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Super-resolution (SR) is the area of research and development which produces one or a set of

high-resolution images from one or a set of low-resolution frames. In this paper, first, a short

review of a variety of SR problems is presented. Then, starting by a single input single output

case, we present different forward modeling of 1D or 2D SR problems. We focus then on the

multi input single output and multi input multi output SR problems and provide a summary of

recent contributions to them. Then, the SR problem is considered as an inverse problem. A

general forward-modeling and inversion framework is presented, which gives the possibility to

understand the basics of several classical SR methods and to discuss some important open problems

of SR. Specifically, we discuss a different forward modeling, which leads to different classical

methods and present our recent inversion methods based on the Bayesian estimation with different

prior modeling. In particular, we give the details of a new method, particularly appropriate for pie-

cewise homogeneous images, which provides not only an SR image, but also simultaneously an

optimal segmentation of an HR image. Some comparisons of the relative performances of these

methods are also presented. Finally, some future challenges in SR are outlined and discussed.
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1. INTRODUCTION

The quest for obtaining high-resolution (HR) fixed images or

image sequences from one or a set of low-resolution (LR)

acquisition systems is a challenge in both hardware and soft-

ware of electrical engineering and computer science [1–18].

While in many imaging systems, hardware advances in produ-

cing higher and higher-resolution sensors, and greater and

greater capacity for memories, the progress of software and

appropriate algorithms to handle those data requires still

more research and development. This is due to the fact that,

even if the prices of HR sensors decreases, the transmission

and processing of such images may still cost enough. Also,

in many medical diagnostic systems or in industrial non-

destructive testing (NDT) systems, the acquisition of HR

images may still cost enough to consider the problem of SR

as an important area of research. Finally, in any situation,

we always want to extract more and more details from the

available images, whatever their resolutions.

Examples of applications where super-resolution

(SR)-based techniques have become a focus of research in

image processing are:

– Embedded LR imaging devices, such as hand-held compu-

ters and mobile phones, where we may need to reconstruct

an HR image from an LR sequence of images accurately

and quickly [19];

– Multi-camera and multi-view recording in aerial or satellite

imaging [20–23];

– Many medical and biological imaging systems where we

always want to obtain higher-resolution 2D or 3D images

by combining different images obtained from the same

object in different contexts (at different times, different

viewing angles or different energy levels) [15, 22, 24];
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– Holographic and 3D TV imaging where the data trans-

mission limits the maximum resolution, and so the recon-

struction of an HR 3D scene from LR data becomes crucial;

– 3D photography and surface modeling for 3D scenes

[25, 26].

Accordingly SR problems can be classified into:

– single input single output (SISO) SR which can be con-

sidered as an interpolation problem;

– multi input single output (MISO) SR which is the classical

SR problem on which we are going to focus and

– multi input multi output (MIMO) SR which is, for example,

the case of video SR reconstruction and an example of

MISO 3D SR problems in NDT applications.

The SISO SR problem can either be considered as an interp-

olation or, more generally, as an image restoration (deconvo-

lution) problem. However, as this SISO SR can be considered

as a particular case of the MISO SR problem, we focus on this

last problem which concerns the integration of multiple LR

frames to estimate one HR image. The extension to MIMO

can also be done easily.

In MISO SR problem, the main idea is based on the fact that

each image in the sequence provides small amount of

additional information about the original HR image. This

means that we assume that the LR images are obtained

either by one camera with a slightly changing scene or with

a moving camera focusing on a fixed scene, or by different

cameras with different viewing positions and angles. Although

other situations in medical, astronomical, electronic

microscopy or NDT imaging may be present, in this paper

we focus on translational movement cases.

The organization of this article is as follows. In Section 2 we

detail the forward modeling of the SR problem, trying to

model the main operations applied to an HR image to obtain

LR images. Also, for each operator we give the expression

of its adjoint operator. Using this forward and adjoint oper-

ators, we will see in Section 3 that many classical SR

methods are based on different combination of these adjoint

operators. In Section 4, we use again the general structure of

the forward problem to consider the SR as an inverse

problem and summarize the main classical methods based

on least square (LS), constrained least square, quadratic regu-

larization (QR) and robust regularization (RR) criteria optim-

ization. In addition, we will see that the Bayesian maximum a

posteriori (MAP) estimation method generalizes all these

methods. We will also see how to handle the two main difficult

tasks in SR, which are the estimation of the blurring point

spread function (PSF) and the parameters of movement and

registration of images. In Section 5, we summarize a more

advanced Bayesian estimation method with a more sophisti-

cated (and so more appropriate and more accurate) prior mod-

eling of the HR image which accounts for the fact that, in

general, all images are composed of statistically homogeneous

regions. A compound intensity-regions Markov model is pre-

sented to account for this fact. Even if this method has been

recently presented elsewhere [27, 28], we give here new exten-

sions and new implementation algorithms. In Section 6, we

discuss limitations of the existing forward models, inversion

methods and new challenges for SR problems.

