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Abstract

In this paper we propose an hierarchical Markov random
field (HMRF) model and the Bayesian estimation frame for
separating noisy linear mixtures of images constituted by
homogeneous patches. A latent Potts-Markov labeling field
is introduced for each source image to enforce piecewise
homogeneity of pixel values. Based on classification la-
bels, the upper observable intensity field is modeled by the
combination of Markovian smoothness of intensity inside
a patch and conditional independence at the edges. The
correlation between multiple color channels, which share
the same common classification, is exploited to stablize the
separation process. All unknown quantities including the
sources, labels, mixing coefficients and distribution hyper-
parameters are formulated in the Bayesian framework and
estimated by MCMC simulation of their corresponding pos-
terior laws. The performance of the proposed model is
shown by experiment results on both synthetic and real im-
ages, along with some comparisons with the ICA approach.

1 Introduction

The separation or reconstruction of unknown source im-
ages from their observed mixtures is a fundamental task for
a wide range of image processing problems. In its basic
form, the problem can be stated as: given M observed im-
ages {Xi, i = 1, . . . , M}, we want to estimate the N orig-
inal source images {Xi, i = 1, . . . , N} on the basis of cer-

tain assumptions about the data generation model. Though
the underlying mixing form (linear or nonlinear, instanta-
neous or convoluting) and the noise type usually can be as-
sumed a priori, their parameters are not known in advance
and to be estimated together with the sources, which con-
stitutes a typical ill-posed problem. Due to its generality
and representativity to practical observation processes, the
described model is widely employed in many multi-source
imaging problems [3, 6, 1, 2].

From the viewpoint of the signal processing field, un-
supervised separation of images can be viewed as one par-
ticular type of blind source separation (BSS) problem, for
which some general solutions such as Principal Compo-
nents Analysis (PCA) and Independent Components Anal-
ysis (ICA) have been proposed. Based on seeking uncorre-
latedness (PCA) or maximum mutual independency (ICA)
between output components of an inverse linear transfor-
mation, these methods have shown their applicability and
effectiveness in many blind image separation problems,
sometimes with certain variations of the model assumption
such as nonlinearity or convolution [5]. However, besides
the cross-image independency, it’s usually helpful or neces-
sary to exploit the intrinsic constraints or structures within
an image, rather than just taking image as random signal se-
quence, to regulate the essentially ill-posed separation task.
For integration of these information, the Bayesian inference
framework provides sufficient flexibility through hierarchi-
cal prior and causality modeling, which is usually lacked in
basic ICA/PCA-based methods.

One commonly exploited characteristic for a large num-
ber of images is the Markovian property, that is, the local



spatial correlations among pixels (sites) within a limited
range of the image surface. To numerous context-dependent
variables of this form, Markov random field (MRF) the-
ory provides a consistent estimation and inference model.
By introducing additional interacting layers of MRF, more
sophisticated models such as hidden or hierarchical MRF
(HMRF) can be built to describe specific priori constraints
encoded in the image. On the other hand, image features
like smoothness or discontinuity can also be expressed by
different forms of potential functions in the Gibbs distribu-
tion of MRF.

Both HMRF model and Bayesian approache have been
extensively used in enhancement, restoration, segmentation
and other classical image processing problems. In Bayesian
blind image separation, however, relatively few models
have been proposed and even fewer addressed separation of
multi-channel image data. The reference in [8] describes
one model, which models the monochromatic source by
a Potts-MRF directly on the pixel intensity (no latent la-
beling), but with an explicit edge term encoded in the po-
tential corresponding to the discontinuity at object borders.
Though satisfactory results were reported by existing meth-
ods on monochromatic data, the availability and appropri-
ate exploitation of multi-channel information are supposed
to increase the separation performance and stability.

In this paper, we propose an hierarchical Markov random
field model and the Bayesian estimation frame for separat-
ing noisy linear mixtures of multichromatic images. We
assume the source images are comprised of piecewise ho-
mogeneous patches and employ two-layer MRF model to
account for the smoothness inside a patch and conditional
independence at the edges, as well as the implicit correla-
tion between different color channels. In section 2, we de-
scribe the HMRF used to model source images. Then, we
give probabilistic characterization of the BSS problem in
section 3. In section 4, the Bayesian estimation framework
for model parameters is described. At the end, experiment
results of the proposed algorithm are presented with some
comparisons between different approaches.

