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ABSTRACT
We consider the problem of parameter estimation of Marko-
vian models where the exact computation of the partition
function is not possible or computationally too expensive
with MCMC methods. The main idea is then to approximate
the expression of the likelihood by a simpler one where
we can either have an analytical expression or compute it
more efficiently. We consider two approaches: Variational
Bayes Approximation (VBA) and Mean Field Approxima-
tion (MFA) and study the properties of such approximations
and their effects on the estimation of the parameters.

1. INTRODUCTION

Markovian models have gained a great interest in many do-
mains, especially in Bayesian framework for inverse prob-
lems in imaging systems [1, 2, 3, 4], [6], for their capacity to
represent the local spatial dependencies between neighbour-
ing sites (pixels). Markovian models are described either as
a collection of conditional probability laws: p(xi|xj , j ∈ V(i)), ∀i ∈
I, where I represents a set (of pixel positions for example)
and V(i) represents the neighbors of i, or as a global joint
probability law (Gibbs measure):

p(x|λ) =
1

Zp(λ)
exp (−λE(x)) , (1)

where x = {xi,∀i ∈ I} ∈ X and

Zp(λ) =
∫∫
X

exp (−λE(x)) dx (2)

is the partition function, E(.) is a Hamiltonian (energy func-
tion): E(x) =

∑
c∈C Φc(xc), C is the set of cliques de-

fined over the set I with the neighbourhood system V(i)
and Φc(.) are their associated potential functions.

If we consider each pixel i of an image as a particle and
its gray level xi as the state of that particle, then p(x|λ) can
be interpreted as the Boltzmann’s Law with λ = 1/T , where
T is the temperature of the system. Then FHelmoltz =
−lnZp(λ) is the Helmotz free energy of the system. This
quantity is a fundamentally important in statistical mechan-
ics and a great amount of works in Physics are devoted for

computing it, and, because its direct and exact computation
is often too expensive, there has been great amount of works
devoted to developing methods to obtain good approxima-
tions to it.

One important technique is based on a variational ap-
proach [7] where a trial distribution q(x) is proposed in
place of p(x) and one defines a variational free energy

F (q) = U(q) − H(q), (3)

where
U(q) =< E(x) >q=

∫
X

q(x) E(x) dx (4)

is the variational average energy and

H(q) =< −ln q >q= −
∫
X

q(x) ln q(x) dx (5)

is variational entropy.
Noting that U(q) = −lnZ(λ)+ < ln p >q and using

the definition of the Kullback-Leibler divergence

KL(q|p) =< −ln
q

p
>q= −

∫
X

q(x) ln
q(x)
p(x)

dx, (6)

it follows directly that:

F (q) = −ln Z(λ) + KL(q|p) = FHelmoltz + KL(q|p). (7)

Since KL(q|p) is always non-negative and zero only if q =
p, we see that F (q) ≥ FHelmoltz, with equality when q =
p. Thus, minimizing the variational free energy F (q) is a
good way to compute FHelmoltz = −lnZ and use it where
necessary.

In imaging systems, these models are, in general, used
as prior models where x = {x(ri), ri ∈ R} represent the
pixels of an image x(r) where ri is the spatial position (in
a plane for 2D case or in the space for 3D case) of the pixel
or voxel number i and R is either the surface of the image
or the volume of the scene. When we use such a model for
a class of images, one of the problems is estimating λ.

The classical maximum likelihood (ML) method is:

λ̂MV = arg max
λ

{ln p(x|λ)}

= arg max
λ

{−ln Z(λ) − λE(x)} , (8)



which needs the computation of Z(λ). This solution satis-
fies : −∂ln Z(λ)

∂λ
= E(x). (9)

In inverse problems in imaging systems, these models
are used as prior models for images. In these inverse prob-
lems, we do not observe directly the images. If we note by
y the observed data in these systems where, in general, we
know the forward mathematical model y = A(x)+ε where
A represents the response of the observation system and
ε represents the errors (modeling and measurement noise).
Thus, in inverse problems related to these imaging systems,
we know the expression of the likelihood p(y|x) and using
the Bayes rule, we obtain the expression of the posterior law
p(x|y; λ) ∝ p(y|x) p(x|λ). From this expression, we see
that, when the forward operator A is not mixing (A = I) or
is a local support operator such as a convolution, then using
a Markov model as a prior results also to a Markov model
as the posterior law. From now then, we do not distinguish
between the two cases, because both prior or the posterior
laws are Markov models, but only their neighbourhood sizes
differ. However, in the following, we consider two cases:

a) Direct modelling of images (training step), where the
main problem is then the estimation of the parameter λ from
a set of direct observations x. This estimation can be done
either by ML approach or through the Bayesian MAP crite-
rion which is