2. FORWARD MODELING

In any SR problem, there are three main operations which link

an HR image to LR images which are: sampling, movement or

other geometrical transformation and blurring. In this section,

we give a brief description of these operations and their corre-

sponding adjoint operators.

2.1. Sampling basis functions

To be able to explain a great number of SR methods, we con-

sider first the simplest case which is the SISO case and start by

modeling the process of the transformationH of an HR image

f(r) to an LR image g(r). As we work with discretized images,

let us denote the HR image f(r) as

f ðrÞ ¼
Xn

j¼1

fj dðr � rjÞ ð1Þ

where r ¼ (x, y) is any position in space, rj ¼ (xj, yj) is the

central position of the pixel j assuming to have (Dx � Dy) as

its size, d(r 2 rj) is a basis function of the form

d1ðr � rjÞ ¼
1 if r ¼ rj

0 else

�
ð2Þ

or

d2ðr � rjÞ ¼
1 if

jx� xjj ,
Dx
2

jy� yjj ,
Dy
2

0 else

8><
>: ð3Þ

and fj represents either the sample value f(rj)

fj ¼ f ðrjÞ ð4Þ

or the mean value of f(r) over the pixel surface

fj ¼

ðxjþðDx=2Þ

xj�ðDx=2Þ

dx

ðyjþðDy=2Þ

yj�ðDy=2Þ

dy f ðx; yÞ ð5Þ

depending on the choice of the basis function d1(r 2 rj) or

d2(r 2 rj).
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From now on, we consider that the HR image is discretized

at the best possible resolution (Dx ¼ 1, Dy ¼ 1) and that the

LR images are discretized with a (Dx ¼ k, Dy ¼ k), where

k . 1 is a real or integer factor. Now, depending on the type

of this factor (real or integer), the type of the basis function

and the relative size of the LR and HR imaging sensors, we

will have different forward modeling for the SR inverse

problem.

2.2. Single input single output case

The first model for LR image g(r) is just an integer value k

down-sampling (DS) of f(r)

gðr0Þ ¼
Xn=k
j0¼1

g j0 dðr
0 � r0j0 Þ ð6Þ

where

g j0 ¼ fj with j0 ¼ k j ð7Þ

which means that the LR samples gj0 are obtained just by DS of

the HR samples fj. This forward model, which will be pre-

sented by the operator D0 is shown in Fig. 1.

The second simple model for LR image g(r) is just an

integer value (k) DS of f(r) but with considering the LR

sensor size which is assumed to be the same (k) times the

size of the original image pixel size. This forward model

which is presented by the operator D1 is shown in Fig. 2.

The third simple model for LR image g(r) is where the sub-

sampling factor (k) is no longer an integer value. Moreover,

we consider not only the LR sensor size but also a more

general blurring effect B due to LR pixel size and any other

imaging system blurring effects. In this case, the relation

between g(r) and f(r) can be modeled as a blurring and a

DS. The support of the blur PSF is larger than LR pixel size,

because the total blurring PSF is obtained by the convolution

of the PSF of the sensor with other blurring effect. Figure 3

summarizes, in one dimension, the shapes of the different

PSF in different cases. In this figure, we may note that the

PSF associated to D0 is a gate function with one HR sampling

interval, the PSF associated to D1 is a gate function with k HR

sampling intervals and the PSF associated toD2 is the result of

the other blurring effect PSF and a gate function with k HR

sampling interval, which in this case may not need to be an

integer value.

2.3. Multi input single output case

Now, we consider the MISO case, where the main idea is that

different LR images gi(r) have, in some sense, complementary

informations. These LR images may have been obtained by:

– A moving camera with fixed scene;

– A fixed camera but focusing on a slightly moving scene;

– Multiple fixed cameras focusing on a same fixed scene;

– Multiple fixed cameras but focusing on a slightly moving

scene, etc.

