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ABSTRACT

Bayesian approach is nowadays commonly used for in-
verse problems. Simple prior laws (Gaussian, General-
ized Gaussian, Gauss-Markov and more general Marko-
vian priors) are common in modeling and in their use in
Bayesian inference methods. But, we need still more ap-
propriate prior models which can account for non station-
narities in signals and for the presence of the contours and
homogeneous regions in images. Recently, we proposed a
family of hierarchical prior models, called Gauss-Markov-
Potts, which seems to be more appropriate for many ap-
plications in Imaging systems such as X ray Computed
Tomography (CT) or Microwave imaging in Non Destruc-
tive Testing (NDT). In this tutorial paper, first some bac-
grounds on the Bayesian inference and the tools for as-
signment of priors and doing efficiently the Bayesian com-
putation is presented. Then, more specifically hiearachical
models and particularly the Gauss-Markov-Potts family of
prior models are presented. Finally, their real applications
in image restoration, in different practical Computed To-
mography (CT) or other imaging systems are presented.

1. INTRODUCTION

Bayesian inference and estimation has nowadays become
a common tool in many data, signal and image process-
ing. Even if, the basics of this approach is now well un-
derstood, in practice, there exists three main difficulties
for its application. The first is assigning priors, the second
is summarizing the posterior and finaly, the third is doing
the final computations. In this tutorial, first some basic
backgrounds are presented, then, the inverse problems ap-
proach to data, signal and image processing is presented.
To illustrate in detail the three aforementioned steps, the
linear inverse problems are considered.

As this paper is a tutorial one and it should be used
as a support for the tutorial, it should be self-contained.
Thus, first some background materials and tools are pre-
sented briefly and progressively, some new or at least state
of the art materials follows:

- In section 2 the methods for assigning a probability law
on a quantity which can be observed directly and esti-
mation of its associated parameters are presented. Here,
we considered the Maximum Entropy (ME) method, the
Maximum Likelihood (ML) method and the Parametric

and Non Parametric Bayesian methods.

- In section 3, first a very brief presentation of the invese
problems focusing on the linear models for signal and im-
age processing is given. Then, the different steps of the
Bayesian approach for them, i.e., assigning the likelihood
term, assigning the priors and finding the expression of
the posterior law and, finally, doing the computations are
presented.

- In section 4 the family of Gauss-Markov-Potts priors is
presented.

- In section 5 the problem of hyper parameters estimation
is considered and the different classical methods such as
Joint MAP, MCMC and Marginalization and Expectation-
Maximization (EM) methods are presented.

In section 6 the Bayesian Variational Approximation (BVA)
method is presented. Then, focusing on the estimation of
the hyperparameters, it is shown that this approach has
also JMAP, and EM as particular cases. A comparison
of these three methods with their relative advantages and
drawbacks are presented.

- Section 7 is focussed on the Mixture of Gaussians priors.

- Section 8 is focussed on the Gauss-Markov-Potts model
and the associated Bayesian computational tools such as
MCMC and BVA. Then, references on the applications of
this class of priors are given in different applications.

- Section 9 summarizes the main conclusions and
- In section 10 references, deliberately limited to the co-
authors (past and present PhD students) and collaborators,
are presented. The readers can refer to the references of
these papers for more references.

2. ASSIGNING A PROBABILITY LAW TO A
QUANTITY WHEN OBSERVED DIRECTLY

First consider, the direct observation of a quantity (vari-
ablef ). Assume that we observedf = {f1, · · · , fN} and
we want to assign it a probability law. Here, we may men-
tion four main approaches:
- Maximum Entropy approach,
- Maximum Likelihood approach,
- Parametric Bayesian approach, and
- Non Parametric Bayesian approach.



2.1. Maximum Entropy approach

The main idea in this approach is to extract (to compute)
from the data a few moments

E{φk(f)} =
1

N

N∑

j=1

φk(fj) = dk, k = 1, · · · ,K (1)

The selection ofφk(.) and their numberK are arbitray
(prior knowledge), for example, the arithmetic moments
whereφk(x) = xk, harmonic meansφk(x) = ejωkx or
any other polynomial or geometrical functions. The next
step is to selectp(f) which has its entropy

H = −

∫
p(f) ln p(f) df (2)

maximum subject to the constraints

E{φk(f)} =

∫
φk(f) p(f) df = dk, k = 1, · · · ,K.

(3)
The solution to this linearly constrained optimization is
easily obtained using the Lagrangian technics. It is given
by:

p(f) =
1

Z
exp

[
K∑

k=1

λkφk(f)

]
= exp

[
K∑

k=0

λkφk(f)

]

(4)
which can also be written as

p(f) = exp

[
K∑

k=0

λkφk(f)

]
with φ0 = 1 andλ0 = − lnZ

(5)
where

Z = exp [−λ0] =

∫∫
exp

[
K∑

k=1

λkφk(f)

]
df (6)

and whereλk, k = 1, · · · ,K are obtained from theK
constraints andZ from the normailty

∫
p(f) df = 1.

Now, assuming that the data are observed indepen-
dently from each other, we have

p(f) =

N∏

j=1

p(fj) =
1

ZN
exp




N∑

j=1

K∑

k=1

λkφk(fj)


 . (7)

For more details on Maximum Entropy based methods re-
fer to [1, 2, 3, 4] and their cited references.

2.2. Maximum Likelihood approach

In this approach, first a parametric familyp(fj|θ) is cho-
son (Prior knowledge). Then, assuming that the data are
observed independently from each other, the likelihood is
defined

p(f |θ) =
N∏

j=1

p(fj|θ) (8)

and the Maximum Likelihood estimte is defined as to be

θ̂ = argmax
θ
{p(f |θ)} = argmin

θ



−

N∑

j=1

ln p(fj|θ)




(9)

It is shown that, for generalized exponential families, there
is a direct link between ME and ML methods [5].

