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Abstract. In this paper, first the basics of Bayesian inference with a parametric model of the
data is presented. Then, the needed extensions are given when dealing with inverse problems
and in particular the linear models such as Deconvolution orimage reconstruction in Computed
Tomography (CT). The main point to discuss then is the prior modeling of signals and images.
A classification of these priors is presented, first inseparableandMarkovienmodels and then in
simpleor hierarchical with hidden variables. For practical applications, we need also to consider
the estimation of the hyper parameters. Finally, we see thatwe have to infer simultaneously on the
unknowns, the hidden variables and the hyper parameters.

Very often, the expression of this joint posterior law is toocomplex to be handled directly. Indeed,
rarely we can obtain analytical solutions to any point estimators such the Maximum A posteriori
(MAP) or Posterior Mean (PM). Three main tools are then can beused: Laplace approximation
(LAP), Markov Chain Monte Carlo (MCMC) and Bayesian Variational Approximations (BVA).

To illustrate all these aspects, we will consider a deconvolution problem where we know that the
input signal issparseand propose to use a Student-t prior for that. Then, to handlethe Bayesian
computations with this model, we use the property of Student-t which is modelling it via an
infinite mixture of Gaussians, introducing thus hidden variables which are the variances. Then, the
expression of the joint posterior of the input signal samples, the hidden variables (which are here
the inverse variances of those samples) and the hyper-parameters of the problem (for example the
variance of the noise) is given. From this point, we will present the joint maximization by alternate
optimization and the three possible approximation methods. Finally, the proposed methodology is
applied in different applications such as mass spectrometry, spectrum estimation of quasi periodic
biological signals and X ray computed tomography.

INTRODUCTION

In many generic inverse problems in signal and image processing, the problem is to
infer on an unknown signalf (t) or an unknown imagef (r) with r = (x,y) through
an observed signalg(t ′) or an observed imageg(r ′) related between them through an
operatorH such as convolutiong= h∗ f or any other linear or non linear transformation
g = H f . When this relation is linear and we have discretized the problem, we arrive
to the relation:g = H f + ε, where f = [ f 1, · · · , f n]

′ represents the unknowns,g =
[g1, · · · ,gm]

′ the observed data,ε= [ε1, · · · ,εm]
′ the errors of modelling and measurement

andH the matrix of the system response.
The Bayesian inference approach is based on the posterior law:

p( f |g,θ1,θ2) =
p(g| f ,θ1) p( f |θ2)

p(g|θ1,θ2)
∝ p(g| f ,θ1) p( f |θ2) (1)



where the sign∝ stands for "proportional to",p(g| f ,θ1) is the likelihood,p( f |θ2) the
prior model,θ = (θ1,θ2) are their corresponding parameters (often called the hyper-
parameters of the problem) andp(g|θ1,θ2) is called the evidence of the model. When
the parametersθ have to be estimated too, a priorp(θ|θ0) with fixed values forθ0 is
assigned to them and the expression of the joint posterior

p( f ,θ|g,θ0) =
p(g| f ,θ1) p( f |θ2) p(θ|θ0)

p(g|θ0)
(2)

is used to infer them jointly. This approach is showed in the following schemes:

↓ α,β

Hyper prior modelp(θ|α,β)
θ2
?

p( f |θ2)

Prior

⋄
θ1
?

p(g| f ,θ1)

Likelihood

−→p( f ,θ|g,α,β)