In any of these cases, the main idea is that the LR images are

not registered. The simplest model is then assuming a transla-

tional movement between these images. Now, depending on

the hypothesis whether these translational movements are

integer factors of sampling interval or not, we may change

the formulation of the forward problem.
FIGURE 1. A first very simple SISO SR model; this forward model

is denoted D0.

FIGURE 2. A second simple SISO SR model; this forward model is

denoted D1.

FIGURE 3. PSF related to different forward models of sub-

sampling: D0, D1 and D2.
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The simplest model is a translational movementMk and an

integer ratio DSD0. Indeed, if we assume that the translational

movements are also integer sub-pixel movements of the same

DS ratio, then the SR forward model and its inversion become

very easy. Figure 4 shows such a simple forward model.

This simple model is however unrealistic, because it does

not account for the integration of LR sensor size. The

second model that accounts for this is shown in Fig. 5.

This model is still unrealistic, because it does not account

for the blurring effects of the measurement system and also

for the fact that the LR sensor size may not be an integer

factor of the size of the HR pixel size. Figure 6 shows such

a forward model.

2.4. General forward-modeling components and

associated adjoint operators

A more general realistic forward model is the one that

accounts for: (i) Translational movements of the LR images;

(ii) Integration of the LR sensor sizes; (iii) Different blurring

effects which may include the integration of LR sensor sizes

as well as other imaging system defaults and finally (iv) The

measurement noise on the observed LR images and all the

other unmodeled errors.

In this section, we present a general forward model which

partially accounts for these. In this general framework, the

relation between LR images gi(r) and the HR image f(r) is

modeled by

gkðrÞ ¼ ½Hkf �ðrÞ þ ekðrÞ ð8Þ

where ek(r) represents the modeling and approximation errors

and the operator Hk is, in general, composed by three main

operators:

– A global low-pass filtering B representing for both real

band width limitation of the imaging sensors and the inte-

gration over the sensor surface

~f ðrÞ ¼ ½Bf �ðrÞ ¼

ð
f ðr0Þhðr � r0Þ dr0 ð9Þ

where h(r) represents the point spread function of the sensor

integration and other limiting bandwidth of the imaging

system. This PSF may not be known in practice.

FIGURE 4. A first very simple 1D MISO SR model; the

relation between LR data gi and the HR unknown f can be written

as gk ¼ D0Mkf.

FIGURE 5. A second very simple 1D MISO SR model; the

relation between LR data gi and the HR unknown f can be written

as gk ¼ D1Mkf.

FIGURE 6. A third very simple 1D MISO SR model; the

relation between LR data gi and the HR unknown f can be written

as gk ¼ D1BMkf or as gk ¼ D1MkBf.

FIGURE 7. Adjoint operators of DS operators; top; DS D0 and its

adjoint operator D0
0, bottom: DS D1 and its adjoint operator D1

0

(we may note that D0
0D0 = I but D0D0

0 ¼ I, also D1
0D1 = I but

D1D1
0 ¼ I and D0D1

0 ¼ I).
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– A global geometrical transformation Mk, where the

simplest model is just a translational movement

~f kðrÞ ¼ ½Mkf �ðrÞ ¼ f ðr � dkÞ ð10Þ

where dk represents the displacement of the coordinates

between the two images f̃(r) and f(r). More general geometri-

cal transformations taking account for a possible rotation or

scaling can also be easily considered. This transformation is

then characterized by a few parameters (for example x and y

displacement in the case of simple translational movement)

which have to be determined. The determination of these par-

ameters is often called image registration.

– A DS or decimation D

~f ðrjÞ ¼ ½Df �ðrjÞ ð11Þ

where D is a DS with k sampling (or zooming) ratio. In pre-

vious section, we emphasized three cases for this operator:

A zero order decimation D0, a first order decimation D1 and

a non-integer k general operator D2. In the following, when

it is not noted, we assume D ¼ D0.