2.3. Parametric Bayesian approach

In this approach too, first a parametric familyp(fj|θ) is
chosen (Prior knowledge). Then the likelihood is defined
as in the previous case. The main difference is that, here
a prior lawp(θ|φ0) is also assigned to the parameters and
then, using the Bayes rule:

p(θ|f ,φ0) =
p(f |θ) p(θ|φ0)

p(f |φ0)
(10)

the expression of the posterior law is obtained, from which,
we can infer onθ, using for example the Maximum A pos-
teriori (MAP) estimate

θ̂ = argmax
θ
{p(θ|f ,φ0)} (11)

or the Posterior Mean (PM)

θ̂ =

∫∫
θ p(θ|f ,φ0) dθ. (12)

When a value forθ is found, the probability lawp(f |θ)
is determined. A main question here is how to assign
the priorp(θ|φ0)? There are a few different approaches:
Conjugate priors, Reference priors, Jeffreys prior, ... For
some discussion, see [6, 1, 7, 8, 3, 9].

2.4. Non Parametric Bayesian approach

In the classical parametric Bayesian approach, first a para-
metric familyp(fj |θ), for example a finite mixture of Gaus-
sians

p(fj |θ) =
K∑

k=1

αkN (fj |µk, vk) with
K∑

k=1

αk = 1 (13)

and then the parametersθ = {αk, µk, vk} = (α,µ,v)
are estimated. Here, the number of components of the
mixture is fixed in advance. One simple way to present
the Non Parametric modeling is to consider the same mix-
ture model, but leaving the number of components to be
estimated from the data. Another way, more mathemati-
cally presented is to consider the desired probability law
as a function on wich we want to assign a probability
law. Here, Dirichlet process which is a Discrete process
accompanied with a continuous function (often Gaussian
shape) can be used [10, 11, 12, 13]

3. BAYESIAN APPROACH FOR INVERSE
PROBLEMS

3.1. Inverse problems

In many generic inverse problems in signal and image pro-
cessing, the problem can be described as follows: Infer on



an unknown signalf(t) from an observed signalg(t′) re-
lated between them through an operatorH : f(t) 7→ g(t).
When this operator is linear, we can write:

g(t′) =

∫
h(t, t′) f(t) dt (14)

A very specific example is the deconvolution problem where
h(t, t′) = h(t− t′):

g(t′) =

∫
h(t− t′) f(t) dt (15)

The same relations can be written in image processing, for
the general case

g(r′) =

∫∫
h(r, r′) f(r) dr (16)

wherer = (x, y) andr′ = (x′, y′) and the particular case
of the image restoration which is:

g(r′) =

∫∫
h(r − r′) f(r) dr. (17)

A third example is the Radon Transform

g(r, φ) =

∫∫
δ(r−x cosφ−y sinφ) f (x, y) dx dy (18)

which is used in Computed Tomography (CT). It is easy
to see that if we note byr′ = (r, φ) and byr = (x, y),
this relation is a particular case of (16).

When these relations are linear and we discretize them
(using any moment method), we arrive to the relation:

g = Hf + ǫ, (19)

wheref = [f1, · · · , fn]
′ represents the unknowns,g =

[g1, · · · , gm]′ the observed data,ǫ = [ǫ1, · · · , ǫm]′ the
errors of modelling and measurement andH the matrix
of the system response.

3.2. Basics of the Bayesian approach

From this point, the main objective is to infer onf given
the forward model (19), the datag and the matrixH . By
being Bayesian, we mean to use the Bayes rule:

p(f |g) =
p(g|f ) p(f)

p(g)
∝ p(g|f) p(f ) (20)

to obtain what is called the posterior lawp(f |g) from the
likelihood p(g|f ) and the priorp(f). This posterior law
combines the knowledge coming from the forward model
and data (likelihood) and the prior knowledge.

However, to be able to use the Bayesian approach, first
we need to assignp(g|f) andp(f). Then, we can obtain
the expression of the posterior law. Finally, we can infer
onf using this posterior law.

3.3. Assigning the likelihoodp(g|f)

This step uses the forward model:g = Hf + ǫ and some
prior knowledge about the error termǫ. In fact, if we
can assign a probability lawp(ǫ), then, we can deduce
the likelihood termp(g|f ).

To assignp(ǫ) the things are more usual. Very of-
ten, a Gaussian prior is assigned becauseǫ is assumed to
be centered, white and the only accessible and reasonable
engineering quantity that we may know on it is its energy
or power level: Signal to Noise Ratio (SNR). In terms
of probability law its variancevǫ. Then, either using the
Maximum Entropy Principle (MEP) or just the ”common
sens”, we assign a Gaussian law:

p(ǫ) = N (ǫ|0, vǫI) (21)

Now, using the Forward model (19) and this prior, we can
write the expression of the forward likelihood

p(g|f , vǫ) = N (g|Hf , vǫI) ∝ exp

[
−

1

2vǫ
‖g −Hf‖2

]

(22)
Many other modeling for the likelihood are possible.

3.4. Assigning the priorp(f)

The next important step is to assign a prior to the unknown
f . Here too, different approaches can be used. The ob-
jective is to assign a prior lawp(f |θ) in such a way to
translate our incomplete prior knowledge onf .

3.4.1. Simple separable priors

A few examples of the prior knowledge we may have are:

Ex01: The signal (samplesf ) we are looking for is the
variation of the temperature at a given position over
time t. It can go up or down around some nominal
valuef0. However, its variation can not be too far
from the nominal value. We may fixe a variancev0
to consider this point. The two valuesf0 andv0 are
given (we call them later the hyper parameters).

Ex02: The signal we are looking for is the distribution of
the conductivity in a material. It is a positive quan-
tity. We may also be able to fixe a meanf0 and a
variancev0.

Ex03: The signal we are looking for is the distribution of
the proportions of some material inside a body. Its
value is in the interval[0, 1].

Ex04: The signal we are looking for looks like the implu-
sions. The values can be positive or negative, very
often near to zero, but it can also take great values.

