Bayesian I nference Tools for I nverse Problems

Ali Mohammad-Djafari

Laboratoire des Signaux et Systemes,
UMR 8506 CNRS-SUPELEC-UNIV PARIS SUD
SUPELEC, Plateau de Moulon, 3 rue Juliot-Curie, 91192 Gif-gvette, France

Abstract. In this paper, first the basics of Bayesian inference with @mpatric model of the
data is presented. Then, the needed extensions are givam ddading with inverse problems
and in particular the linear models such as Deconvolutioimage reconstruction in Computed
Tomography (CT). The main point to discuss then is the priodeting of signals and images.
A classification of these priors is presented, firse@parableand Markovienmodels and then in
simpleor hierarchical with hidden variableg-or practical applications, we need also to consider
the estimation of the hyper parameters. Finally, we seewhdtave to infer simultaneously on the
unknowns, the hidden variables and the hyper parameters.

Very often, the expression of this joint posterior law is t@mnplex to be handled directly. Indeed,
rarely we can obtain analytical solutions to any point eators such the Maximum A posteriori
(MAP) or Posterior Mean (PM). Three main tools are then camdes: Laplace approximation
(LAP), Markov Chain Monte Carlo (MCMC) and Bayesian Varaatal Approximations (BVA).

To illustrate all these aspects, we will consider a decartiah problem where we know that the
input signal issparseand propose to use a Student-t prior for that. Then, to hahél®ayesian
computations with this model, we use the property of Studemhich is modelling it via an
infinite mixture of Gaussians, introducing thus hidden aflés which are the variances. Then, the
expression of the joint posterior of the input signal sarsplee hidden variables (which are here
the inverse variances of those samples) and the hyper-pteesof the problem (for example the
variance of the noise) is given. From this point, we will gnesthe joint maximization by alternate
optimization and the three possible approximation methbufally, the proposed methodology is
applied in different applications such as mass spectrgfmgiectrum estimation of quasi periodic
biological signals and X ray computed tomography.

INTRODUCTION

In many generic inverse problems in signal and image prougsthe problem is to
infer on an unknown signaf (t) or an unknown imagé (r) with r = (x,y) through
an observed signa(t’) or an observed imagg(r’) related between them through an
operator/{ such as convolutiog = hx f or any other linear or non linear transformation
g = H f. When this relation is linear and we have discretized thdlpra, we arrive
to the relation:g = Hf +¢, where f = [f1,---, fn]’ represents the unknowng,=
[01, - ,0m]’ the observed data= [€1,- - - ,€m)’ the errors of modelling and measurement
andH the matrix of the system response.

The Bayesian inference approach is based on the postesior la

p(g|f,81) p(f]62)
f|g,01,0;) =

O p(g|f,01) p(f]62) (1)



where the sigri] stands for "proportional to'p(g|f, 1) is the likelihood,p(f|62) the
prior model,0 = (61,0;) are their corresponding parameters (often called the hyper
parameters of the problem) amdg|61,6-) is called the evidence of the model. When
the parameter have to be estimated too, a prip(6|6p) with fixed values forfg is
assigned to them and the expression of the joint posterior

_ p(glf,01) p(f]62) p(6|6o)
p(f,6[g,60) = o(q/80) (2)

is used to infer them jointly. This approach is showed in tiWing schemes:
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Variational Bayesian Approximation (BVA) methods try topapximatep( f,08|g) by

a separable ong(f,8|g) = q1(f|6,9) g2(6|f,g) and then using them for estimation
[3,1,8,11, 2,9, 10, 7, 5]. This approach is showed in th@¥ailhg scheme:

Variational | —s qu(f) — f
p(f,6|g) | — Bayesian
Approximation | — q,(8) — 6

For hierarchical prior models with hidden variableshe problem becomes more
complex, because we have to give the expression of the jostepor law

p(f,z6]g) O p(g|f,61) p(f|z 62) p(z83) p(6]60) 3)
and then approximate it by a separable one
a(f,z6|g) = ai(f2.8,9) a2(2,6,9) a(6Z f.g) (4)

and then using them for estimation.
In this paper, first the general VBA method is detailed for itiference on inverse
problems with hierarchical prior models. Then, two pataciclasses of prior models

(Student-t and mixture of Gaussians) are considered andetiads of BVA algorithms
for them are given.



BAYESIAN VARIATIONAL APPROXIMATION WITH
HIERARCHICAL PRIOR MODELS

When a hierarchical prior model f |z 6) is used and when the estimation of the hyper-
parameter® has to be considered, the joint posterior law of all the umkmobecomes:

P(f,z8lg) U p(glf,81) p(f[z,82) p(283) p(6) (5)
which can also be written g¥f,z 0|g) = p(f|z 6;9) p(z/6;g) p(6|g) where
P(f]z,6;9) = p(glf,8) p(f|z 6)/p(glz 6) with p(g|z,6) z/p<g\f,9) p(f(z6) df

(6)
andp(28;9) = p(9lz 6) p(z]8)/p(g|B) with p(g|8) = J p(g|z B) p(z|6) dzand finally

P(6lg) = p(9|6) p(6)/p(g) with p(g) = / P(9(®) p(6) d& (7)
We see that the first term

p(f|z6,9) O p(g|f,B)p(f|z0) (8)

will be easy to handle because it is the product of two ganssiad so it is a multivariate
Gaussian. But the two others are not.

