and was chosen a posteriori to 256 × 256 × 128
corresponding to the phantom size. The same discretization
was used for MAP-EM.

7. CONCLUSION

We have presented an indirect-density estimation model for
image reconstruction in emission tomography. The inference
scheme was done through a specific MCMC method to deal
with the infiniteness of the distribution. The structure of the
sampler allows its easy parallelization. Simulation results on
PET data have provided good quality images in the context of

a relatively low number of events (10 millions) and our recon-
structions are by far better than those obtained by the MAP-
EM method. However, we did not account for background ef-
fects (randoms and scattered for example) in our simulations.
Future works will be devoted to include these effects.

The major drawback of our approach is its computational
demands, although it was implemented on a parallel computer
(≈ one day on a high performance computer). To circum-
vent the time due to the MCMC sampling, an alternative is
the variational Bayesian method which approximates the pos-
terior distributions analytically [9]. Another interesting way
to speed up our algorithm can be achieved by implementing it
on Graphical processor units (GPU) hardware. Since we work
directly with functionals belonging to R3, this is appealing for
these architectures.
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