Let see what we can propose for these examples:
For Ex01, we can use a Gaussian prior law

p(fj) ∝ exp

[
−

1

2v0
|fj − f0|

2

]
(23)



Gaussian: p(fj) ∝ exp
[
−α|fj |2

]

Generalized Gaussian:p(fj) ∝ exp
[
−α|fj |β

]
, 1 ≤ β ≤ 2

Gamma:p(fj) ∝ fα
j exp [−βfj] ∝ exp [α ln fj − βfj ]

Beta:p(fj) ∝ fα
j (1 − fj)

β ∝ exp [α ln fj + β ln(1− fj)]

Fig. 1. Separable prior laws: Gaussian, Generalized Gaus-
sian, Gamma and Beta

For Ex02, we can use a Gamma prior law

p(fj) ∝ fα0

j exp [−β0fj ] ∝ exp [−α0 ln fj − β0fj]
(24)

whereα0 andβ0 can be obtained fromf0 andv0.
For Ex03, we can use a Beta prior law

p(fj) ∝ fα0

j (1−fj)
β0 ∝ exp [−α0 ln fj − β0 ln(1− fj)]

(25)
whereα0 andβ0 can be obtained fromf0 andv0.
For Ex04, we can use a Generalized Gaussian prior law

p(fj) ∝ exp
[
−α0|fj|

β0

]
(26)

whereα0 andβ0 can be obtained fromf0 andv0.
We will call these families of prior laws as simple sep-
arable prior laws because we assume that these expres-
sions are valid for allj and that we do not a priori know
about any interactions (dependencies) between them. So,
we have

p(f) =
∏

j

p(fj). (27)

Figure 1 shows typical examples of these signals.

3.4.2. Simple Markovian priors

Now, let consider other cases.

Ex05 The signal we are looking for is the same as in EX01,
but now, we have some extra information: The vari-
ation of the temperature can not be too fast. The
two successive samples value are not independent.

Ex06 The signal we are looking for is the same as in EX05,
but now, we have some extra information: In the
room, there is an inhomogenious material. In some
places the variation of temperature is fast, in some
others slower.

Gauss-Markov (GM):p(fj |fj−1) ∝ exp
[
−γ|fj − fj−1|2

]

Generalized GM:p(fj|fj−1) ∝ exp
[
−γ|fj − fj−1|β

]

Fig. 2. Gauss-Markov and Generalized Gauss-Markov
prior laws

For Ex05, we can use a Gauss-Markov prior law

p(f) ∝ exp


−γ

N∑

j=1

|fj − fj−1|
2


 (28)

whereγ0 fixes the rate of the dependencies.
For Ex06, we can use a Generalized Gauss-Markov prior
law

p(f) ∝ exp


−γ

N∑

j=1

|fj − fj−1|
β


 (29)

whereγ0 fixes the rate of the dependencies andβ0 can be
fixed from some knowledge about the distribution of the
isolation materials.
We call this family of priors Simple Markovian priors where
the general expression can be written as:

p(f) ∝ exp


−γ

N∑

j=1

φ(|fj − fj−1)


 (30)

with different expressions for the potential functionφ(.).

3.4.3. Simple Markovian priors for images

Now, let consider some cases with images.

Ex05b f represents the pixel values of an image:f =
{f(r), r = (x, y) ∈ R}, whereR represents the
surface of the image.f(r) represents for exam-
ple the temperature at the positionr = (x, y). We
know that the temperature at that position is not in-
dependent of the its neighbors positionsr′ ∈ N (r).

Ex06b This is the image version of Ex06.



For Ex05b, we can use a Gauss-Markov prior law

p(f) ∝ exp

[
−γ

∑

r∈R

|f(r)− f(r′)|2

]
(31)

whereγ0 fixes the rate of the dependencies.
For Ex06b, we can use a Generalized Gauss-Markov prior
law

p(f) ∝ exp


−γ

∑

r∈R

∑

r′∈N (r)

|f(r)− f(r′)|β


 (32)

3.4.4. Hierarchical priors with hidden variables

Let now consider other examples.

Ex07 The signal we are looking for represents the reflec-
tion coefficient (for example inside a well in geo-
physical applications). So, its values are very often
zero. When it is not zero, it can be positive or neg-
ative but not very far from zero.

Ex08 The signal we are looking for is a spectrum (the dis-
tribution of energies concentrated in some frequen-
cies). Its values are very often zero and when not
equal to zero, it is always positive.

For Ex07 we can use a Bernoulli-Gaussian model
{

p(fj|qj) ∝ exp
[
− 1

2v0
(1− qj)|fj |2

]

p(qj = 1) = α, p(qj = 0) = 1− α
(33)

which gives:
{

p(f |q) ∝ exp
[
− 1

2v0

∑N

j=1(1− qj)|fj |2
]

p(q) ∝ α
∑N

j=1
δ(qj)(1 − α)

∑N
j=1

δ(1−qj),
(34)

where
∑N

j=1 δ(qj) = n1 is the number of ones and
∑N

j=1 δ(1 − qj) = n0 = N − n1 is the number of zeros
in the Bernoulli sequenceq = [q1, · · · , qN ]′.
For Ex08 we can use a Bernoulli-Gamma model:
{

p(fj |qj) ∝ exp [−(1− qj)(α0 ln fj + β0fj)]
p(qj = 1) = α, p(qj = 0) = 1− α

(35)

The Bernoulli variableqj can be considered as a binary
valued hidden variable. Other models for bothp(f |q) and
p(q) are possible. For example a Gauss-Markov-Bernoulli
model:

{
p(f |q) ∝ exp

[
− 1

2v0

∑N
j=1(1− qj)|fj − fj−1|2

]

p(q) ∝ α
∑

N
j=1

δ(qj)(1− α)
∑

N
j=1

δ(1−qj),
(36)

which is also called Piecewise Gaussian Model (PWG).
Another example a Gauss-Markov-Ising Model (GMIM):

{
p(f |q) ∝ exp

[
− 1

2v0

∑N

j=1(1− qj)|fj − fj−1|2
]

p(q) ∝ exp [γ0δ(qj − qj−1)]
(37)

The final example we consider here is the Gauss-Markov-
Potts Model (GMPM):

Piecewise Gaussians (contours hidden variables)

p(fj |qj , fj−1) = N
(
(1− qj)fj−1, σ

2
f

)

p(fj |zj = k) = N
(
mk, σ

2
k

)
& zj Markovian

Mixture of Gaussians (regions labels hidden variables)

Fig. 3. Piecewise Gaussian and Gauss-Markov-Potts for
1D signals

4. GAUSS-MARKOV-POTTS PRIOR MODELS
FOR IMAGES

The two last prior models have their most significance in
image processing where the contours and regions are natu-
rally introduced via the hidden variablesq(r) representing
contours andz(r) representing the labels of the regions.

f(r) z(r) q(r)

Fig. 4. An imagef(r), its region labelsz(r) and its con-
toursq(r).