2 Hierarchical Markov random field model

Unlike most PCA/ICA based methods that treat image as
a sequence of temporal signals without further finegrained
subsection, we model every source image with an hierarchi-
cal Markov random field for its convenience in describing
the image structure and the underlying generation model.
As illustrated in Fig.1, this model consists of two layers of
Markovian random processes - the label field and the inten-
sity field, interconnected between each pair of correspond-
ing sites.

Figure 1. Hierarchical Markov random field
model.

2.1 Label field

The label field is composed of the latent classification
labels for every pixel in image. Supposing the content of
jth source image can be divided into Kj classes, the corre-
sponding label field is represented by a set of discrete vari-
able zj = {zj(r), r ∈ R} (R for all pixel sites), which
are valued in {1, . . . , Kj}. Different source images can
contain varied number of pixel classes, which is usually
task-depending, and in the simplest case, we may choose
Kj = 2 to distinguish between foreground object and the
background.

In this work, we define one pixel class as a distinct yet in-
ternally uniform set of color values that owned by some spa-
tially connected pixels. By this definition, the label field is
inherently with the local homogeneity property and thereby
can be naturally modeled by the Potts-Markov random field
prior distribution:

p(zj) ∝ exp


βj

∑
r∈R

∑
r′∈V(r)

δ(zj(r) − zj(r′))


 (1)

where, V(r) denotes the neighbor sites of the site r, and the
parameter β reflects the degree of smoothing interactions
between pixels and controls the mean size of homogeneous
area.

2.2 Intensity field

The intensity field is comprised of observable pixel val-
ues at every site of the image. For one pixel sj(r) at site r of
jth image, its intensity distribution is conditioned (maybe
partially) on the the class label zj(r) that the pixel has.
Given the label, we assume the distribution p(sj(r)|zj(r))
is Gaussian, so that the distribution p(sj(r)) is a mixture
of Gaussians (MoG) with Kj components. Usually, pixel
intensities at different sites can be assumed mutually inde-
pendent given their labels, resulting in the distribution:

p(sj(r)|zj(r) = k) = N (µjk, σ2
jk) (2)



and

p(sj |zj) =
∏
r∈R

p(sj(r)|zj(r))

=
∏
r∈R

N (µjzj(r), σ
2
jzj(r)

)

where µjk and σ2
jk are the mean and variance of the kth

Gaussian component of the jth source, and for zj(r) = k,
µjzj(r) = µjk, σ2

jzj(r)
= σ2

jk.
To more closely model the smoothness inside an image

patch, that is, suppressing intensity variances brought by the
i.i.d assumption (2), we introduce another layer of Marko-
vian correlation between neighboring pixels directly on the
intensities (illustrated as the gray links on the higher layer
in Fig.1), as formulated below:

p(sj(r)|zj(r) = k, sj(r′), r′ ∈ V(r)) = N (µ̂j(r), σ̂2
j (r))

(3)
with,

µ̂j(r) = (1 − qj(r))µ̄j(r) + qj(r)µjk

σ̂2
j (r) = (1 − qj(r))σ̄2

j (r) + qj(r)σ2
jk

where, qj(r) is a binary valued contour computed from the
label field:

qj(r) =
{

0 if zj(r′) = zj(r),∀r′ ∈ V(r)
1 else

Based on the regions delimited by the contours, local mean

µ̄j(r) =
1

|Vjk(r)|
∑

r′∈Vjk(r)

sj(r′)

where Vjk(r) denotes the intersection of the neighbor sites
V(r) with the class k site set Rjk = {r : zj(r) = k}. σ̄2

j (r)
is the a prior variance of pixel values inside a region.

