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Abstract—Inverses problems arise in almost all the engineering
and applied sciences where we have indirect measurement.
Many classical signal and image processing research subjects
are directly expressed as inverse problems: signal deconvolution,
image restoration, image reconstruction in many imaging systems
such as X ray Tomography, Microwave and Ultrasound imaging,
Synthetic aperture radar (SAR), etc. In this tutorial, first we
express in a unifying approach all these applications in a common
mathematical framework. Then, mentioning the ill-posed nature
of these inverse problems, we describe the regularization methods
which were very successful during 1960-2000. Mentioning the
limitations of these methods, we see how the Bayesian approach
can give tools to go beyond these difficulties. In particular, we
will see how this approach can be useful to account for many
different a priori knowledges: smoothness, positivity, piecewise
continuity, sparsity, finite number of materials (compact homo-
geneous regions), etc. We also discuss the computational aspects
of the Bayesian approach and the practical implementationsof
the proposed algorithms.
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I. I NTRODUCTION

Inverse problems arise in many imaging systems such as: i)
medical imaging such as X-ray Compted Tomography (CT),
Untrasound and microwave tomography; ii) Non Destructive
Evalaution (NDE) in industrial imaging such as gammagraphy,
ultrasound or Eddy current tomography. The main idea in all
these imaging systems is to relate an internal property of the
object under the test (human body or an industrial object) tothe
observed data via a forward model. The objective of the inverse
problem is then to reconstruct an image from the observed data
[1]. In general the inverse problems are ill-posed in the sense
defined by Hadamard: A problem is said to be well-posed if
the solution exists, is unique and stable. When one of these
conditions is not satisfied, the problem is said ill-posed.

II. REGULARIZATION METHODS

Noting the ill-posedness of the inverse problems, many
Regularization methods have been proposed and applied suc-
cessfully. One of the main regularization methods is defining

the solution as the minimizer of a criterion which has two parts:
a data-model matching part and a regularizer or a priori part.
The data-model matching part is in general a distance measure
between the observed data and the output of the forward model
and the the regularization part is often a smoothness measure
or a distance measure of the desired solution to a prior one
[2]. Recently, sparsity measures have also had great success in
many applications [3].

However, deterministic regularization methods have a few
limitations: the selection of the criteria or distances of the both
data-model matching and a priori and the determination of the
regularization parameter. Another main limitation is thatin
these methods only a solution is computed without having any
tool for quantifying the uncertainty of the proposed solution.

To push farther these limitations, the Bayesian inference
has become the main approach. The main idea is first to
use the forward model and some knowledge about the errors
(modelling and the measurement noise) to define what is called
the likelihood which gives the data-model matching part of
the regularization methods. The next step is to translate the
prior knowledge or the desired property of the solution into
a prior probability law which gives the regularizing part of
the regularization methods. The third step is to use the Bayes
or Laplace rule to combine the likelihood and the prior to
obtain the posterior probability law of the unknown quantity
from which we can deduce any information about the solution.
The classical point estimators are the Maximum A Posteriori
(MAP) and the Expected A Posteriori (EAP). There is a very
direct link between the MAP solution and the regularization
methods: In both methods, the solution is obtained via the
optimization of a two part criterion.

III. B ASICS OF THEBAYESIAN APPROACH

Between the advantages of the Bayesian approach to deter-
ministic regularization methods, we may mention: more tools
for and probabilistic arguments for selection the likelihood
part and the a priori part; more tools for interpreting the
proposed solution and in particular a natural way to quantify
the uncertainty of the solution via the a posteriori law; more
tools for the determination of the regularization parameter and
much more. In particular, we may mention the possibility
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of proposing unsupervised methods and effective solutionsin
many real applications.

The Bayesian approach with simple prior models such
as Gaussian or Gauss-Markov (to account for smoothness
for example), Gamma (to account for positivity), Laplace,
Generalized Gaussian, Student-t or Cauchy (to account for
sparsity) have been proposed and used in many applications
successfully. Nowadays, the state of the art Bayesian methods
use more sophisticated hierarchical models such as mixture
models or Gauss-Markov-Potts models in different applications
of imaging systems with great success. These methods push
much farther the limitations of the regularization methods
and very often there are no more equivalence between them.
However, Bayesian computation, excepted for the linear and
Gaussian models, still is too costly. For non linear or non-
Gaussian models, there are three main computational methods:
the Laplace or Gaussian approximation, the classical and more
general Markov Chain Monte Carlo (MCMC) methods and
the Bayesian Variational Approximation (BVA) methods which
have recently became a standard.

IV. STATE OF THE ART BAYESIAN METHODS

This tutorial gives an overview of these methods. The Target
audience of this tutorial is all those who have been face to
inverse problems and have heard about the Bayesian inference
and Bayesian estimation will be interested to this topic. They
will learn about the state of the art prior modelling and the
corresponding Bayesian computation algorithms.

First many examples of inverse problems are exposed. In
fact, many classical signal and image processing subjects are
directly expressed as inverse problems: signal deconvolution,
image restoration, image reconstruction in many imaging
systems such as X ray Tomography, Microwave, Ultrasound,
Synthetic aperture radar (SAR), etc. Many other data, signal
and image processing subjects which are not directly expressed
as such, can also be presented as inverse problems. Just
to mention a few: Factor analysis, Blind sources separation,
Antenna array processing, even classification and clustering,
etc.

Then, the basics of regularization methods, their associated
algorithms and their limitations are exposed and the need
to push further these limitations brings us to the Bayesian
approach. The main step in the Bayesian approach is the
prior modelling. Simple prior laws (Gaussian, Generalized
Gaussian, Gauss-Markov and more general Markovian priors)
are nowadays commonly used. But, we need still more ap-
propriate prior models which can account for the presence
of the contours and homogeneous regions. Recently, we pro-
posed a family of hierarchical prior models, called Gauss-
Markov-Potts, which seems to be more appropriate for many
applications in Imaging systems such as X ray Computed
Tomography (CT) or Microwave imaging in Non Destructive
Testing (NDT). Finally, the usefulness of these prior models
and appropriate corresponding Bayesian computation in many
practical CT or other imaging systems in 1D, 2D and 3D cases
will be shown.

V. CONCLUSION

In this tutorial, first a unifying presentation of the inverse
problems which commonly arise in signal and image process-
ing and imaging systems is presented. Then, the deterministic
regularization methods and their limitations are presented. The
main part of this tutorial is the presentation of the Bayesian ap-
proach with different prior models to account for differentprior
knowledge or desired property of the solution: regularity and
smoothness, sparsity, piecewise continuity, finite numberof
homogeneous materials, etc. As the computational aspects are
very important in real applications, the Approximate Bayesian
Computation (ABC) are presented.

Here are a set of main references related to this tutorial: [4],
[5], [6], [7], [8], [9], [10], [11], [12]
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