The order of these three operators may change. For

example, we can change the order of the two operators of

Mk and B which results in two different forward models

gkðrÞ ¼ ½DMkBf �ðrÞ þ ekðrÞ ð12Þ

and

gkðrÞ ¼ ½DBMkf �ðrÞ þ ekðrÞ ð13Þ

We may even divide the blur operator B into an effective

imaging system blur B1 and the LR sensor integration blur

B2 and write

gkðrÞ ¼ ½DB2MkB1f �ðrÞ þ ekðrÞ: ð14Þ

In the discretized version, if we represent the HR image

pixels by f, the LR image pixels by gk and the discretized

version of the aforementioned operators by Hk, then we can

write

gk ¼ Hkf þ ek ð15Þ

FIGURE 8. Adjoint operators of compound movements and DS; top; movementsMk and DS D0, bottom: movementsMk and DS D1 (we note

that
P

kMk
0D0
0D0D0Mk ¼ I but

P
kMk

0D1
0D1Mk = I).
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or even

g ¼ Hf þ e ð16Þ

with

g ¼

g1

..

.

gk

..

.

gK

2
6666664

3
7777775
; H ¼

H1

..

.

Hk

..

.

HK

2
6666664

3
7777775

and e ¼

e1

..

.

ek

..

.

eK

2
6666664

3
7777775

ð17Þ

where Hk ¼ DBMk or Hk ¼ DMkB or still Hk ¼ DB2B1Mk as it

is just discussed.

As we will see in the next section, these different models

give rise to different intuitive and classical SR methods.

2.5. Adjoint operators of forward models and simple

MISO SR methods

To each of these three basic operators, we can associate

respective adjoint operators. Denote by B0, Mk
0, D0 and Hk

0

the adjoint operators of B, Mk, D and Hk. We can then

easily see that B0 is also a linear blur operator,Mk
0 is a trans-

lation operator at the opposite direction of Mk and D0 is an

up-sampling operator. We may note that not all these operators

are auto-adjoint. We remember that the operator H0: Y 7! X,

the adjoint operator of H: X 7! Y, is such that kx,H0yl ¼ ky,

Hxl 8x [ X and 8y [ Y, and H0 and H are auto-adjoint if

HH0 ¼H0H ¼ I, where I is the identity operator. See

details in Figs 7 and 8.

Based on these notations and the definition of the adjoint

operators B0, Mk
0 and D0 (or equivalently B0, Mk

0 and D0),
which have particular structures, a very simple scheme for

inversion is

f̂ ¼ H tg ¼
X

k

H t
k gk ¼

X
k

B0M 0kD0 gk ð18Þ

or equivalently

f̂ ðrÞ ¼
X

k

½Ht
k gk�ðrÞ ¼

X
k

½B
0
M
0
kD
0 gk�ðrÞ ð19Þ

This corresponds to up-sampling, registration of images in HR

grid, filtering and superposition (summing or fusion).

Other methods can be obtained easily by changing the

orders of these operators. For example

f̂ ¼
X

k

B0D0M 0kgk ð20Þ

corresponds to sub-pixel registration of LR images,

up-sampling, filtering and summing.

Many classical methods of SR have been based on these

relations. However, even if, in theory, the operators corre-

sponding to the cases of translational movements and DS

scheme D0 are auto-adjoint, in practical applications, these

schemes will not give a perfect reconstruction. Between the

reasons, we may note the following facts:

– Except for the case of D0, other operators are not

auto-adjoint;

– In general, the movements are not just translational;

– In general, the movements are not an integer factor of HR

pixel size;

– We also have to account for the blurring effects and the

sensor noise.

We remark, however, that all these schemes are composed

of up-sampling (compensation for DS, or more generally

interpolation), registration (compensation for the movements)

and filtering (compensation for the blurring due to the LR

sensor size and other blurring effects). Many classical

methods of SR have been based on appropriate combination

of these operations. In the next section, we give a brief

review of these methods.

3. CLASSICAL MISO SR METHODS

As we could see from the different forward-modeling oper-

ators and their associated adjoint operators, the MISO SR

problem can be summarized as a combination of registration

(movement compensation), interpolation (DS compensation)

and summation or more generally image fusion. Registration

consists in finding some way of bringing together all the

input LR images into a coordinate frame that reconstructs an

HR output. This corresponds to the adjoint operators Mk
0.

The combination of the interpolation and fusion is equivalent

to the registered LR images to construct an HR image. This

corresponds to the combined adjoint operators B0D0. Then,

depending on the order of these operations, we can classify

the classical MISO SR methods into two categories of grid

mapping and interpolation and interpolation and fusion.

Indeed, due to the Fourier domain properties of sampling

and translational movements, there is a great number of SR

methods using these relations. In the following, a very short

review of these classical methods is presented.