λ̂ = arg max
λ

{ln p(λ|x)}

= arg max
λ

{−lnZ(λ) − λE(x) + ln π(λ)} .(10)

b) Infering on λ in an unsupervised Bayesian approach where
we have some data y related to the unknowns x through a
forward model giving the expression of likelihood p(y|x)
and using (1) as a prior for x and a prior for π(λ) for the
parameter λ which results to the joint posterior

p(x, λ|y) ∝ p(x|y; λ)π(λ) ∝ p(y|x) p(x|λ)π(λ), (11)

which is then used to infer on x and on λ.
In the first case, the main problem is the estimation of

the parameter λ from a set of direct observation of x (train-
ing set, for prior model parameter estimation). In the second
case, a first problem is to provide a point estimator for the
unknown x such as the Maximum A posteriori (MAP) or
the Posterior Mean (PM) from a set of data and knowing
the prior parameters λ. The second problem, in an unsuper-
vised Bayesian framework, is also to estimate λ (which is
called hyperparameter in that context) either from x com-
puted in a previous iteration or directly from the observed
data y.

Both problems are, in general, intractable or needs high
computational cost, because Z(λ) has not an explicit form

except for a few simple cases, for example, when E is quadratic
(Gauss-Markov models). In all other cases, an approxima-
tion method should be used in order to obtain a scalable
algorithm for real applications. Two classes of methods are
proposed in literature:
i) Numerical approximation methods such as MCMC which
compute numerically the desired MAP or PM estimators,
and
ii) Analytical approximation methods which try, in a first
step provide an analytical simpler approximation q(x) for
p(x|λ) and then use it to do the necessary computations.

In this work, we propose to use the second approach.
This paper is then organized as follows, In the next sec-
tion, first we present the particular cases of Markov mod-
els we will use in practical imaging systems. In section
3, the basic ideas of Variational Bayesian (VB) and Mean
Fields (MF) approximation methods are presented. In sec-
tion 4 and 5, we drive the details of these approximations
for the proposed markovian models. In section 6, we will
show some simulation results. In section 7, we describe the
main domain of application of this paper which is to pro-
vide algorithms to estimate the parameter λ of the proposed
models and compare their relative performances with their
estimates without approximations.

2. PROPOSED MARKOVIAN MODELS

In this paper, we consider a particular case where

E(x) =
∑

i

∑
j∈Vi

Φi(xi, xj),

where
Φi(xi, xj) = Φ(xi − xj) ∀i. (12)

With this notation we have

p(x|λ) =
∏

i

p (xi|xj , j ∈ V(i))

with

p(xi|xj ,∈ V) ∝ exp

−λ
∑

j∈v(i)

Φ(xi − xj)

 (13)

We discuss in this paper three different Markov models that
covers a broad spectrum of applications.

2.1. Generalized Gaussian Markov models

This model is used to account for mutual dependence for
continuous variable with convex potential function [8, 9].
Its associated energy function is:

E(x) =
∑

i

∑
j∈V(i)

|xi − xj |β (14)



2.2. Entropic Markov models (I-Distribution family)

This family of probability distributions are based on I-diver-
gence, well known in information theory community [10,
11, 12]. Since I-divergence is not symmetric, we can define
two kind of distributions depending on the way we use the
distance. Their associated energy functions are as follows:

First kind I-distribution:

E(x) =
X

i

X

j∈V(i)

xj ln
xj

xi
− (xj − xi). (15)

Second kind I-distribution:

E(x) =
X

i

X

j∈V(i)

xiln
xi

xj
− (xi − xj). (16)

2.3. Potts and Ising models

This model is well known in segmentation application, where
it is used to account for the spatial dependence between el-
ements of class discrete variables xj ∈ {1, ...,K} [5, 13].
Its associated energy function is given by:

E(x) = −
∑

i

∑
j∈V

δ(xi − xj), (17)

where δ is the Kronecker function. In a particular case, Ising
model is defined for xj ∈ {0, 1}.

