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In this paper we propose an alternative tool to marginal likelihood for pa-
rameter estimation when we want to account for some prior information on a
nuisance parameter. This new criterion is obtained using the median in place
of the mean when using a prior distribution on the nuisance parameter. We
first give the precise definition of this new criterion and its properties and
then present a few examples to show their differences.

1 Introduction

Assume that we are given an observation x with cumulative distribution func-
tion (cdf) FX|V,θ(x|ν, θ) (or probability density function (pdf) fX|V,θ(x|ν, θ))
with two unknown parameters ν and θ. We assume that ν is a nuisance pa-
rameter on which we have an a priori information translated by a prior dis-
tribution FV(ν) (or a pdf fV(ν)) and we want to infer on θ.

If ν was given, i.e. ν = ν0, then the classical Maximum Likelihood (ML)
estimate of θ is defined as the optimizer of the likelihood function

l(θ) = fX|ν,θ(x|ν0, θ).

The question is now how to account for the prior FV(ν). Again the classical
solution is to integrate out ν to obtain the marginal pdf

fX|θ(x|θ) =

∫
fX|V,θ(x|ν, θ)fV (ν) dν

and then estimate θ by optimizing the likelihood function
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l(θ) = fX|θ(x|θ).

In this work, we propose a new inference tool F̃X|θ(x|θ) which can be used
to do the same inference on θ. This new inference tool is deduced from the
interpretation of FX|θ(x|θ) as the mean value FX|V,θ(x|ν, θ) using the pdf of
fV(ν). Now, if in place of the mean value we take the median we obtain this

new inference tool F̃X|θ(x|θ) which is defined as

F̃X|θ(x|θ) : P
(
FX|V,θ(x|V , θ) ≤ F̃X|θ(x|θ)

)
= 1/2

and can be used in the same way to estimate θ by optimizing

l̃(θ) = f̃X|θ(x|θ),

where f̃X|θ(x|θ) is the pdf corresponding to the cdf F̃X|θ(x|θ).
As far as the authors know, this alternative tool is newly presented [1,

2] and applied for hypothesis testing. In this paper we consider its use for
parameter estimation.

In the following, first we give more precise definition of F̃X|θ(x|θ). Then
we present some of its properties, for example, we show that under some
conditions F̃X|θ(x|θ) has all the properties of a cdf, its calculation is very
simple and is robust relative to the prior distribution. Then, we give a few
examples and finally, we compare the relative performances of these two tools
for estimating of θ.

2 A New Inference Tool

Hereafter in this section to simplify the notations we omit the parameter θ.

Definition 1. Let X have a cdf depending on random parameter V with pdf
fV(ν). The marginal cdf of X based on median, F̃X (x), is defined as the me-
dian of FX|V(x|ν) over fV(ν).

To simplify calculations of F̃X (x), we use definition of median in statistics.

That is we calculate F̃X (x) by solving the following equation

FFX|V (x|V)(F̃X (x)) =
1

2
, or equivalently P (FX|V(x|V) ≤ F̃X(x)) =

1

2
. (1)

Theorem 1. Let F̃X(x) be the function defined in (1).

1. F̃X (x) is a non-decreasing function.
2. If FX|V(x|ν) and FV(ν) are continuous cdfs and the random variable

T = FX|V(x|V) has an increasing cdf (for all fixed x) then F̃X (x) is a
continuous function.
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3. 0 ≤ F̃X (x) ≤ 1.

Proof: 1. Let x1 < x2. For i = 1, 2, take

ki = F̃Xi
(xi) and Yi = FXi|V(xi|ν).

Then using 1 we have

P (Y1 ≤ k1) = P (Y2 ≤ k2) =
1

2
.

We also have
Y1 ≤ Y2.

Therefore,
P (Y1 ≤ k1) = P (Y2 ≤ k2) ≤ P (Y1 ≤ k2),

i.e. k1 ≤ k2 or equivalently F̃X (x) is non-decreasing.

2. If F̃X(x) is a non-decreasing function, then

F̃X(x−) = lim
t↑x

F̃X (t) and F̃X (x+) = lim
t↓x

F̃X(t)

exist and are finite (e.g. [3]).

Further, FX|V(x|ν) is continuous with respect to x, and so

P (FX|ν(x−|ν) ≤ F̃X (x−)) = P (FX|V(x|ν) ≤ F̃X(x−)),

P (FX|ν(x+|ν) ≤ F̃X(x+)) = P (FX|V(x|ν) ≤ F̃X(x+)).

And by (1) we have

P (FX|V(x|ν) ≤ F̃X(x−)) = P (FX|V(x|ν) ≤ F̃X (x))

= P (FX|V(x|ν) ≤ F̃X (x+)). (2)

If Y = FX|V(x|ν) has an increasing distribution function, then

F̃X(x−) = F̃X (x) = F̃X (x+)

and by (2) F̃X(x) is continuous.

3. On the other hand F̃X(x) is the median of Y , 0 ≤ Y ≤ 1, and so

0 ≤ F̃X (x) ≤ 1.