3.1. Grid mapping and interpolation

This is the most intuitive SR reconstruction process involving

mapping onto a higher-resolution grid (equivalent to D0
0Mk

0

or D1
0Mk

0) followed by bilinear or higher-order spline inter-

polation (different approximations or extensions of the

operator B). This algorithm is often called Shift-And-Add
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[29]. This is shown in Fig. 9 for the 1D case and in Fig. 10 for

the 2D case.

The main difficult task in this approach is the motion esti-

mation parameters. The main advantage of this method is in

its low computational cost making real-time applications

possible. On the other hand, only the same blur and noise

for all LR frames can be assumed. The missing of some LR

frames reduces the overall performance of such algorithms.

3.2. Interpolation and fusion

In this method, instead of mapping to an HR grid as in the

previous scheme, a linear or nonlinear interpolation method

is performed to each LR frame separately to increase their

resolution (an approximation or extension of the combined

operators Mk
0D0B0 or Mk

0B0D0). Then, a fusion between all

the resolved frames results in an SR image at the resolution

of the interpolated LR frames. This is shown in Fig. 11 for

the 1D case and in Fig. 12 for the 2D case.

Depending on the fusion method, not all frames contribute

to reconstruct pixels in the SR image. Farsiu et al. [4, 30] rec-

ommend the median for this purpose. In the particular example

of median fusion, only one of the LR frames is used for each

reconstructed pixel. For text enhancement in digital video, Li

and Orchard [31] use bilinear interpolation followed by

averaging of the interpolated frames. Interpolation and

fusion is fast and robust to outliers, but it can result in the

appearance of some artificial effects in the super-resolved

image due to the nature of the fusion process.

3.3. Frequency-domain reconstruction

This particular form of SR reconstruction is based on the

Fourier transform (FT) properties of sampling, translational

motion and rotational movement

f ðrÞ FT
$

FðvÞP
i

f ðriÞdðr � riÞ $
P

i

FðvÞdðv� i2p=DÞ

with ri ¼ iD

f ðr � dÞ $ exp f�jv0dgFðvÞ
f ðRrÞ $ FðRvÞ

ð21Þ

where F(v) is the 2D FT of f(r), d is the uniform motion par-

ameter and R the rotational operator parameter.

These methods are very often the continuation of

frequency-domain motion estimation in the case of pure trans-

lational or rotational model assumption. It was first derived by

FIGURE 9. Sub-pixel LR registration, grid mapping, shift and add operations in 1D.
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Tsai and Huang [29] and implemented SR reconstruction

method, also called alias-removal reconstruction. Assuming

that the LR images are under-sampled, the translations

between them allow an up-sampled SR image to be built

based on the shifting property of the FT and the aliasing

relationship between the continuous FT of an original SR

image and the discrete FT of observed LR images. Several

extensions [32–34] were then proposed to enlarge the initial

conditions of Tsai and Huang, which were integer-shift trans-

lation only. The major advantage is its simplicity but only

global translational models can be considered.

In this paper, we do not detail more these methods.

However, we may partially use these methods for the esti-

mation of the uniform motion or rotational motion parameters.

4. GENERAL INVERSION METHODS

Based on this forward modeling and assuming, in a first step,

that the forward operators Hk are known (which means that the

registration parameters and the PSF of the blurring effects are

known), the inversion or the estimation of the HR image f(r)

based on the LR images gk(ri), and some prior modeling of

FIGURE 12. Interpolation, HR registration and fusion in 2D.

FIGURE 10. Grid mapping and addition in 2D.

FIGURE 11. Interpolation, HR registration and HR fusion in 1D.
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the the HR image f(r) can be casted in the following main

classes:

– LS methods [23, 29, 35–37],

– Robust estimation (RE) methods [11, 12],

– Regularization-based methods [4, 11, 12, 16], and

– Bayesian estimation methods [1, 7, 27, 38–40].

In the three first classes of methods and in MAP estimation

category of the Bayesian estimation methods, the solution is

defined as the minimizer of a criterion J(f):

f̂ ¼ arg min
f
fJðf Þg ð22Þ

where the expression of J({f}) becomes

– LS and RE methods

Jðf Þ ¼
X

k

kgk �Hkf kb ¼
X

k

X
r[R

jgkðrÞ � ½Hkf �ðrÞjb ð23Þ

with 1 � b� 2 for the general case and b ¼ 2 for the LS case.