3. BASICS OF VBA AND MFA

As we mentionned in the introduction, using directly these
markovian models, for any estimation or inference, is, in
general, intractable or needs high computational cost, be-
cause Z(λ) has not an explicit form except for a few simple
cases, for example where E quadratic (Gauss-Markov mod-
els). In all other cases, an approximation method should be
used in order to obtain a scalable algorithm for real applica-
tions.

Two classes of methods are proposed in literature:
i) Numerical approximation methods such as MCMC which
compute numerically the desired MAP or PM estimators,
and
ii) Analytical approximation methods which try, in a first
step to provide an analytical simpler approximation q(x)
for p(x|λ) and then use it to do the necessary computations.

In this work, we propose to use the second approach.
This consists in, choosing an appropriate class of proba-
bility laws Q and a distance measure (KL or any other di-
vergence measure) and find an approximate probability law
q(x) in that class which minimizes that distance or diver-
gence measure:

q(x) = arg min
q∈Q

KL(q : p). (18)

Then, this simpler probability law q(x) can be used to do
any bayesian computation. This general scheme is presented
in Fig. 1.

Fig. 1. Minimizing KL leads to different Variational
Bayesian Approximation (VBA) inference algorithms:
Maximum A posteriori (MAP), Posterior Mean (PM),
Expectation-Maximization (EM), Expectation-Propagation
(EP), Variational EM, Mean Field Approximation (MFA),
etc.

In equation (18), the KL divergence is given by:

KL(q : p) =
∫

q(x)ln
q(x)

p(x|λ)
dx

= 〈ln q(x)〉q(x) − 〈ln p(x|λ)〉q(x) (19)

=
∑

j

〈ln q(xj)〉q(xj)
− 〈ln p(x|λ)〉q(x) ,

where 〈z〉q is the expectation of z w.r.t q. So the problem
is to find the optimal value of q that minimises KL(q : p)
under the constraint that q is normalised.

In this work, we propose the estimation of Markov model
with its parameter in an unsupervised Bayesian framework
using the following methods:
a) Variational Bayes Approximation (VBA), where we
look for a free form separable q(x) =

∏
j q(xj) approxi-

mating distribution which minimizes KL(q : p) with respect
to q ∈ Q = {q :

∫
q = 1}. The expression of qi(xi) in

this case is given by

qi(xi) =
1

Zi(λ)
exp

(
−λ 〈E(x)〉Q

j 6=i qj

)
(20)

which needs the expression of 〈E(x)〉Q

j 6=i qj
.

b) Mean Field Approximation (MFA), where we impose
the form of the approximating distribution to be in a par-
ticular parametric family. For example, when p(x|λ) =∏

i p (xi|xj , j ∈ V(i)) with

p(xi|xj ,∈ V) =
1

Zi(λ)
exp

0

@−λ
X

j∈v(i)

Φ(xi − xj)

1

A , (21)



we choose

q(x|λ) =
∏

i

p (xi|x̄j , j ∈ V(i)) , (22)

where x̄j becomes a parameter to be estimated such that
KL(q : p) be minimized.

As we may note that the second solution is a suboptimal
one compared to the first one. However, as we will see, it
is interesting to compare the relative complexities of these
two approximations.

In both cases, the main idea is to use q(x) in place of
p(x) to make inference, for example to estimate the param-
eter λ. In the following, for each of the proposed markovian
models in previous section, first, we give the expression of
obtained q(x), or more precisely q(xj). Then, we give the
equation to be solved to obtain the parameter λ.

4. VARIATIONAL BAYES APPROACH (VBA)

4.1. Generalized Gaussian Markov models

Unfortunately, for this general case, we could not yet obtain
a usable solution. However, the special case of β = 2 is
easy and we use it just to show the way to follow to obtain
the VB approximation.

4.1.1. Gaussian case β = 2

This is the simplest case since the partition function can be
found in an explicit way. However, it is always interesting
to compare the result of approximation for this case. From
(eq.20), we can write,

ln (qi(xi)) ∝ −λ

2

∑
j∈V(i)

∫
xj

(xi − xj)
2
qj(xj) dxj

∝ −λ

2

∑
j∈V(i)

[
x2

i − 2xiµ̃j + µ̃2
j + ṽj

]
⇒ qi(xi) = N (µ̃i, ṽi) (23)

with µ̃i =
1
|V|

∑
j∈V(i)

µ̃j and ṽi =
1

|V|λ
.