The main idea behind the VBA is to approximate the joint pastep( f,z 06|g) by a
separable one, for example

q(f,z8l|g) = ai(f|g) a2(z|g) as(8lg) (9)
and where the expressionsgiff, z, 6|g) is obtained by minimizing the Kullback-Leibler
divergence

q q
KL(q: :/ In—:<ln—> 10
(@:p)= /4 0 o/, (10)

It is then easy to show that Koy : p) = Inp(g|M) — F(q) where p(g|M) is the
likelihood of the model

p(g|M):///p(f,z,e,g|5M)dfdzde (11)

with p(f,z0,9/M) = p(g|f,0) p(f|z6) p(z0) p(6) and F(q) is the free energy asso-

ciated toq defined as
p<f,z,9,g\M)>
q

F(a) = <|n (12)

q(f,z0)

So, for a given model\/, minimizing KL(q: p) is equivalent to maximizingF (q) and
when optimized# (q*) gives a lower bound for Ip(g| ).



Without any other constraint than the normalizatiomodn alternate optimization of
F (q) with respect tay;, g2 andgs results in

qu(f) Dexp{—(INp(1,2.6,9))4240) }
G2(2) O EXP{— (In p(f72797g)>q(f)q(9) (13)
q3(6) O exp{— (Inp(f.26,9)qfq2

Note that these relations represent an implicit solutiomgféf ), g2(z) andgz(6) which
need, at each iteration, the expression of the expectatahg right hand of exponen-
tials. If p(g| f,z 61) is a member of an exponential family and if all the prip(s |z 6,),
p(z63), p(61), p(B2), and p(B3) are conjugate priors, then it is easy to see that these
expressions leads to standard distributions for whichehjaired expectations are easily
evaluated. In that case, we may note

q(f,z0|g) = qu(f[26;9) (2 T,8;9) g3(8|f,Z 9) (14)

where the tilded quantiti&s f and® are, respectively functions ¢f .8), (z6) and(f,2)
and where the alternate optimization results to alternadiating of the paramete(z, 0)

for qp, the parametersT,@) of g2 and the paramete(g,“z) of gs.
Finally, we may note that, to monitor the convergence of tlgorghm, we may
evaluate the free energy

=(In p(f,z,e,g|M)>q+ (—Inq(f,z6)),
= (Inp(g[f.z8))q+ (Inp(f|z6))q+ (INp(2]0)), (15)
+{=Inq(f))q+(=INa(z))q+ (—Inq(®)),

where all the expectations are with respeaf.to
Other decompositions are also possible:

q(f,z6|g) = |_|q1J J|f zeg |_|q2J zJ\fz( Gg |_|q3| 9|\fze g)

(16)
or

a(f,z6l9) = ar(f26;0) [ izl f.Z-5). 609 [Taa @ F. 20 19)  (17)
j [

This approach is showed in the following scheme:
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In the following section, we consider this case and give samee details with the
Hierarchical model of Infinite Mixture model of Student-t.

JMAP AND BAYESIAN VARIATIONAL APPROXIMATION WITH
STUDENT-T PRIORS

The Student-t model is:
1 I((v+1)/2)

—(v+1)/2
v T2 (1+%)v) (18)

p(flv) =[] St(fjlv) with St(fjlv) =
j

Knowing that .
SUTV) = [ AU(T110.1/2) Gz v/2.9/2) dz (19)

we can write this model via the positive hidden varialdes

{p(f|2> =I'Ij|0(fj|Zj)=I'Ij9\£(fj|0,1/2j)Dexp{—%Zijf,Z} (20)
P(zjla,B) = G(za,B) Oz Vexp{-Bz} witha =p=v/2

Cauchy model is obtained when= 1:
In this case, let consider the forward modek H f + € and assign a Gaussian law
to the noise which which results tg(g|f,ve) = A (g|H f, Vel ). We also assign a prior

P(Te|0o,Bo) = G(Te|00,Bo) tOTe = 1/Ve.

Let also noteZ = diag[7, and notep(f|z) = ;p(filz) = M; N (j0,z) =
A (f]0,2) and finally, assigm(z|ag, o) = M; G(zj]00,Bo).

The following scheme shows the graphical representatighi®imodel.

(a0, B2 (D)
)

g, B0~ e )—(9)

In the following, we summarize all the equations relatechie tnodeling and infer-
ence scheme.