From (3), we can see that the Markovian on intensity is
conditionally activated based on whether the pixel is inside
a patch or on its border. For an inner pixel (qj(r) = 0), the
mean of its distribution is determined by the average of its
neighbours; For a contour pixel (qj(r) = 1), it has the class
distribution parameters just as the i.i.d case (2).

3 The BSS model

The BSS characteristic of the problem this paper ad-
dresses introduces another layer of probabilistic causality
on top of the HMRF model described in former section, as
shown in Fig.2, making it different from usual restoration or
segmentation tasks. Here, what we observed are M images
(xi)i=1...M , either monochromatic or multichromatic, con-
sidered to be generated by mixing N independent source

Figure 2. The BSS generation model on
HMRF (with two sources and two observed
mixtures in RGB channels).

images (sj)j=1...N (M ≥ N ) with unknown mixing coeffi-
cients, which are additional latent variables to be estimated
besides source image intensities and labels.

In this work, we concentrate on the linear instantaneous
mixing model:

x(r) = As(r) + ε(r) r ∈ R (4)

where x(r) = [x1(r) . . .xM (r)]t, s(r) =
[s1(r) . . . sN (r)]t, A = (aij)M×N is the unknown
mixing matrix, ε(r) is a set of independent zero-mean
white Gaussian noise for each observation with variance
(σ2

εi)i=1...M .
Let S = {s(r), r ∈ R}, X = {x(r), r ∈ R}, and denote

the noise covariance matrix by Rε = diag(σ2
ε1 . . . σ2

εM ).
With the assumption that mixing at different sites are mutu-
ally independent, we have the Gaussian distribution for the
observations given the sources and the mixing parameters:

p(X|S,A,Rε) =
∏
r

N (As(r),Rε) (5)

As illustrated by Fig.2, the separate labeling layer in the
proposed HMRF model, which is different from the flat im-
age model in [8], brings much flexibility in handling mul-
tichromatic color images. Usually, the availability of extra
color channels help to acquire consistent labeling and sta-
ble clustering of homogeneous patches, which is critical for
proper separation. To account for various mixing forms of
multi-channel images, the mixing matrix A can be gener-
alized to a block matrix [Aij ]ML×NL (supposing L color
channels), in which submatrices correspond to mixings in
or between different channels. Taking the RGB representa-
tion for example (supposing two sources and observations),

A =




AR · · · · · ·
... AG

...
· · · · · · AB




6×6



In this paper, we adopt the mixing model following
Fig.2, where the mixing occurs independently in each chan-
nel, so that A is block diagonal with different main diag-
onal submatrices. Furthermore, only one label field zj is

maintained for each multichromatic source s(R,G,B)
j , which

enforces a common segmentation of pixels among different
channels and is supposed to give more stable segmentation
through this extra layer of correlation. The label field is
then serially updated during the iterative estimation of each
of A{R,G,B}, as described below.

4 Model parameter estimation

The unknown variables we want to estimate in the model
given above are {S,Z,A} and hyperparameters of relevant
distributions. The Bayesian estimation approach consists
of deriving the posterior distribution of all the unknowns
given the observation and adopting appropriate estimators
such as the maximum a posteriori (MAP) or the posterior
mean (PM) based on the posterior distribution. With our
model assumptions, the joint a posteriori distribution of all
unknown variables can be expressed as:

p(S,Z,Θ|X) ∝ p(X|S,A,Rε)p(S|Z,Θs)p(Z)p(Θ)
(6)

where, Θs = {(µjk, σ2
jk), j = 1 . . . N, k = 1 . . . K} and

Θ = {A,Rε,Θs}.
Given (6), we compute the posterior mean estimation of

unknown parameters by the MCMC Gibbs sampling algo-
rithm, based on the full-conditional posterior distributions
corresponding to each parameter in question, fixing all the
others to their current values.