The bayesian estimation of λ can be done easily by assign-
ing a Gamma distribution for the prior (i.e. π(λ) = Γ(a, b)),
and by using conjugacy, the posterior is given by

p(λ|x) = Γ(â, b̂) (24)

where â =
[

1
a +

∑
i∈R(xi − µ̃i)2

]−1
and b̂ = |R|

2 + b.

4.2. Entropic Markov distribution

4.2.1. First kind I-distribution

Here, the computations can be done easily and we obtain:

ln(q(xi))∝−λ
∑

j∈V(i)

∫ [
xj ln

xj

xi
− (xj − xi)

]
q(xj) dxj

∝−λ
∑

j∈V(i) 〈xj〉qj
ln

〈xj〉qj

xi
− xi + 〈xj〉qj

This is interesting since we stay in the same family and the
dependence on neighbours transforms to a mean value one.
Moreover, moments of this distribution are easily accessi-
ble. The partition function can be obtained as:

Zi(λ) = e−λµ̃ilnµ̃i+λµ̃iλ−λµ̃i−1Γ(λµ̃i + 1) (25)

with µ̃i =
∑

j∈V(i) 〈xj〉qj
.

4.2.2. Second kind I-distribution

In a similar way, we obtain:

ln(q(xi))∝−λ
∑

j∈V(i)

∫ [
xiln xi

xj
− (xi − xj)

]
q(xj) dxj

∝−λ
∑

j∈V(i) xiln xi

e
−〈ln xj〉qj

+ xi − 〈xj〉qj

Here, the dependency is on the logarithmic moment bi =
exp

[
−〈lnxj〉qj

]
,∀xj ∈ V(i) w.r.t the approximating dis-

tribution qj which we are able to write it analytically.
For the partition function, we obtain

Zi(λ) =
e−λµ̃i

λ
α(λµ̃i) (26)

with:
µ̃i = e

−
P

j∈V(i)〈ln xj〉qj and α(a) =
∫ ∞
0

aye−yln y+y dy.

4.3. Potts and Ising models

Here, the expression can be obtained in a straightforward
way and is given by:

qi(xi = k) =
exp

(
−λ

∑
j∈V(i) qj(xj = k)

)
∑K

k=1 e−λ
P

j∈V(i) qj(xj=k)
(27)

xj ∈ {1, ..., K} is the general case and xj ∈ {0, 1} is the
Ising model case.

5. MEAN FIELD APPROXIMATION (MFA)

Interestingly, for the Potts model and the Entropic models,
the VBA and MFA will give the same results. This is not the
case for Generalized Gaussian case where we have started
to do, but not yet obtained really usable results.

6. SIMULATIONS

Here, we will give some comparison results of computa-
tional cost and performances of the proposed approximation
methods with respect to the optimal method of the estima-
tion of the parameters λ for the proposed Markov models.
The main protocol is, for each class of models, choose a
true value of λ, generate samples from the models, and then



a c e

b d f

Fig. 2. Comparison between different simulation results for different field types: Ising, Potts, entropic: a)J vs λ for analytical,
VB, MCMC b)relative error between analytical function and VBA or MCMC vs λ c)J vs λ for VBA and MCMC for 5 class
Potts field d) relative error between VBA and MCMC vs λ for Potts field e) J vs λ for entropic field f) relative error between
VBA and MCMC vs λ

estimate this parameter, either in an optimal way or by VBA
or by MCMC, and finaly, compare these results.

For this purpose, we evaluate J(λ) = −∂ln Z(λ)
∂λ , since

the optimal value of λ using (eq.9) for the value correspond-
ing to field energy E(x). We first compare the true value of
this function for the case of the Ising model, where we have
an analytical expression of partition function [14, 15], with
the VB solution. We note that for λ < λC ≈ 0.88, estima-
tion error is very small and it becomes important for higher
values. Looking at the energy of generated samples, we
find the same error with analytical solution, which suggest
that the generated samples did not converge yet. However,
we should revise our Gibbs sampling process, known for its
slow convergence for high values of λ. Figure(2) shows the
results for Ising model.

For higher dimension of Potts field, where the calcula-
tion of true function is not possible in a reasonable time, we

compare the VB function with an approximated value based
on an MCMC method: For each λ we generate a number of
samples that we use their energy function to approximate
J(λ) using (eq.9). The results are encouraging: the error of
estimation is very small for small values of λ. This is very
important since better estimation is needed for λ around its
critical value, and for higher values estimation error of λ
becomes less significant since the energy change is less im-
portant.