– Regularization methods

Jðf Þ ¼
X

k

kgk �Hkf kb1 þ lkDf kb2 ð24Þ

where 1 � b1, b2 � 2, D represents a high-pass filter oper-

ator and l is a regularization parameter.

– Bayesian MAP estimation methods

Jðf Þ ¼ � ln pðf jgÞ ¼ � ln pðgjf Þ � ln pðf Þ þ c ð25Þ

where: g ¼ fgk, k ¼ 1, . . ., Mg represents all the LR images,

pðg j f Þ/ exp �
1

2s2
1

X
k

kgk �Hkf k2

( )

is the likelihood when the noises 1k are assumed centred, iid

and Gaussian with given variance s1
2 and p(f) is an a priori

model on the HR image.

When a generalized Gauss–Markov prior law is chosen for

p(f), the MAP criterion (25) becomes equivalent to the regu-

larization criterion (24). However, as we will discuss it in

the next section, the Bayesian estimation framework is much

richer.

Let us consider here the QR solution, which is the optimizer

of the criterion

Jðf Þ ¼
X

k

kgk �Hkf k2 þ lkDf k2

This solution can be obtained analytically by differentiating

the criterion J(f) with respect to f and setting it to zero

rJðf̂ Þ ¼ �2
X

k

H0kðgk �Hk f̂ Þ þ 2lD0Df̂ ¼ 0 ð26Þ

which results to the normal equation

X
k

H 0kHk þ lD0D

" #
f̂ ¼

X
k

H 0kgk ð27Þ

and finally to the solution

f̂ ¼
X

k

H 0kHk þ lD0D

" #�1X
k

H 0kgk ð28Þ

This solution which can be compared with (18) is composed of

the application of the adjoint operator
P

kHk
0 ¼

P
k B0 Mk

0 D0

and a global filtering operator [
P

k Hk
0 Hk þ l D0D]21. One

then finds the basic operations of up-sampling D0, registration

or motion compensation M0, individual filtering B0 and global

filtering or fusion [
P

k Hk
0 Hk þ l D0D]21. The case of LS

solution corresponds to l ¼ 0. In particular cases, we may

obtain approximated analytical inversion for the filtering

operation.

We may note, however, that even if we have this analytical

expression for the QR or LS solution, very often its compu-

tation is done via an iterative optimization algorithm such as

a gradient ascent one, where at each iteration (i), we adjust

the previous result with an increment which needs the compu-

tation of the gradient

f ðiþ1Þ ¼ f ðiÞ � arJðf ðiÞÞwith

rJðf Þ ¼
X

k

H 0kðgk �Hkf Þ þ lD0Df
ð29Þ

which is again composed of all the basic adjoint operators.

What is more interesting is that, these adjoint operators are

the main building blocks of any iterative optimization

algorithm trying to optimize any of the aforementioned

criteria.

Indeed, the classical methods of iterative back-projection,

first introduced by Irani and Peleg [18], have found much

use in mainstream SR reconstruction, can actually be con-

sidered as a simple gradient-based algorithm for minimizing

the LS criterion. However, these methods have no unique sol-

ution due to the ill-posed nature of the inverse problem. In

fact, minimizing the LS error does not necessarily imply a

reasonable solution and a convergent iteration does not

necessarily converge to a unique solution.

Note also that, at each step of these iterative algorithms, we

need a motion estimation or a registration step.
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4.1. Methods trying to estimate jointly registration
parameters, PSF and the HR image

In the methods of the previous section, the hypothesis was that

the PSF of different blurring effects and the registration

parameters f are known or estimated previously. However,

there are also many more advanced methods which try to

jointly estimate the PSF and the registration parameters at

each iteration of the SR reconstruction. In fact, we can

define a criterion J(f, h, f) which depends, not only on the

HR image f, but also on the PSF h and the registration par-

ameters f. A such typical criterion is

Jðf ; h;fÞ ¼
X

k

kgk �Hkf k2 þ lf kDf f k
b

þ lhkDhhk2 ð30Þ

where Hk depend on (h, f)k. Then, the main idea is to opti-

mize this criterion, successively, with respect to f, h and

fk, each time keeping the two others fixed at previous iter-

ations. In these methods, appropriate choice of Df and Dh

and the regularization parameters lf and lh may be very

important for the success of the method. Choosing b ¼ 2

simplifies the two steps of optimization with respect to f
and h. However, the optimization with respect to f
needs great care and the success of the method may

depend on this step. Many authors have followed this

approach [2, 3, 41].