Joint Posterior

−→ f̂
−→ θ̂

Full Bayesian Model and Hyperparameter Estimation scheme

p( f ,θ|g)
Joint Posterior

−→ p(θ|g)
Marginalize overf

−→ θ̂ −→ p( f |θ̂,g) −→ f̂

Marginalization for Hyper-parameter Estimation

Variational Bayesian Approximation (BVA) methods try to approximatep( f ,θ|g) by
a separable oneq( f ,θ|g) = q1( f |θ̃,g) q2(θ| f̃ ,g) and then using them for estimation
[3, 1, 8, 11, 2, 9, 10, 7, 5]. This approach is showed in the following scheme:

p( f ,θ|g) −→
Variational
Bayesian

Approximation

−→ q1( f )−→ f̂

−→ q2(θ̂)−→ θ̂
For hierarchical prior models with hidden variablesz, the problem becomes more

complex, because we have to give the expression of the joint posterior law

p( f ,z,θ|g) ∝ p(g| f ,θ1) p( f |z,θ2) p(z|θ3) p(θ|θ0) (3)

and then approximate it by a separable one

q( f ,z,θ|g) = q1( f |̃z, θ̃,g) q2(z| f̃ , θ̃,g) q3(θ|̃z, f̃ ,g) (4)

and then using them for estimation.
In this paper, first the general VBA method is detailed for theinference on inverse

problems with hierarchical prior models. Then, two particular classes of prior models
(Student-t and mixture of Gaussians) are considered and thedetails of BVA algorithms
for them are given.



BAYESIAN VARIATIONAL APPROXIMATION WITH
HIERARCHICAL PRIOR MODELS

When a hierarchical prior modelp( f |z,θ) is used and when the estimation of the hyper-
parametersθ has to be considered, the joint posterior law of all the unknowns becomes:

p( f ,z,θ|g) ∝ p(g| f ,θ1) p( f |z,θ2) p(z|θ3) p(θ) (5)

which can also be written asp( f ,z,θ|g) = p( f |z,θ;g) p(z|θ;g) p(θ|g) where

p( f |z,θ;g) = p(g| f ,θ) p( f |z,θ)/p(g|z,θ) with p(g|z,θ) =
∫

p(g| f ,θ) p( f |z,θ) d f

(6)
andp(z|θ;g) = p(g|z,θ) p(z|θ)/p(g|θ) with p(g|θ) =

∫
p(g|z,θ) p(z|θ) dzand finally

p(θ|g) = p(g|θ) p(θ)/p(g) with p(g) =
∫∫

p(g|θ) p(θ) dθ (7)

We see that the first term

p( f |z,θ,g) ∝ p(g| f ,θ)p( f |z,θ) (8)

will be easy to handle because it is the product of two gaussians and so it is a multivariate
Gaussian. But the two others are not.

The main idea behind the VBA is to approximate the joint posterior p( f ,z,θ|g) by a
separable one, for example

q( f ,z,θ|g) = q1( f |g)q2(z|g)q3(θ|g) (9)

and where the expressions ofq( f ,z,θ|g) is obtained by minimizing the Kullback-Leibler
divergence

KL(q : p) =
∫

qln
q
p
=

〈
ln

q
p

〉

q
(10)

It is then easy to show that KL(q : p) = ln p(g|M )− F (q) where p(g|M ) is the
likelihood of the model

p(g|M ) =

∫∫ ∫∫ ∫∫
p( f ,z,θ,g|M ) d f dzdθ (11)

with p( f ,z,θ,g|M ) = p(g| f ,θ) p( f |z,θ) p(z|θ) p(θ) andF (q) is the free energy asso-
ciated toq defined as

F (q) =

〈
ln

p( f ,z,θ,g|M )

q( f ,z,θ)

〉

q
(12)

So, for a given modelM , minimizing KL(q : p) is equivalent to maximizingF (q) and
when optimized,F (q∗) gives a lower bound for lnp(g|M ).