The Algorithm

1) Initialize A(0), S(0), Z(0) and {µjk, σ2
jk}, either ran-

domly or by K-mean clustering.
2) Repeat until converge,

• Simulating S′ ∼ p(S|X,Z,Θ):

p(S|X,Z,Θ) ∝ p(X|S,A,Rε)p(S|Z,Θs)

=
∏
r

N (mapost
s (r),Rapost

s (r))

where,

Rapost
s (r) =

[
AtR−1

ε A + Σ−1
z(r)

]−1

mapost
s (r) = Rapost

s (r)
[
AtR−1

ε x(r) + Σ−1
z(r)mz(r)

]
and, mz(r) = [µ1z1(r), . . . , µNzN (r)]t and Σz(r) =
diag[σ2

1z1(r)
, . . . , σ2

NzN (r)].

• Simulating Z′ ∼ p(Z|S′,X,Θ):

p(Z|S,X,Θ) ∝ p(X|Z,Θ)p(Z) (7)

and,

p(X|Z,Θ) =
∏
r

p(x(r)|z(r),Θ)

=
∏
r

N (Amz(r),AΣz(r)At + Rε)

and, p(Z) =
∏N

j=1 p(zj), p(zj) is Potts-MRF as (1),
which is simulated by an inner Gibbs sampling.

• Simulating Θ = (µjk, σ2
jk,Rε,A):

For computation simplicity, conjugate priors are cho-
sen for respective hyperparameters:

– Gaussian for source means µjk,

– Inverse Gamma for source variances σ2
jk,

– Gaussian or uniform for mixing coefficients Aij ,

– Inverse Gamma for variances of mutually inde-
pendent mixing noises σ2

εi (diagonal Rε).

Details about conjugate prior selection for hyperpa-
rameters and corresponding posterior derivation are
omitted here for brevity, one can refer to [7] for more
detailed discussion.

3) Based on the samples generated in iterations (skipping
those from initial burn-in runs), compute the sample mean
as the PM estimations for unknown parameters.

The Mean Field Approximation

The computation concerning the distribution of a MRF,
like the prior p(Z) and consequently the conditional pos-
terior p(Z|X,S,Θ) in (7), is usually intractable since the
unfactorizable interactions of sites. To reduce the computa-
tion cost, the mean field approximation (MFA) [9], a special
instance of variational methods effective for MRF, can be
exploited to give a separable approximation in site r to the
concerned joint distribution:

p(z) ≈ q(z) ∝
∏
r

q(z(r)|z̄(r′), r′ ∈ V(r))

where z̄(r′) is the expected value of z(r′) computed itera-
tively using q(z). Now, (7) is approximated by

q(Z|X,Θ) =
∏
r

q(z(r)|z̄(r′), r′ ∈ V(r),x(r),Θ)

=
∏
r

p(x(r)|z(r),Θ)q(z(r)|z̄(r′), r′ ∈ V(r))



where, the expected value z̄(r) with respect to z’s posterior
q(z(r)|.)) can be computed iteratively by:

z̄(r) =

∑
z(r) z(r)q(z(r)|z̄(r′),x(r),Θ)∑

z(r) q(z(r)|z̄(r′),x(r),Θ)

Actually, if we perform optimization in place of simula-
tion in our Gibbs sampling algorithm, we get EM or ICM
alike algorithm for all hidden variables, where the mean
field approximation allows the efficient calculation of in-
volved conditional expectations over p(z|x,Θ).

Computational considerations

Aside from the mean field approximation, the posterior
simulation of the individual labels {z(r), r ∈ R} and inten-
sities {s(r), r ∈ R} (given values on other sites and of other
variables) can be implemented in a parallel manner as a re-
sult of the choice of the first order neighborhood system (4
nearest neighbors) for both the intensity field s and the label
field z. We divide the whole set of sites R into two separate
and interleaved subsets - RB and RW like the chessboard.
Notice that p(zB |z) = p(zB |zW ) and p(zB |zW ) is sep-
arable by site r, the same property applies to p(zW |zB),
p(sB |sW , z) and p(sW |sB , z). Therefore, the simulation of
z and s, in each iteration, can now be performed parallelly
for all sites of RB in one step and those of RW in the next
step with much higher efficiency.