+ Forward probability laws:

{ P(glf,Te) = AU(GIH T, (1/Te)l), P(Te|Aeo0, Beo) = G(Te|Ae0, Beo) 21)

p(fl2) =M AC(F0.1/2),  p(Zao,Bo) = G (a0, Bo)
« Joint posterior laws:

p(f,2,Te|g, do, Bo, 0o, Beo) U (9| f,Te) P([2) p(Z] 0o, Bo) P(Te|ate0, Beo)
Ot M 2exp{—ite[lg—Hf|2} ;772 exp{—%zj flz} (22)
Mizi %t exp{—Bozj} T %0 exp{—Peote}



« Joint MAP alternate maximization algorithm: The objectf¢he IMAP optimiza-
tion is:
(f ) - arg( rnZaX) {p( f Z T€|97 GOa BO: aSOa BSO)} (23)
Te

The alternate optimization is an iterative optimizatia@spectively with respect to
f, zandrt:

T=argming {Tlg—Hf|2+3;7 2

7=a rgmlm{wlnzj—i—zjzj( , +Bo>} (24)

T = argmin, {(7 +0g0—1)InTe + (z”g— H fH2+[380> }

The first optimization can be done either analytically ongsany gradient based
algorithm. The second and the third optimizations haveydical expressions:

SN -1 -

f =T SH/gwith = = (ﬂ; H'H +Z> whereZ = diag[z ]

7 = %ﬂ+ﬁo Y +ap—1) (25)
T = (3ll9- HHF+&QN%+aw—D

One iteration of this algorithm is shown in the following sohe:

z 7
— PR N\ —1
Zf=% (TSH’H +z) H'gl—

Z
7E%j+B@mM+awm —
Te =

€
3llg HfH2+Bso)/(%+a€o—1) o

—

The main drawback of this method is that the uncertaintige®folution at each
step is not accounted for for the next step.

+ VBA posterior laws:

qu(flns) = A(fIRs), p=tsHg == (?H'H +Z)1with Z = diag[z ]
qz;’(Zj):Q(Zjlaja;Bj)i Gj=00+3, Bj=PBot<f?>/2

03(Te) = G(Te|Oe, Be) _

e = Oeo+ (N+1)/2, Be=Beo+ 3ll0l> —2(f)' H'g+H’ (f /) H]

(26)
with

<f>=Q <P >=Z4+M, < ff>=[3j+18, T===,7 == (27)



The expression of the free energie can be obtained as follows

F(q)={In p(f&ZTé.?l)M)> _
q(f.zt
(Inp(g|f,z1)) +(Inp(f|z1)) + {Inp(z]1)) + (= Inq(f)) + (=Inq(2)) + (—Inq(T))

(28)
where

(Inp(g|f,1e))=5(<InTe > —In(2m) — {MN) gdg—2< f > H'g+H' < ff' > H}

—
—

N

~
I

Y —ﬁzlln(zm—%{zjdnuj ><0j>< f]2>}
p(2)) =—(N+1)agNBey+ (A, —1) 3 <Inoj > —B<aj>—(n+1)Inl(a)
)

(

(

(p(te))) =clnd+(c—1) <Intg) > —-d ) —Inl(c)

(~Inq(f)) =-"F(1+In(2m) - 3In|Z¢|

(~Ina(2)) = -3, [6In(B;)+(@;—1) <InGj > —Bj <) >—InT(G;)]
(q(Te)) =¢Ind+(E—1) <InT) > —d (\) —InT (€)

In these equations,

<Int>=yY(€)—Ind (29)
__0Inl(a)

V(@) = 5

The three steps of this algorithm is shown in the folowingesoh:

{ <lInaj >= l]J(éij)—mE)j

- o |@lh) =668 | T el =GanB) | -

i}ql(f‘LT)—N(f’Z) f B — §82G80+%1 T

Z0s sy 4 5-1y-1] 2 Bi:|30+%<f12> 7 [+3llgl?—2<f>'Hg | 2
S=(tH'H+Z ) SR Bl N O
zj=0a;j/B T=0q/Br,

BAYESIAN VARIATIONAL APPROXIMATION WITH MIXTURE
OF GAUSSIANS PRIORS

The mixture models are also very commonly used as prior nsodielparticular the
Mixture of two Gaussians (MoG2) model:

p(f|A,v1, Vo) = |_| (ANC(fj]0,v1) + (1= N)A(f]0,v0)) (30)
j



which can also be expressed through the binary valued hidalérblesz; € {0,1}

P9 =Myp(tilz) =mac(riow) Do 35,5t g
P(zj=1)=A, P(zj=0)=1-A

In generalv; >> vg and\ measures the sparsity €OA << 1) [6]. In this case also all
the equations are very similarly can be obtained. Here, weodltnave enough place to
write them.

CONCLUSIONS

In this paper, a VBA method is proposed for doing Bayesianmaations for inverse
problems where a hierarchical prior is used. In particiao, prior models are consid-
ered: the Student-t and the mixture of Gaussian models.timdases, these priors can
be written via hidden variables which gives the model a nadniaal structure which is
used to do the factorization. For some applications seexeomele [12, 4] and two other
related papers in this volume.
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