Remark 1 By part 1 of Theorem 1, limx↑+∞ F̃X (x) and limx↓−∞ F̃X(x) ex-

ist. Therefore F̃X(x) is a continuous cdf if conditions of Theorem 1 hold and

limx↓−∞ F̃X (x) = 0, limx↑∞ F̃X (x) = 1.
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Theorem 2. Let FX|V(x|ν) and FV(ν) be continuous cdfs. If L(ν) = FX|V(x|ν)

is a monotone function with respect to ν, then F̃X(x) = L(F−1
V ( 1

2 )).

Proof By (1) we have,

P (L(V) ≤ F̃X (x)) =
1

2

⇔
{

P (V ≤ L−1(F̃X (x))) = 1
2 if L is an increasing function

P (V ≥ L−1(F̃X (x))) = 1
2 if L is a decreasing function

⇔
{

FV (L−1(F̃X (x))) = 1
2 if L is an increasing function

1 − FV(L−1(F̃X (x))) = 1
2 if L is a decreasing function

⇔ FV(L−1(F̃X(x))) =
1

2

⇔ F̃X(x) = L(F−1
V (

1

2
)),

where the last inequality follows from non-decreasing property of the cdf of
V .

Remark 2 Let conditions of Theorem 2 be hold. If F̃X (x) is a cdf then

F̃X (x) belong to the family of distribution FX|V(x|ν), because F̃X (x) =

FX|V(x|F−1
V ( 1

2 )).

Remark 3 F̃X (x) is depend on the median of prior distribution, F−1
V ( 1

2 ), (but
for calculating the marginal distribution of X we need the prior). Therefore

F̃X (x) is robust relative to prior distributions with the same medians.

In the following two theorems we show that some important families of cdfs
have a monotone distribution function with respect to their parameters and
so, calculating of F̃X (x) is very easy by using Theorem 2.

Theorem 3. Let L(ν) = FX|V(x|ν) and FX|V(x|ν) be an increasing function
with respect to x. If ν is a location (scale) parameter then L(ν) is decreasing
(monotone) with respect to ν.

Theorem 4. Let X |ν be distributed according to an exponential family with
pdf

fX|V(x|ν) = h(x) exp (νT (x) − A(ν)) ,

where T and A are real functions. Then L(ν) = FX|V(x|ν) is a monotone
function with respect ν.

3 Examples

In this section we give a few simple examples to illustrate properties of the
new inference tool. First we consider the exponential distribution with the
following distribution function
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FX|V,θ(x|ν, θ) = 1− exp (−ν(x − θ)), x > θ, θ > 0, fV(ν) = exp (−ν), ν > 0,

where 1/ν is the scale parameter. We can use Theorem 3 for calculating

F̃X|θ(x|θ). By noting that, the median of V is ln 2, we have

F̃X|θ(x|θ) = 1 − exp (− ln 2(x − θ)), x > θ, θ > 0.

On the other hand we can calculate FX|θ(x|θ) by integrating over fV(ν) i.e.

FX|θ(x|θ) = 1 − 1

(x − θ) + 1
, x > θ, θ > 0.

Note that in this problem MLE based on l̃(θ) = f̃X|θ(x|θ) and l(θ) = fX|θ(x|θ)
are the same.

The second example is the normal distribution with pdf

fX|V,θ(x|ν, θ) =
1√
2πθ

exp
(
−1

2
(
x − ν√

θ
)2

)
, θ > 0,

where V has a standard normal distribution. In this case the median of V is
zero and so (by using Theorem 3 or 4),

f̃X|θ(x|θ) =
1√
2πθ

exp
(−x2

2θ

)
, θ > 0,

and also we can calculate

fX|θ(x|θ) =
1√

2π(θ + 1)
exp

( −x2

2(θ + 1)

)
, θ > 0.

The MLE based on l̃(θ) is X2 and base on l(θ) is max(X2 − 1, 0).
Figure 1 shows the estimated mean absolute error, EX|θ(| MLE − θ |), of

these estimators, computed using 200000 samples generated from X | V , θ ∼
N(V , θ) and V ∼ N(0, 1) for θ = [0.01 : 0.1 : 10].

4 Conclusion

We introduced an alternative inference tool l̃(θ) to the marginal likelihood

l(θ) for using prior information by defining a marginal function F̃X|θ(x|θ)
which is based on median in place of FX|θ(x|θ) which is the expected value of

F̃X|θ(x|θ) with respect to fV(ν). We proved that, based on a few conditions,

F̃X|θ(x|θ) is a cdf. Indeed, the computation of l̃(θ) is easier than l(θ) for two
important classes of distributions which are exponential and location-scale
family of distributions. l̃(θ) depends only on the median of fV(ν) and thus, it
is robust with respect to prior distributions with the same median.
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Fig. 1. Mean absolute errors for MLE based on l̃(θ) and l(θ) i.e. X2 and max(X2 −
1, 0), respectively.
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