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Abstract—Inverses problems arise in almost all the engineering
and applied sciences where we have indirect measurement.
Many classical signal and image processing research subjsc
are directly expressed as inverse problems: signal decoriubion,
image restoration, image reconstruction in many imaging sstems
such as X ray Tomography, Microwave and Ultrasound imaging,
Synthetic aperture radar (SAR), etc. In this tutorial, first we
express in a unifying approach all these applications in a gamon
mathematical framework. Then, mentioning the ill-posed naure
of these inverse problems, we describe the regularization ethods
which were very successful during 1960-2000. Mentioning th
limitations of these methods, we see how the Bayesian appaa
can give tools to go beyond these difficulties. In particularwe
will see how this approach can be useful to account for many
different a priori knowledges: smoothness, positivity, pecewise
continuity, sparsity, finite number of materials (compact homo-
geneous regions), etc. We also discuss the computationapests
of the Bayesian approach and the practical implementationof
the proposed algorithms.
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I. INTRODUCTION

the solution as the minimizer of a criterion which has twagar

a data-model matching part and a regularizer or a priori. part
The data-model matching part is in general a distance measur
between the observed data and the output of the forward model
and the the regularization part is often a smoothness measur
or a distance measure of the desired solution to a prior one
[2]. Recently, sparsity measures have also had great sugtes
many applications [3].

However, deterministic regularization methods have a few
limitations: the selection of the criteria or distancestds both
data-model matching and a priori and the determination ®f th
regularization parameter. Another main limitation is tlirat
these methods only a solution is computed without having any
tool for quantifying the uncertainty of the proposed salnti

To push farther these limitations, the Bayesian inference
has become the main approach. The main idea is first to
use the forward model and some knowledge about the errors
(modelling and the measurement noise) to define what isccalle
the likelihood which gives the data-model matching part of
the regularization methods. The next step is to translate th
prior knowledge or the desired property of the solution into
a prior probability law which gives the regularizing part of
the regularization methods. The third step is to use the 8aye
or Laplace rule to combine the likelihood and the prior to

Inverse problems arise in many imaging systems such as: §btain the posterior probability law of the unknown quantit

medical imaging such as X-ray Compted Tomography (CT)from which we can deduce any information about the solution.
Untrasound and microwave tomography; ii) Non DestructiveThe classical point estimators are the Maximum A Posteriori
Evalaution (NDE) in industrial imaging such as gammagraphy(MAP) and the Expected A Posteriori (EAP). There is a very
ultrasound or Eddy current tomography. The main idea in alfirect link between the MAP solution and the regularization
these imaging systems is to relate an internal property of thmethods: In both methods, the solution is obtained via the
object under the test (human body or an industrial objedt)¢éo optimization of a two part criterion.

observed data via a forward model. The objective of the swer
problem is then to reconstruct an image from the observead dat
[1]. In general the inverse problems are ill-posed in theseen

defined by Hadamard: A problem is said to be well-posed if :
the solution exists, is unique and stable. When one of these Between the advantages of the Bayesian approach to deter-

conditions is not satisfied, the problem is said ill-posed ministic regularization methods, we may mention: more ool
' ' for and probabilistic arguments for selection the liketkdo

part and the a priori part; more tools for interpreting the

Il. " REGULARIZATION METHODS proposed solution and in particular a natural way to qugntif

Noting the ill-posedness of the inverse problems, manghe uncertainty of the solution via the a posteriori law; enor
Regularization methods have been proposed and applied suools for the determination of the regularization paramatel

cessfully. One of the main regularization methods is definin much more. In particular, we may mention the possibility

IIl. BASICS OF THEBAYESIAN APPROACH
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of proposing unsupervised methods and effective solutions V. CONCLUSION

many real applications. o . In this tutorial, first a unifying presentation of the invers
The Bayesian approach with simple prior models suchproblems which commonly arise in signal and image process-
as Gaussian or Gauss-Markov (to account for smoothnesgg and imaging systems is presented. Then, the deterininist
for example), Gamma (to account for positivity), Laplace,regularization methods and their limitations are presknrfae
Generalized Gaussian, Student-t or Cauchy (to account fafain part of this tutorial is the presentation of the Bayesip-
sparsity) have been proposed and used in many applicatioRgoach with different prior models to account for differgnior
SUCCESSfU”y. Nowadays, the state of the art BayeSIan rdetho know|edge or desired property of the solution: regu|ar'myja
use more sophisticated hierarchical models such as mixtugmoothness, sparsity, piecewise continuity, finite nundfer
models or Gauss-Markov-Potts models in different appbcst  homogeneous materials, etc. As the computational aspets a
of imaging systems with great success. These methods puglry important in real applications, the Approximate Bages
much farther the limitations of the regularization mEthOdSComputation (ABC) are presented.
and very often there are no more equivalence between them. Here are a set of main references related to this tutorigl: [4
However, Bayesian computation, excepted for the linear angs), [6], [7], [8], [9], [10], [11], [12]
Gaussian models, still is too costly. For non linear or non-
Gaussian models, there are three main computational method
the Laplace or Gaussian approximation, the classical arré mo
general Markov Chain Monte Carlo (MCMC) methods and [1] A.Mohammad-Djafariinverse Problemsin Vision and 3D Tomography.

the Bayesian Variational Approximation (BVA) methods whic 'STE'V;"LEIY' 20_10' _ o« » 4 |
—, Problmes Inverses en imagerie en vision en geux volumes
have recently became a standard. insparables, ser. Trait Signal et Image, IC2. ISTE-WILEY, 2009.