Without any other constraint than the normalization ofq, an alternate optimization of
F (q) with respect toq1, q2 andq3 results in





q1( f ) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q(z)q(θ)

}
,

q2(z) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q( f )q(θ)

}

q3(θ) ∝ exp
{
−〈ln p( f ,z,θ,g)〉q( f )q(z)

} (13)

Note that these relations represent an implicit solution for q1( f ), q2(z) andq3(θ) which
need, at each iteration, the expression of the expectationsin the right hand of exponen-
tials. If p(g| f ,z,θ1) is a member of an exponential family and if all the priorsp( f |z,θ2),
p(z|θ3), p(θ1), p(θ2), and p(θ3) are conjugate priors, then it is easy to see that these
expressions leads to standard distributions for which the required expectations are easily
evaluated. In that case, we may note

q( f ,z,θ|g) = q1( f |̃z, θ̃;g)q2(z| f̃ , θ̃;g)q3(θ| f̃ , z̃;g) (14)

where the tilded quantities̃z, f̃ andθ̃ are, respectively functions of( f̃ ,̃θ), (̃z,̃θ) and( f̃ ,̃z)
and where the alternate optimization results to alternate updating of the parameters(̃z, θ̃)
for q1, the parameters( f̃ , θ̃) of q2 and the parameters( f̃ , z̃) of q3.

Finally, we may note that, to monitor the convergence of the algorithm, we may
evaluate the free energy

F (q)=
〈
ln p( f ,z,θ,g|M )

〉
q+ 〈− lnq( f ,z,θ)〉q

= 〈ln p(g| f ,z,θ)〉q+ 〈ln p( f |z,θ)〉q+ 〈ln p(z|θ)〉q
+〈− lnq( f )〉q+ 〈− lnq(z)〉q+ 〈− lnq(θ)〉q

(15)

where all the expectations are with respect toq.
Other decompositions are also possible:

q( f ,z,θ|g) = ∏
j

q1 j( f j | f̃ (− j), z̃, θ̃;g) ∏
j

q2 j(zj | f̃ , z̃(− j), θ̃;g) ∏
l

q3l(θl | f̃ , z̃, θ̃(−l);g)

(16)
or

q( f ,z,θ|g) = q1( f |̃z, θ̃;g)∏
j

q2 j(zj | f̃ , z̃(− j), θ̃;g)∏
l

q3l (θl | f̃ , z̃, θ̃(−l);g) (17)

This approach is showed in the following scheme:

↓ α,β,γ

Hyper prior modelp(θ|α,β,γ)
θ3
?

p(z|θ3)

Hidden variable

⋄
θ2
?

p( f |z,θ2)

Prior

⋄
θ1
?

p(g| f ,θ1)

Likelihood

−→p( f ,z,θ|g)
Joint Posterior

−→

VBA
q1( f )
q2(z)
q3(θ)

−→ f̂

−→ ẑ

−→ θ̂

Full Bayesian Hierarchical Model and Variational Approximation



In the following section, we consider this case and give somemore details with the
Hierarchical model of Infinite Mixture model of Student-t.

JMAP AND BAYESIAN VARIATIONAL APPROXIMATION WITH
STUDENT-T PRIORS

The Student-t model is:

p( f |ν) = ∏
j
S t( f j |ν) with S t( f j |ν) =

1√
πν

Γ((ν+1)/2)
Γ(ν/2)

(
1+ f 2

j/ν
)−(ν+1)/2

(18)

Knowing that

S t( f j |ν) =
∫ ∞

0
N ( f j |0,1/zj)G(zj |ν/2,ν/2) dzj (19)

we can write this model via the positive hidden variableszj :
{

p( f |z) = ∏ j p( f j |zj) = ∏ j N ( f j |0,1/zj) ∝ exp
{
−1

2 ∑ j zj f 2
j

}

p(zj |α,β) = G(zj |α,β) ∝ zj
(α−1)exp

{
−βzj

}
with α = β = ν/2

(20)

Cauchy model is obtained whenν = 1:
In this case, let consider the forward modelg = H f + ε and assign a Gaussian law

to the noiseε which which results top(g| f ,vε) =N (g|H f ,vεI). We also assign a prior
p(τε|α0,β0) = G(τε|α0,β0) to τε = 1/vε.