The Gauss-Markov-Potts model take its real impor-
tance in image segmentation and in inverse problems of
imaging systems in particular in Non Destructive Testing
(NDT) systems where we know that the object under test
is composed of a finite set ofK of homogeneous mate-
rials. Thus, the image we are looking for is composed
of homogeneous compact regions. Translating this prior
knowledge in a probability model can be done very easily
through the following:

p(f(r)|z(r) = k,mk, vk) = N (mk, vk) (38)

which results to a Mixture of Gaussians model for the in-
tensitiesf(r):

p(f(r)) =
∑

k

P (z(r) = k)N (mk, vk) (39)

For the hidden variablesz(r) we have two options:



• Separable iid hidden variables:p(z) =
∏

r p(z(r))

• Markovian hidden variables: p(z) Potts-Markov:
where

p(z) ∝ exp


γ

∑

r∈R

∑

r′∈V(r)

δ(z(r)− z(r′))




(40)

is the Potts-Markov model.

4.1. Summarizing families of prior laws

In general, we can distinguish three great classes of priors:

• Simple separable priors: The general form is

p(f) ∝ exp


−γ

N∑

j=1

φ(f j)


 (41)

whereφ(x) are, in general, positive functions, for
example

– φ(x) = x2 which gives the Gaussian prior

– φ(x) = |x|β with 0 < β < 2 which gives the
Generalized Gaussian prior

– φ(x) = α lnx + βx with x > 0 andα >
0, β > 0 which gives the Gamma prior

– φ(x) = α lnx + β ln(1 − x) with 0 < x < 1
andα > 0, β > 0 which gives the Beta prior.

• Simple Markovian priors: The general form is

p(f) ∝ exp [−γΩ(f)] (42)

whereΩ(f ) =
∑N

j=1

∑
i∈V(j) φ(f j , f i)whereV(j)

represents the neighboring sites (samples in signals,
pixels in images) ofj. The positive functionφ(.) is
called potential function andΩ(f) the total energy.

• Hierarchical priors: Very often, in particular for non
stationary signals or non homogeneous images, we
may use hidden variableszj which can be associ-
ated to any samplef j to let define in a hierarchical
wayp(f j |zj) p(zj) or p(f |z) p(z). As an example,
we consider:

{
p(f j |zj) = N (f j |0, zj)→ p(f |z) =

∏
j p(f j |zj)

p(zj) = IG(zj |α, β) → p(z) =
∏

j p(zj)
(43)

4.2. Bayesian estimation with simple priors

The Bayesian inference approach is based on the posterior
law:

p(f |g, θ1, θ2) =
p(g|f , θ1) p(f |θ2)

p(g|θ1, θ2)
∝ p(g|f , θ1) p(f |θ2)

(44)
where the sign∝ stands for ”proportional to”,p(g|f , θ1)
is the likelihood,p(f |θ2) the prior model,θ = (θ1, θ2)

θ2
❄

p(f |θ2)

Prior

⋄

θ1
❄

p(g|f , θ1)

Likelihood

−→ p(f |g, θ)

Posterior

−→ f̂

Fig. 5. Bayesian inference with simple priors

are their corresponding parameters (often called the hyper-
parameters of the problem) andp(g|θ1, θ2) is called the
evidence of the model. This simple Bayesian approach
processing is showed in the following scheme:

When both the likelihood and the prior are Gaussian,
the posterior is also Gaussian and all the computations can
be done analytically. This case is summarized in the fol-
lowing scheme:

v ✲ f✒✑
✓✏

❄

✒✑
✓✏
g✒✑

✓✏
ǫ ✲

♥H
❅❘

vǫ ✲





p(g|f , vǫ) = N (g|Hf , vǫI)
p(f j |v) = N (f j |0, v)

p(f |v) ∝ exp
[
− 1

2

∑
j

f2

j

v

]





p(f |g, vǫ, v) = N (f |f̂ , Σ̂)

f̂ = (H ′H + λI)−1H ′g

Σ̂ = vǫ(H
′H + λI)−1 wit λ = vǫ

vf

f̂ = argminf
{
J(f ) = ‖g −Hf‖2 + λ‖f‖2

}

Fig. 6. Bayesian inference with simple priors

5. FULL BAYESIAN ESTIMATION WITH
SIMPLE PRIORS

5.1. Joint posterior law

When the parametersθ have to be estimated too, a prior
p(θ|φ0) with fixed values forφ0 is assigned to them and
the expression of the joint posterior

p(f , θ|g,φ0) =
p(g|f , θ1) p(f |θ2) p(θ|φ0)

p(g|φ0)
(45)

is used to infer them jointly. This method is summarized
in the following scheme:

↓ φ0 = (α,β)

Hyper prior modelp(θ|α,β)

p(θ2|α2, β2)
❄

p(f |θ2)

Prior

⋄

p(θ1|α1, β1)
❄

p(g|f ,θ1)

Likelihood

→p(f ,θ|g,α,β)

Joint Posterior

→

JMAP

MCMC

VBA

→ f̂

→ θ̂

Fig. 7. Full Bayesian inference with simple priors

From the joint posterior, classically, three methods have
been proposed: Joint Maximum A Posteriori (JMAP), MCMC
methods, Marginalization and Expectation-Maximization
(EM) methods which can all be considered as special cases



of Bayesian Variational Approximation (BVA) method [14,
15, 16, 17, 18].