5. MORE ADVANCED PRIOR MODELING AND
BAYESIAN ESTIMATION METHODS

In SR problems, as in any inverse problem, the choice of the

optimization criterion, and in particular, the regularization

terms are very important. These terms, in a Bayesian frame-

work, correspond to the prior laws. In SR, a Gaussian prior

for the PSF is often reasonable. This corresponds to the term

lhjjDhhjj2 in (30). More important then is the prior law on

the HR image f. The Gaussian prior for f leads to fast algor-

ithms. However, it is not appropriate in many imaging appli-

cations. This is the reason for choosing lf jjDf f jj
b with 1 ,

b, 2 in (30), which corresponds to a generalized Gaussian

prior which is more appropriate for many applications of

imaging systems.

Recently, we developed more sophisticated methods which

try to account for the fact that very often the images to be

reconstructed are composed of statistically homogeneous

regions, and this property can be used to develop methods

which still give more accurate reconstruction results [27, 39,

40]. The main idea in these methods is to model the image

via a composite Markov model with hidden region labels

z(r) which takes discrete values l ¼ 1, . . ., L, and is modeled

via a Potts Markov field

pðzÞ/ exp g
X
r[R

X
r0[VðrÞ

dðzðrÞ � zðr0ÞÞ

( )
ð31Þ

where z ¼ fz(r), r [ Rg, V(r) is the set of the four nearest

neighbors of r and R is the set of all pixel positions.

This Potts model can also be written as

pðzðrÞ j zðr0Þ; r0 [ VðrÞÞ/ exp g
X

r0[VðrÞ

dðzðrÞ � zðr0ÞÞ

( )
ð32Þ

where we can see more explicitly the dependency of z(r) to its

neighbors fz(r0), r0 [ V(r)g.

The image pixels fl ¼ ff(r), r [Rlg with a same classifi-

cation labels Rl ¼ fr : z(r) ¼ lg are then modeled by Gauss–

Markov fields

pðf lÞ ¼ N ðml1l;SlÞ ð33Þ

which can also be written in conditional form

pð f ðrÞ j zðrÞ ¼ lÞ ¼ N ðml;s
2
l Þ ð34Þ

where the parameters (means ml, variances sl
2 and covariances

Sl) depend on the region labels l. By this modeling, naturally

the pixels of an image are classified in L independent classes.

The pixels having the same class fl ¼ ff(r), r [Rlg are natu-

rally grouped in finite set of disjoint regions Rll0 such that:

Rl ¼ <l0Rll0 with >l0Rll0; ¼ 0; >lRl ¼;

<lRl ¼ R
ð35Þ

See Fig. 13.

The conditional law given in (34) can also be interpreted

as a

pð f ðrÞÞ ¼
XL

l¼1

alNðml;s
2
l Þ ð36Þ

where al ¼ P(z(r) ¼ l) with
P

l¼1
L al ¼ 1 which is a mixture of

Gaussians law.
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As we assumed the pixels with different labels to be inde-

pendent, we can write

pðf j z;u1Þ ¼
YL

l¼1

Nðml1l;SlÞ

/
YL

l¼1

Y
r[Rl

exp
�1

2

f ðrÞ � ml

s2
l

� �2
( ) ð37Þ

where u1 ¼ f(ml, sl
2), l ¼ 1, . . ., Lg.

Now, using the the likelihood

pðg j f ;s2
1Þ/ exp �

1

2s2
1

X
k

kgk �Hkf k2

( )
ð38Þ

the prior model (37), the Potts-Markov model of (31) and an

appropriate prior for the hyper-parameters u ¼ fs1
2, u1g ¼

fs1
2, (ml, sl

2), l ¼ 1, . . ., Lg, we can deduce the posterior prob-

ability law

pðf ; z; u j gÞ/ pðg j f ;s2
1Þ pðf j z; u1Þ pðzÞ pðuÞ ð39Þ

from which we can infer on all the unknowns. We have used

conjugate priors for all the hyper-parameters u, i.e. Gaussians

for the means, inverse gammas (IG) for the variances and

Inverse Wishart (IW) for the covariance matrices. For more

details on these, refer to [42].