We have performed the same study for the case of en-
tropic Markov model and again we have a very good esti-
mation results over the whole axe of λ.

For computational cost comparison, the first motivation
of our work, we studied calculus time for the variational
method and the needed time for one sample of Potts field us-
ing Gibbs sampler. We have excluded the comparison with
true function since the complexity is O(KS) with K is the



number of classes and S the size of the field. To give an idea
this complexity, we need to evaluate an exponential function
≈ 3.4 × 1030 times. Interestingly our method needed way
less time than the sampling method.

a b

Fig. 3. Comparison of computational costs for VB and
MCMC, a)calculation time for different field dimensions b)
calculation time for different number of classes

7. APPLICATIONS

The main application of these results will be:
a) in image segmentation where a Hidden Potts model is
used to model the image;
b) in image denoising, restoration and tomographic image
reconstruction inverse problems, where a hierarchical Gauss-
Markov-Potts model is used to model the unknown images.

8. CONCLUSION

We considered the problem of parameter estimation of Marko-
vian models where the exact computation of the partition
function is not possible or computationally too expensive.
The main idea is to approximate the expression of the like-
lihood by a simpler one where we can either have analyt-
ical expression or compute it more efficiently. We con-
sidered two approaches: Variational Bayes Approximation
(VBA) and Mean Field Approximation (MFA) and studied
the properties of such approximations. We studied the rel-
ative performances of these approximations in two aspects:
computational cost and estimation error as a function of the
size of the images.
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Télécommunications, Paris, France, December 1993.

[4] M. Nikolova, J. Idier, and A. Mohammad-Djafari, “Inver-
sion of large-support ill-posed linear operators using a piece-
wise gaussian mrf,” IEEE Trans. on Image Processing, vol. 7,
pp. 571–585, April 1998.

[5] A. Mohammad-Djafari, “Gauss-markov-potts priors for im-
ages in computer tomography resulting to joint optimal re-
construction and segmentation,” International Journal of To-
mography & Statistics, vol. 11, no. W09, pp. 76–92, 2008.

[6] H. Ayasso and A. Mohammad-Djafari, “Variational bayes
with gauss-markov-potts prior models for joint image
restoration and segmentation,” Visapp Proceedings, (Fun-
chal, Madaira, Portugal), Int. Conf. on Computer Vision and
Applications, 2008.

[7] K. Friston, J. Mattout, N. Trujillo-Barreto, J. Ashburner, and
W. Penny, “Variational free energy and the laplace approxi-
mation,” Neuroimage, no. 2006.08.035, 2006. Available On-
line.

[8] C. A. Bouman and K. D. Sauer, “A generalized Gaussian
image model for edge-preserving MAP estimation,” IEEE
Transactions on Image Processing, vol. 2, pp. 296–310, July
1993.

[9] M. Ichir and A. Mohammad-Djafari, “A mean field approx-
imation approach to blind source separation with lp priors,”
in Eusipco 2005, Antalya, Turkey, September 2005, Eusipco
2005, Antalya, Turkey, September 2005, September 2005.

[10] I. Csiszár, “I-divergence geometry of probability distribu-
tions and minimization problems,” AP, vol. 3, no. 1, pp. 146–
158, 1975.

[11] L. K. Jones and C. L. Byrne, “General entropy criteria for in-
verse problems, with applications to data compression, pat-
tern classification, and cluster analysis,” IEEE Transactions
on Information Theory, vol. 36, pp. 23–30, January 1990.

[12] S. Brette, J. Idier, and A. Mohammad-Djafari, “Scale invari-
ant Bayesian estimator for inversion of noisy linear system,”
in Fifth Valencia Int. Meeting on Bayesian Statistics, (Spain),
June 1994.

[13] H. Ayasso and A. Mohammad-Djafari, “Joint image restora-
tion and segmentation using gauss-markov-potts prior mod-
els and variational bayesian computation,” Submitted to
IEEE Image Processing, Febuary, 2009.

[14] J. Giovannelli, “Estimation of the Ising field parameter us-
ing the partition function”, Research report, Bordeaux1 uni-
vercity, 2009.

[15] L. Onsager, “Crystal Statistics. I. A Two-Dimensional Model
with an Order-Disorder Transition,” Physical Review, vol.
65, Fab. 1944, p. 117.