5.2. Joint Maximum A Posteriori (JMAP)

The JMAP solution is defined as:

(f̂ , θ̂) = argmax
(f ,θ)

{p(f , θ|g,φ0)} (46)

and one way to obtain it is an alternate optimization:




f̂ = argmaxf

{
p(f , θ̂|g,φ0)

}

θ̂ = argmaxθ

{
p(f̂ , θ|g,φ0)

} (47)

5.3. MCMC

The main idea and objective of the MCMC methods are
the exploration of the space of the solution by generat-
ing samples from the posterior law and thus being able to
compute empirically the expected valuesθ̂ and f̂ of the
unknowns. In general, Gibbs sampling method is used to
successively sample from the conditionalsp(f |θ̂, g,φ0)

andp(θ̂|f , g,φ0). The main difficulties are:
- Convergence and great number of iterations needed
- Cost of the computations particularly in inverse prob-
lems.
The interested readers can refer to [9, 19, 20]

5.4. Marginalization and Expectation-Maximization (EM)

The main idea here is, first focus on the estimation of the
hyper parametersθ by marginalizing overf :

p(θ|f , g,φ0) =

∫∫
p(f , θ|g,φ0) df , (48)

then estimatingθ by

θ̂ = argmax
θ
{p(θ|f , g,φ0)} (49)

The estimated valuêθ can then be used for the estimation
of f .

p(f , θ|g)

Joint Posterior

→ p(θ|g)

Marginalize overf

→ θ̂→ p(f |θ̂, g) → f̂

Fig. 8. Marginalization for estimation of hyper parame-
ters.

The main difficulty here is that, in general, an ana-
lytical expression forp(θ|f , g,φ0) can not be obtained.
The Expectation-Maximization (EM) algorithm is an iter-
ative technical to computêθ. As we will see in the below,
all these methods can be considered as particular cases of
the Bayesian Variational Approximation (BVA) methods,
well known in statistical physics, but recently used for in-
verse problems.

6. BAYESIAN VARIATIONAL APPROXIMATION
(BVA)

6.1. BVA basics

As we could see, either we have to do computations with
the simple posteriorp(f |g) or with the joint posterior
p(f , θ|g) when the hyper parameters are not known, or as
we will see later withp(f , z, θ|g) when we have to in-
fer on the unknown of the interestf , the hidden variables
z and the hyper parametersθ. In all these cases, doing
Bayesian computation (Optimization in MAP and JMAP
or integration when posterior means are needed) may be
very costly. The main idea behind BVA is to approximate
these posterior laws by simpler ones, for example:
p(f |g) by q(f ) =

∏
j qj(f j) or

p(f , θ|g) by q(f , θ) = q1(f ) q2(θ) or
p(f , z, θ|g) by q(f , z, θ) = q1(f ) q2(z) q3(z).

The main advantage then is to be able to do the compu-
tations much faster. However, these approximations have
to be done using a criterion. The main criterion used is
using the Kullback-Leibler divergence:

KL(q : p) =

∫∫
q ln

q

p
(50)

which can be considered as a kind of differential geome-
try projection ofp over a particular spaceQ of some para-
metric or nonparametric manifold of probability spaces.
WhenQ is choosed to be the space of separable probabil-
ity lawsqj , the approach is called Mean Field theory.

To illustrate the basic ideas and tools, let consider a
random vectorX and its probability density functionp(x)
that we want to approximate byq(x) =

∏
j qj(xj). Using

the KL criterion:

KL(q : p) =

∫∫
q(x) ln

q(x)

p(x)
dx

=

∫∫
q(x) ln q(x) dx−

∫∫
q(x) ln p(x) dx

=
∑

j

∫
qj(xj) ln qj(xj) dxj − 〈ln p(x)〉q

=
∑

j

∫
qj(xj) ln qj(xj) dxj

−

∫
qj(xj) < ln p(x) >q−j

dxj

(51)

where we used the notation

〈ln p(x)〉q =

∫∫
q(x) ln p(x) dx (52)

andq−j(x) =
∏

i6=j qi(xi).
From here, trying to find the solutionqi, we can use

the flowing alternate optimization algorithm:

qj(xj) ∝ exp
[
< ln p(x) >q−j

]
(53)

In the case of two variablesx = [x1, x2]
′, we have:

{
q1(x1) ∝ exp

[
< ln p(x) >q2(x2)

]

q2(x2) ∝ exp
[
< ln p(x) >q1(x1)

] (54)

Three different algorithms can be obtained depending on
the choice of a particular family forqj(xj):



• q1(x1) = δ(x1 − x̃1) andq2(x2) = δ(x2 − x̃2)
{

q1(x1) ∝ p(x1, x2 = x̃2)
q2(x2) ∝ p(x1 = x̃1, x2)

(55)

which becomes equivalent to JMAP:

(x̂1, x̂2) = arg max
(x1,x2)

{p(x1, x2)} (56)

by the following alternate optimization algorithm:
{

x̃1 = argmaxx1
{p(x1, x2 = x̃2)}

x̃2 = argmaxx2
{p(x1 = x̃1, x2)}

(57)

The main drawback here is that the uncertainties of
thex1 is not used for the estimation ofx2 and the
uncertainties ofx2 is not used for the estimation of
x1.

• q1(x1) = δ(x1 − x̃1) andq2(x2) free form. In the
same way, this time we obtain:
{

Q(x1, x2 = x̃2) =< ln p(x1 = x̃1, x2) >q2(x2)

x̃2 = argmaxx2
{Q(x1 = x̃1, x2)}

(58)
which can be compared with the classical EM algo-
rithm. Here, the uncertainties of thex1 is used for
the estimation ofx2 but the uncertainties ofx2 is
not used for the estimation ofx1.

• both q1(x1) andq2(x2) have free form. The main
difficulty here is that, at each iteration the expres-
sion ofq1 andq2 may change. However, ifp(x1, x2)
is in a generalized exponential family, the expres-
sions ofq1(x1) andq2(x2) will also be in the same
family and we have only to update the parameters
at each iteration. For some extensions and more de-
tails see [21].

6.2. BVA with simple prior models and hyper param-
eter estimation

Variational Bayesian Approximation (BVA) methods try
to approximatep(f , θ|g) by a separable oneq(f , θ|g) =
q1(f |θ̃, g) q2(θ|f̃ , g) and then using them for estimation
[22, 23, 24, 25, 26, 27, 28, 29, 30].

p(f , θ|g) −→
Variational
Bayesian

Approximation

−→ q1(f) −→ f̂

−→ q2(θ) −→ θ̂

Fig. 9. BVA for the estimation of hyper parameters.