[3] ——, “Bayesian approach with prior models which enforqearsity
in signal and image processingfURASP Journal on Advances in
IV. STATE OF THE ART BAYESIAN METHODS Sgnal Processing, vol. Special issue on Sparse Signal Processing,
. . . ) p. 2012:52, 2012. [Online]. Available: http://asp.eupgmiirnals.com/
This tutorial gives an overview of these methods. The Target content/pdf/1687-6180-2012-52.pdf

audience of this tutorial is all those who have bgen _face to[4] O. Feéron, B. Duchéne, and A. Mohammad-Djafari, “Misave
inverse problems and have heard about the Bayesian inferenc  imaging of inhomogeneous objects made of a finite number of
and Bayesian estimation will be interested to this topiceyTh dielectric and conductive materials from experimentalagdatnverse
will learn about the state of the art prior modelling and the Problers, vol. 21, no. 6, pp. 95-115, Dec 2005. [Online]. Available:

di B . . | ith http://djafari.free.fr/pdf/
corresponding Bayesian computation algorithms. F. Humblot and A. Mohammad-Djafari, “Super-Resolutiamsing

. . [5]

First many eXamp|e_S of nverse problems are eqused- I Hidden Markov Model and Bayesian Detection Estimation Feanrk,”
fact, many classical signal and image processing subjeets a EURASP Journal on Applied Sgnal Processing, vol. Special
directly expressed as inverse problems: signal decorigalut Ruml_beft_ on SUPeTg*e;ggU;'lon 1'6mag'“93 gggg’S'?b ﬁlgﬁf'tmd
; ; ; ; : ; ; pplications, pp. , pages, . [Online]. :
Image restoration, image reconStrUCtK.)n In many imaging http://asp.eurasipjournals.com/content/pdf/16876062806-036971.pdf
systems such as X ray Tomography, Microwave, Ultrasound, . s
Svnthetic aperture radar (SAR) etc. Manv other data. &i na[6] M. Ichir and A.‘Mohammad-Djafarl_, Hidden markov modefsr

yn_ p . \ y St y ] » 819 wavelet-based blind source separatiot£EE Trans. on Image Pro-
and image processing subjects which are not directly egpdes cessing, vol. 15, no. 7, pp. 1887-1899, July 2006.
as SUCh, can also be presentgd as inverse prOblemS-_Juﬁq N. Bali and A. Mohammad-Djafari, “Bayesian approach twhidden
to mention a few: Factor analysis, Blind sources separation markov modeling and mean field approximation for hyperspédata
Antenna array processing, even classification and clusgteri analysis,”|[EEE Trans. on Image Processing, vol. 17, no. 2, pp. 217-
etc 225, Feb. 2008.

: At : : 8] H. Ayasso, B. Duchine, and A. Mohammad-Djafari, “Bayesinversion
Th.en’ the basics .Of r_egula_\rlzatmn methods, their assertiat el for oyptical diffraction tomography,Journal of l\jlodern Opﬁss, vol. 57,
algorithms and their limitations are exposed and the need no. g, pp. 765-776, 2010.
to push further these limitations brings us to the Bayesiang; ___ «optical diffraction tomography within a variatiah bayesian
approach. The main step in the Bayesian approach is the = framework” Inverse Problems in Science and Engineering, p. 15,
prior modelling. Simple prior laws (Gaussian, Generalized September 2010.
Gaussian, Gauss-Markov and more general Markovian priorg}0] N. Chu, A. Mohammad-Djafari, and J. Picheral, “Robustyésian

are nowadays Commomy used. But. we need still more ap- super-resolution approach via sparsity enforcing a pfirinear-field
. : . ' aeroacoustic source imaging),’of Sound and Vibration, no. 0, p. 000,
propriate prior models which can account for the presence 553" ished. [Online]. Available: doi:10.1016/,2013.02.037

of the contou_rs and homoQ.eneous regions. Recently’ we pr?fl] N. Chu, J. Picheral, and A. Mohammad-Djafari, “A robustper-
posed a family of hierarchical prior models, called Gauss- resolution approach with sparsity constraint in acoustiaging,” Ap-
Markov-Potts, which seems to be more appropriate for many  plied Acoustics, no. 0, p. 000, 2013, minor revisions.
applications in Imaging systems such as X ray Computegh2] A.Mohammad-Djafari, “Super-resolution: a short ewj a new method
Tomography (CT) or Microwave imaging in Non Destructive based on hidden markov modeling of hr image and future ahgdile”
Testing (NDT). Finally, the usefulness of these prior medel The Computter Journal, vol. 52, no. 1, pp. 126-141, 2009.

and appropriate corresponding Bayesian computation inyman

practical CT or other imaging systems in 1D, 2D and 3D cases

will be shown.
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