5 Experiments

To evaluate the performance of the proposed separation
model, we test it on both synthetic and real world image
mixtures. The synthetic images were simulated from a
known generation model in three steps:

i) Two label images zj=1,2 were generated according to
the Potts-Markov prior model (1) with β = 2, with
preselected class numbers Kj=1,2;

ii) Two source images sj=1,2 were generated based on
corresponding label fields according to (2), with ran-
domly chosen mean and variance of pixel values for
each class (Gaussian component) of each source;

iii) Two mixture images xj=1,2 were generated according
to (4) by linearly mixing two source images with a ran-
dom chosen matrix A2×2 and finally the white Gaus-
sian noises Rε were added.

To quantitatively measure the separation performance, a
normalized square error (NSE) is defined for each couple of
original (s0) and estimated (s̄) sources.

NSE(s̄, s0) =
√∑

r

(s̄(r) − s0(r))2/
∑

r

s0(r)2

Fig.3 shows the separation result on two synthetic sam-
ples with K = 2, 3 respectively. Table 1 shows the posterior
mean estimation for the mean of each Gaussian component
of the source distribution.

(K = 2)

(K = 3)

Figure 3. Separation of synthetic image mix-
tures (columns from left to right are: ground-
truth labels, synthetic sources, noisy mix-
tures, demixed sources, estimated labels).

Table 1. Comparison of the estimated (µ̄) and
the original (µ0) mean of each label compo-
nent of two sources (1)(2) in Fig.3.

K = 2 K = 3

µ
(1)
0 0.2 0.7 0.2 0.4 0.8

µ̄(1) 0.2249 0.6402 0.1554 0.3933 0.7971

µ
(2)
0 0.3 0.6 0.3 0.5 0.8

µ̄(2) 0.2713 0.5864 0.2877 0.5037 0.8019
NSE 0.0114 0.0275

For comparison, we applied the FastICA algorithm [4]
on the sample images, using its default parameter set. The
output independent components are shown in Fig.4, which
approach the original sources pretty well, since the close
match of the data generation model with ICA assumption.

For real world image samples, we chose the mixed text
images resulting from the showing-through effect, which
often occurs in the digitization of duplex printed documents.
Due to the non-opaque medium, the backside text appear
and get mixed in the scanned image with the foreside text.
We assume the mixing is linear and all foreground text of
one side are approximately same colored, hence we can nat-



(K = 2) (K = 3)

Figure 4. Separation results by ICA on syn-
thetic images in Fig.3.

urally fix K = 2 (background and text). With the proposed
two-layer MRF model (3) of sources, the separation result
is shown in Fig.5.

Figure 5. Separation of real showing-through
mixtures of text patterns (columns from left
to right are: mixtures, estimated labels,
demixed sources).

Fig.6 shows the separation result by FastICA on the real
images. Since no explicit treatment for multi-channel data
specified in ICA, all three channels (RGB) of the two mix-
tures were fed to the algorithm. The demixed sources were
found in two of six independent components outputed. Due
to the unignorable noises, however, the vanilla ICA algo-
rithm sometimes could not give complete separation of the
sources as shown by Fig.6. As the mixing noises and cor-
relations of sources became comparatively significant, we
noticed in some experiments that ICA could separate noises
from the mixed signals instead of demixing real sources.
Comparatively, for large part of these cases the proposed
model usually exhibits favorable stability as a result of the
consistency enforced by HMRF.

Figure 6. Separation results by ICA on real
image samples in Fig.5.

6 Conclusions

We presented a Bayesian framework for blind separation
of multichromatic image mixtures. An hierarchical Markov
random field model is proposed to enforce both the consis-
tent segmentation among all channels of one source image
and the piecewise homogeneity on different layers of inter-
acting image elements - the labels and intensities. Based
on this HMRF model, we consider the classic BSS problem
of separating noisy linear instantaneous mixtures of images.
For all unknown variables, including the sources, the mix-
ing matrix and relevant hyperparameters, we derive their
posterior distributions and compute the posterior mean esti-
mation by MCMC simulations. To reduce the computation
demand associated with the MRF graphical model, approx-
imation based on mean field theory is also considered. Fa-
vorable results were obtained in experiments on both syn-
thetic and real world images.
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