As we have seen it in previous section, different choices
for the family of lawsq1 andq2 result in different algo-
rithms:

• Case 1 :−→ Joint MAP{
q̂1(f |f̃ ) = δ(f − f̃)

q̂2(θ|θ̃) = δ(θ − θ̃)
→




f̃ = argmaxf

{
p(f , θ̃|g)

}

θ̃ = argmaxθ

{
p(f̃ , θ|g)

}

(59)

• Case 2 :−→ Bayesian EM

{
q̂1(f) ∝ p(f |θ, g)

q̂2(θ|θ̃) = δ(θ − θ̃)
−→

{
Q(θ, θ̃) = 〈ln p(f , θ|g)〉

q1(f |θ̃)

θ̃ = argmaxθ

{
Q(θ, θ̃)

}

(60)

• Case 3: Appropriate choice for inverse problems
{
q̂1(f) ∝ p(f |θ̃, g) ∝ p(g|f , θ̃) p(f |θ̃)

q̂2(θ) ∝ p(θ|f̃ , g) ∝ p(g|f̃ , θ) p(θ)

(61)

with appropriate choice of conjugate priors forp(f |θ̃) and
p(θ) the expressions of̂q1(f) will be in the same family
asp(f |θ̃) and q̂2(θ) will be in the same family asp(θ).
Then, these iterations just become those of updating the
parameters.

θ(0) −→ θ̂−→ f̂ = argmaxf

{
p(f , θ̂|g)

}
−→f̂

↑ ↓

θ̂←− θ̂ = argmaxθ

{
p(f̂ , θ|g)

}
←− f̂

θ(0)→ θ̂→ q1(f |θ̂) = p(f |g, θ̂) →q1(f |θ̂)→ f̂

↑ ↓

θ̂←
Q(θ, θ̂) =< ln p(f ,θ|g) >

q1(f |θ̂)

θ̂ = argmaxθ

{
Q(θ, θ̂)

} ←q1(f |θ̂)

q
(0)
2→ q2(θ)→

Q1(f , f̂) =< ln p(f ,θ|g) >
q2(θ|f̂)

q1(f) ∝ exp
[
Q1(f , f̂)

] →q1(f)→ f̂

↑ ↓

θ̂ ← q2(θ)←
Q2(θ, θ̂) =< ln p(f ,θ|g) >

q1(f |θ̂)

q2(θ) ∝ exp
[
Q2(θ, θ̂)

] ← q1(f)

Fig. 10. Comparison between JMAP, EM and BVA.

To illustrate the differences between these three cases,
we consider the following model:

p(g|f , vǫ) = N (g|Hf , vǫI) ∝ exp
[
− 1

2vǫ
‖g −Hf‖2

]

p(vǫ|αǫ0 , βǫ0) = IG(vǫ|αǫ0 , βǫ0)

p(f j |vj) = N (f j |0, vj) ∝ exp
[
− 1

2

f2

j

vj

]

p(f |v) = N (f |0, diag[v1, · · · , vN ]) ∝ exp
[
− 1

2

∑
j

f2

j

vj

]

p(vj |α0, β0) = IG(vj |α0, β0)
(62)

which is illustrated in the following graphical scheme:
It is then easy to show the following relations:

p(f ,v, vǫ|g) ∝ N (g|Hf , vǫI)N (f |0, diag[v])
IG(vǫ|αǫ0 , βǫ0)IG(vj |α0, β0)

(63)



α0, β0
✲ ♥v ✲ f✒✑

✓✏

❄

✒✑
✓✏
g✒✑

✓✏
ǫ ✲

♥H
❅❘♥vǫ ✲αǫ0, βǫ0

✲

Fig. 11. Graphical model with Gaussian priors and hyper
parameter estimation.





p(f |g, vǫ, v) = N (f |f̂ , Σ̂)

Σ̂ = (H ′H + v̂ǫV )−1 with V = diag[v̂j ]
f̂ = Σ̂H ′g

p(vǫ|g,f , αǫ0 , βǫ0) = IG(vǫ|α̂ǫ0 , β̂ǫ0)

p(vj |g,f , α0, β0) = IG(vj |α̂j , β̂j)

v̂ǫ =
α̂ǫ0

β̂ǫ0

v̂j =
α̂j

β̂j

(64)

f̂ = argmin
f



J(f ) = ‖g −Hf‖2 + 〈vǫ〉q

∑

j

f2
j

〈vj〉q





(65)
It is also easy to computeq1 andq2 in the VBA approx-
imation. The following figure summarizes and compare
JMAP and VBA.

λ̂(0)

V̂ (0)

→ λ̂

→ V̂
⇒

J(f) = ‖g −Hf‖2 + λ̂f ′V̂ −1f

f̂ = argmin
f

{J(f )}

=
[
H ′H + λ̂V̂

]−1

H ′g

→f̂

⇑ ↓

λ̂

V̂
⇐

λ̂ = α̂ǫ0/β̂ǫ0

V̂ = diag
[
v̂j = α̂j/β̂j

] ← f̂

λ̂(0)

V̂ (0)

→ λ̂

→ V̂
⇒

f̂ =
[
H ′H + λ̂V̂

]−1

H ′g

Σ̂ =
[
H ′H + λ̂V̂

]−1 ⇒
f̂

Σ̂

⇑ ⇓

λ̂

V̂
⇐

λ̂ = α̂ǫ0/β̂ǫ0

V̂ = diag
[
v̂j = α̂j/β̂j

] ⇐ f̂

Σ̂

Fig. 12. Comparison between JMAP and VBA.