Let also noteZ = diag[z], and notep( f |z) = ∏ j p( f j |zj) = ∏ j N
(

f j |0,zj
)
=

N ( f |0,z) and finally, assignp(z|α0,β0) = ∏ j G(zj |α0,β0).
The following scheme shows the graphical representation ofthis model.

α0,β0
- nz - f��

��

?

��
��

g��
��

ε -

nH
@Rnτε -αε0,βε0

-

In the following, we summarize all the equations related to this modeling and infer-
ence scheme.

• Forward probability laws:

{
p(g| f ,τε) =N (g|H f ,(1/τε)I), p(τε|αε0,βε0) = G(τε|αε0,βε0)

p( f |z) = ∏ j N
(

f j |0,1/zj
)
, p(z|α0,β0) = ∏ j G(zj |α0,β0)

(21)

• Joint posterior laws:

p( f ,z,τε|g,α0,β0,αε0,βε0) ∝ p(g| f ,τε) p( f |z) p(z|α0,β0) p(τε|αε0,βε0)

∝ τε
−M/2 exp

{
−1

2τε‖g−H f‖2
}

∏ j zj
−1/2 exp

{
−1

2zj f 2
j

}

∏ j zj
−α0+1 exp

{
−β0zj

}
τε

−αε0+1 exp{−βε0τε}
(22)



• Joint MAP alternate maximization algorithm: The objectiveof the JMAP optimiza-
tion is:

( f̂ , ẑ, τ̂ε) = arg max
( f ,z,τε)

{p( f ,z,τε|g,α0,β0,αε0,βε0)} (23)

The alternate optimization is an iterative optimization, respectively with respect to
f , z andτ:





f̂ = argminf

{
τ̂ε‖g−H f‖2+∑ j ẑj f 2

j

}

ẑ= argminz
{

N+2α0−2
2 lnzj +∑ j zj

(
1
2 f̂ j

2
+β0

)}

τ̂ε = argminτε

{
(M

2 +αε0−1) lnτε +
(

1
2‖g−H f̂‖2+βε0

)} (24)

The first optimization can be done either analytically or using any gradient based
algorithm. The second and the third optimizations have analytical expressions:





f̂ = τ̂ε Σ̂H ′g with Σ̂ =
(

τ̂ε H ′H + Ẑ
)−1

whereẐ = diag
[
ẑ−1

]

ẑj =
(

1
2 f̂ j

2
+β0

)
/(M

2 +αε0−1)

τ̂ε =
(

1
2‖g−H f̂‖2+βε0

)
/(M

2 +αε0−1)

(25)

One iteration of this algorithm is shown in the following scheme:

ẑ
−→
τ̂ε
−→

f̂ = τ̂ε

(
τ̂ε H′H + Ẑ

)−1
H ′g

f̂
−→

ẑj =
(

1
2 f̂ j

2
+β0

)
/(M

2 +αε0−1)

τ̂ε =
(

1
2‖g−H f̂‖2+βε0

)
/(M

2 +αε0−1)

ẑ
−→
τ̂ε
−→

The main drawback of this method is that the uncertainties ofthe solution at each
step is not accounted for for the next step.

• VBA posterior laws:





q1( f |µ̃, Σ̃) =N ( f |µ̃, Σ̃), µ̃= τ̃ Σ̃H ′g, Σ̃ =
(

τ̃H ′H + Z̃
)−1

with Z̃ = diag
[
z̃−1

]

q2 j(zj) = G(zj |α̃ j , β̃ j); α̃ j = α0+
1
2, β̃ j = β0+< f 2

j > /2

q3(τε) = G(τε|α̃ε, β̃ε)

α̃ε = αε0+(n+1)/2, β̃ε = βε0+
1
2[‖g‖2−2〈f〉′H ′g+H ′ 〈f f ′〉H]

(26)
with

< f >= µ̃, < f f ′ >= Σ̃+ µ̃̃µ′, < f 2
j >= [Σ̃] j j + µ̃2

j , τ̃ =
α̃τε

β̃τε

, z̃j =
α̃ j

β̃ j

(27)