Two main differences are:

• In JMAP, the uncertainties of̂f (θ̂) are not trans-
mitted to the estimation of̂θ (f̂ ). However, here,
there is no need to compute the covariance matrix
Σ̂ which costs a lot computational. In this case we
have:

{
α̂ǫ0 = αǫ0 +M/2

β̂ǫ0 = βǫ0 +
1
2‖g −Hf̂‖2,{

α̂j = α0 +N/2

β̂j = β0 +
1
2‖f̂‖

2

(66)

• In VBA the uncertaintieŝΣ of f̂ are transmitted to
the estimation of̂θ (f̂ ). However, here, we have to
compute this posterior covariance matrixΣ̂ which
costs a lot computational. In this case we have:

{
α̂ǫ0 = αǫ0 +M/2

β̂ǫ0 = βǫ0 +
1
2‖g −Hf̂‖2 + Tr {H ′H} ,{

α̂j = α0 +N/2

β̂j = β0 +
1
2‖f̂‖

2 + 1
2Tr

{
Σ̂

}
+ f̂

′
f̂

(67)

6.3. BVA with hierarchical prior models

For hierarchical prior models with hidden variablesz, the
problem becomes more complex, because we have to give
the expression of the joint posterior law

p(f , z, θ|g) ∝ p(g|f , θ1) p(f |z, θ2) p(z|θ3) p(θ)
(68)

and then approximate it by a separable one

q(f , z, θ|g) = q1(f |g) q2(z|g) q3(θ|g) (69)

and where the expressions ofq(f , z, θ|g) is obtained by
minimizing the Kullback-Leibler divergence

KL(q : p) =

∫
q ln

q

p
=

〈
ln

q

p

〉

q

(70)

It is then easy to show that KL(q : p) = ln p(g) − F(q)
wherep(g|M) is the likelihood of the model

p(g) =

∫∫ ∫∫ ∫∫
p(f , z, θ, g) df dz dθ (71)

with p(f , z, θ, g) = p(g|f , θ) p(f |z, θ) p(z|θ) p(θ) and
F(q) is the free energy associated toq defined as

F(q) =

〈
ln

p(f , z, θ, g)

q(f , z, θ)

〉

q

(72)

So, for a given model, minimizing KL(q : p) is equivalent
to maximizingF(q) and when optimized,F(q∗) gives a
lower bound forln p(g).

Without any other constraint than the normalization of
q, an alternate optimization ofF(q) with respect toq1, q2
andq3 results in




q1(f ) ∝ exp
[
−〈ln p(f , z, θ, g)〉q2(z)q3(θ)

]
,

q2(z) ∝ exp
[
−〈ln p(f , z, θ, g)〉q1(f)q3(θ)

]

q3(θ) ∝ exp
[
−〈ln p(f , z, θ, g)〉q1(f)q2(z)

] (73)

Note that these relations represent an implicit solution for
q1(f), q2(z) andq3(θ) which need, at each iteration, the
expression of the expectations in the right hand of expo-
nentials. Ifp(g|f , z, θ1) is a member of an exponential
family and if all the priorsp(f |z, θ2), p(z|θ3), p(θ1),
p(θ2), andp(θ3) are conjugate priors, then it is easy to
see that these expressions leads to standard distributions



for which the required expectations are easily evaluated.
In that case, we may note

q(f , z, θ|g) = q1(f |z̃, θ̃; g) q2(z|f̃ , θ̃; g) q3(θ|f̃ , z̃; g)
(74)

where the tilded quantities̃z, f̃ and θ̃ are, respectively
functions of(f̃ ,θ̃), (z̃,θ̃) and(f̃ ,z̃) and where the alter-
nate optimization results to alternate updating of the pa-
rameters(z̃, θ̃) for q1, the parameters(f̃ , θ̃) of q2 and
the parameters(f̃ , z̃) of q3. Finally, we may note that, to
monitor the convergence of the algorithm, we may evalu-
ate the free energy

F(q)= 〈ln p(f , z, θ, g|M)〉q + 〈− ln q(f , z, θ)〉q
= 〈ln p(g|f , z, θ)〉q + 〈ln p(f |z, θ)〉q + 〈ln p(z|θ)〉q
+ 〈− ln q(f )〉q + 〈− ln q(z)〉q + 〈− ln q(θ)〉q

(75)
where all the expectations are with respect toq.

Other decompositions are also possible:

q(f , z, θ|g) =
∏

j q1j(f j |f̃(−j), z̃, θ̃; g)∏
j q2j(zj |f̃ , z̃(−j), θ̃; g)∏
l q3l(θl|f̃ , z̃, θ̃(−l); g)

(76)

or

q(f , z, θ|g) = q1(f |z̃, θ̃; g)∏
j q2j(zj |f̃ , z̃(−j), θ̃; g)∏
l q3l(θl|f̃ , z̃, θ̃(−l); g)

(77)

Here, we consider this case and give some more details on
it.

7. BAYESIAN VARIATIONAL APPROXIMATION
WITH MIXTURE OF GAUSSIANS PRIORS

The mixture models are very commonly used as prior mod-
els. These models are summarized in the following.

7.1. Mixture of Gaussians (MoG) simple model

First we consider the simplest case where the numberK
and the proportionsα = {αk, k = 1 · · · ,K} are known.

p(zj = k|αk) = αk,
∑

k αk = 1
p(f j |zj = k) = N (f j |mjk

, vjk)
p(mjk

|m0, v0) = N (mjk
|m0, v0)

p(vjk|α0, β0) = IG(vjk|α0, β0)
p(f |z,m,v) =

∏
j N (f j |mzj , vzj)

p(z|α) = αnk

k with nk =
∑

j δ(mzj −mk)

p(g|f , vǫ) = N (Hf , vǫI)
p(vǫ|αǫ0 , βǫ0) = IG(αǫ0 , βǫ0)

(78)

If the proportions are not known, we have to add a prior to
it. The appropriate prior is the Dirichlet prior

p(α|α0) ∝ αα0

k , with α0 = 1/K (79)

With these priors, it is then easy to find the expressions
for the joint posterior law, all the conditionals necessary
for MCMC or all the separable laws for VBA. We refer
the authors to [21, 31, 32] for the details.

α0,K ✲ ♥α ✲

m0, v0 ✲ ♥m ❍❍❍❥
α0, β0

✲ ♥v ✲

✒✑
✓✏
z

❄
f✒✑

✓✏

❄

✒✑
✓✏
g✒✑

✓✏
ǫ ✲

♥H
❅❘♥vǫ ✲αǫ0 , βǫ0

✲

Fig. 13. Mixture of Gaussians prior model and its associ-
ated graphical model.

8. BAYESIAN VARIATIONAL APPROXIMATION
WITH GAUSS-MARKOV-POTTS PRIORS

The main drawback of the MoG model of the previous
section is that the spatial structure of the images is not
considered. This can be done either by putting a Marko-
vian model onf or onz or on both of them.

To summarize, with two variablesf(r) andz(r), we
can define four different models:

f |z Gaussian iid f |z Gauss-Markov
z iid z Potts-Markov

f |z Gaussian iid f |z Markov
z Potts-Markov z Potts-Markov

Fig. 14. An imagef(r), its region labelsz(r) and its
contoursq(r).

The first one is exactly the MoG of the previous sec-
tion. The second one is a non homogeneous Markov model
for f(r) conditioned onz(r). The third and the forth
cases are of great interest. We called them Gauss-Markov-
Potts prior models and used them extensively in different
applications:

• Image segmentation and images fusion [33]
• Image restoration for NDT applications [34, 35]
• Computed Tomography (CT) for NDT applications

[36, 37]
• Blind Sources Separation and Images separation [38,

39, 40, 41, 42, 43]
• Fourier Synthesis part of microwave imaging [44]

• Super Resolution Images [45, 46, 47]
• Microwave imaging for NDT [33, 48, 49]
• Optical Diffraction Tomography [50, 51]



• Synthetic Aperture Radar (SAR) imaging [52]

• Acoustical sources localization [53]

9. CONCLUSIONS

In this review paper, first the basics of the Bayesian es-
timation with different prior laws are presented. Then,
the full Bayesian approach with hyper parameters estima-
tion is considered. The different Bayesian computational
approaches (JMAP, Marginalization and EM, MCMC and
Variational Bayesian Approximation (VBA) are presented
and compared. Focus is made more on the VBA method
with hierarchical priors. A class of these hierarchical pri-
ors containing the Mixture of Gaussians (MoG) is con-
sidered. These priors are called Gauss-Markov-Potts. Fi-
nally, references on the successful use of these priors in
different applications are given.
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économica, paris ed., 1987.

[10] E. Barat, C. Comtat, T. Dautremer, T. Montagu, M. D.
Fall, A. Mohammad-Djafari, and R. Trébossen, “Nonpara-
metric bayesian spatial reconstruction for positron emis-
sion tomography.,” in10th International meeting on fully
three-dimensional image reconstruction in radiology and
nuclear medecine, (Beijing, China), 2009.

[11] M. D. Fall, E. Barat, A. Mohammad-Djafari, and C. Com-
tat, “Spatial emission tomography reconstruction using
Pitman-Yor process,” inBayesian Inference and Maximum
Entropy Methods in Science and Engineering, vol. 1193,
pp. 194–201, AIP, 2009.
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[13] M. D. Fall, É. Barat, C. Comtat, T. Dautremer, T. Mon-
tagu, and A. Mohammad-Djafari, “A discrete-continuous
bayesian model for emission tomography,,” inIEEE Inter-
national Conference on Image Processing (ICIP), 2011.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society, Series B, vol. 39,
pp. 1–38, 1977.

[15] D. Rubin and D. Thayer, “EM algorithms for ML factor
analysis,”Psychometrika, vol. 47, no. 1, pp. 69–76, 1982.

[16] S. Lakshmanan and H. Derin, “Simultaneous parameter
estimation and segmentation of gibbs random fields us-
ing simulated annealing,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-11, no. 8,
pp. 799–813, 1989.

[17] A. Mohammad-Djafari and J. Idier, “Scale invariant
Bayesian estimators for linear inverse problems,” inProc.
of the First ISBA meeting, (San Francisco, CA, USA), Aug.
1993.

[18] M. Feder and E. Weinstein, “Parameter estimation of
superimposed signals using the em algorithm,”IEEE
Transactions on Acoustics Speech and Signal Processing,
vol. ASSP-36, no. 4, pp. 477–489, 1988.

[19] C. Robert,The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer
Verlag, 2007.

[20] C. P. Robert, “Mixtures of distributions: inference and esti-
mation,” Markov chain Monte Carlo in practice, vol. 441,
p. 464, 1996.

[21] A. Mohammad-Djafari, “Approche variationnelle pour le
calcul baysien dans les problmes inverses en imagerie,”
Arxive, vol. http://arxiv.org/abs/0904.4148, p. 31p, 2009.

[22] R. A. Choudrey,Variational Methods for Bayesian Inde-
pendent Component Analysis. PhD thesis, University of
Oxford, 2002.

[23] M. Beal,Variational Algorithms for Approximate Bayesian
Inference. PhD thesis, Gatsby Computational Neuro-
science Unit, University College London, 2003.

[24] A. C. Likas and N. P. Galatsanos., “A variational approach
for bayesian blind image deconvolution,”IEEE Transac-
tions on Signal Processing, 2004.

[25] J. Winn, C. M. Bishop, and T. Jaakkola, “Variational mes-
sage passing,”Journal of Machine Learning Research,
vol. 6, pp. 661–694, 2005.

[26] S. Chatzis and T. Varvarigou, “Factor analysis latent
subspace modeling and robust fuzzy clustering using
t-distributionsclassification of binary random patterns,”
IEEE Trans. on Fuzzy Systems, vol. 17, pp. 505–517, 2009.

[27] T. Park and G. Casella., “The Bayesian Lasso,”Journal of
the American Statistical Association, 2008.



[28] M. Tipping, “Sparse Bayesian learning and the relevance
vector machine,”Journal of Machine Learning Research,
2001.

[29] L. He, H. Chen, and L. Carin, “Tree-Structured Compres-
sive Sensing With Variational Bayesian Analysis,”IEEE
Signal. Proc. Let., vol. 17, no. 3, pp. 233–236, 2010.

[30] A. Fraysse and T. Rodet, “A gradient-like variational
Bayesian algorithm,” inSSP 2011, no. S17.5, (Nice,
France), pp. 605–608, jun 2011.

[31] H. Ayasso, B. Duchłne, and A. Mohammad-Djafari, “A
Bayesian approach to microwave imaging in a 3-D config-
uration,” inProceeding of The 10th Workshop on Optimiza-
tion and Inverse Problems in Electromagnetism, (Ilmenau
Allemagne), pp. 180–182, Spetember 2008.

[32] H. Ayasso and A. Mohammad-Djafari, “Joint NDT im-
age restoration and segmentation using Gauss–Markov–
Potts prior models and variational bayesian computation,”
IEEE Transactions on Image Processing, vol. 19, no. 9,
pp. 2265–2277, 2010.
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