The expression of the free energie can be obtained as follows:

F (q) =
〈

ln p( f ,z,τ,g|M )

q( f ,z,τ)

〉
=

〈ln p(g| f ,z,τ)〉+ 〈ln p( f |z,τ)〉+ 〈ln p(z|τ)〉+ 〈− lnq( f )〉+ 〈− lnq(z)〉+ 〈− lnq(τ)〉
(28)

where

〈ln p(g| f ,τε)〉= n
2(< lnτε >− ln(2π))− 1

2 {〈λ〉g′g−2< f >′ H ′g+H ′ < f f ′ > H}

〈− ln p( f |z)〉 =−n+1
2 ln(2π)− 1

2

{
∑ j < lnα j >< α j >< f 2

j >
}

〈− ln p(z)〉 =−(n+1)αε0 lnβε0 +(αε0 −1)∑ j < lnα j >−β < α j >−(n+1) lnΓ(α)

〈p(τε))〉 = clnd+(c−1)< lnτε)>−d〈λ〉− lnΓ(c)
〈− lnq( f )〉 =−n+1

2 (1+ ln(2π))− 1
2 ln |Σ f |

〈− lnq(z)〉 =−∑ j
[
α̃ j ln(β̃ j)+(α̃ j −1)< ln α̃ j >−β̃ j < α j >− lnΓ(α̃ j)

]

〈q(τε)〉 = c̃ln d̃+(c̃−1)< lnτ)>−d̃〈λ〉− lnΓ(c̃)

In these equations, 



< lna j >= ψ(ã j)− ln b̃ j

< lnτ >= ψ(c̃)− ln d̃

ψ(a) = ∂ lnΓ(a)
∂a

(29)

The three steps of this algorithm is shown in the folowing scheme:

τ̃−→

z̃−→

q1( f |̃z, τ̃) =N ( f̃ , Σ̃)

f̃ = τ̃Σ̃H ′g
Σ̃ = (τ̃H ′H + Z̃−1)−1

f̃−→

Σ̃−→

q2 j(zj | f̃ ) = G(zj|α̃ j , β̃ j)

α̃ j = α0+
n+1

2

β̃ j = β0+
1
2

〈
f 2

j

〉

z̃j = α̃ j/β̃ j

f̃−→
Σ̃−→
z̃j−→

q3(τ| f̃ ) = G(τ|α̃τ, β̃τ)
α̃ε = αε0+

n+1
2

β̃ε = βε0+H ′ < f f ′ > H]
+1

2[‖g‖2−2< f >′ H ′g

τ̃ = α̃τε/β̃τε

τ̃−→

z̃−→
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BAYESIAN VARIATIONAL APPROXIMATION WITH MIXTURE
OF GAUSSIANS PRIORS

The mixture models are also very commonly used as prior models. In particular the
Mixture of two Gaussians (MoG2) model:

p( f |λ,v1,v0) = ∏
j

(
λN ( f j |0,v1)+(1−λ)N ( f j |0,v0)

)
(30)



which can also be expressed through the binary valued hiddenvariableszj ∈ {0,1}




p( f |z) = ∏ j p( f j |zj) = ∏ j N
(

f j |0,vzj

)
∝ exp

{
−1

2 ∑ j
f 2

j
vzj

}

P(zj = 1) = λ, P(zj = 0) = 1−λ
(31)

In generalv1 >> v0 andλ measures the sparsity (0< λ << 1) [6]. In this case also all
the equations are very similarly can be obtained. Here, we donot have enough place to
write them.

CONCLUSIONS

In this paper, a VBA method is proposed for doing Bayesian computations for inverse
problems where a hierarchical prior is used. In particular,two prior models are consid-
ered: the Student-t and the mixture of Gaussian models. In both cases, these priors can
be written via hidden variables which gives the model a hierarchical structure which is
used to do the factorization. For some applications see for example [12, 4] and two other
related papers in this volume.
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