Finally, from this posterior law MAP or posterior mean esti-

mators are deduced and appropriate numerical optimization or

numerical integration (MCMC) algorithms are developed

to estimate jointly all the unknowns: the HR image f̂, its

segmentation ẑ and the hyper-parameters û. However, in

general, these solutions are obtained in an iterative way

either by relaxation or by Gibbs MCMC sampling. The esti-

mation of f given the two other unknowns z and u needs

optimization of a criterion which looks like the regularization

one where the regularization term depends on the segmenta-

tion z obtained in previous steps. The estimation of z given

previous values of f and u can be assimilated to a dynamic

segmentation step, and finally, the estimation of the hyper-

parameters u depends on the data and the previous values

of f and u. At the end of iterations, we obtain, jointly a

final solution f̂, its corresponding segmentation ẑ and statisti-

cal properties (means, variances and correlation coefficients)

of pixels in each of those homogeneous regions, as well as

the statistical properties (mainly the common variance) of

the noises.

We may also note that the expression of the likelihood

depends on the unknown geometrical translational movements

which must also be estimated either once at the beginning

using the LR images or during the iterations.

5.1. A first algorithm

The main algorithm, in its simplest scheme, can be summar-

ized as follows:

– Initialization:

(i) Estimate the sub-pixel translational movements dk

between the LR images gk(r);

(ii) Estimate a first HR image f̂(r) based on LS or QR;

– Iterations:

(i) Estimate a segmentation ẑ(r) for the HR image f̂(r) based

on the Potts Markov modeling;

(ii) Estimate the parameters û of Gaussian mixtures model

for the HR image f̂(r) using the classification and seg-

mentation result ẑ(r);

(iii) Update the HR image using the gradient of log posterior

which writes here

– ln pð f j ẑ; û ; gÞ ¼
1

2s2
1

X
k

kgk �Hkf k2 þ
X

l

kf � ml1lk
2
Sl

ð40Þ

The details of this modeling and more details on this simplest

and other MCMC based Bayesian computation algorithms can

be found in [28, 27].

5.2. New extensions

In aforementioned Bayesian SR image reconstruction algor-

ithm, the translational movement parameters are estimated

once from the LR images before using them during the SR

algorithm iterations.

In this paper, we propose four extensions:

– Estimation of the translational movements during the iter-

ations using the previously estimated HR image as the

reference;

– Extension of geometrical transformation to other projective

or rotational transformations;

– Estimation of the PSF during the iterations;

FIGURE 13. Mixture and hidden Markov models for images: Three

linked images are intensity image f(r), segmentation or classification

image z(r) and the contour image q(r) (note that f(r) is gray levels,

each color of z(r) represents a class and q(r) can be obtained from

z(r) in a deterministic way).

SUPER-RESOLUTION Page 11 of 16

THE COMPUTER JOURNAL, 2008



– Implementation in such a way that the LR images can be

used successively as they arrive and

– Extension to 3D case.

The new algorithm, in its simplest scheme, can be summar-

ized as follows:

– Initialization:

(i) Estimate a first HR image f̂(r) just by interpolating the

first LR image;

– Iterations:

(i) Estimate the translational movements dk between the HR

image f̂(r) and newly entered LR images gk(r) which is

interpolated to the HR dimensions. An extension to a

more general geometrical transformation such as rotation

and translation can also easily obtained.

(ii) Estimate the blurring PSF. We limited here this step by

choosing only a PSF between a finite number of

choices. The selected PSF minimizes the LS criterion.

(iii) Estimate a segmentation ẑ(r) for the HR image f̂(r) based

on the Potts Markov modeling;

(iv) Estimate the parameters û of Gaussian mixtures model

for the HR image f̂(r) using the classification and seg-

mentation result ẑ(r);

(v) Update the HR image using the gradient of log posterior as

in previous case, but also using the segmentation results.

The main advantage of this new algorithm is that it can be

applied more easily for the video sequence SR. Also the SR

reconstruction result can be available from the first arrival of

the LR, and its resolution and precision is increased by the

arrival of the new LR images. Its performances become adap-

tive which is more practical in real video sequence SR appli-

cations. Figure 14 shows an example of the results of the

different steps of this algorithm.

Figure 15 shows another example of results obtained by two

different methods: A robust regularized method and the pro-

posed method. To measure the quality of the results, we

used a relative L1 distance between the original and the recon-

structed results. We limited here this comparison to two

examples. As we can see from these results, in both examples,

the proposed method gives a better result. However, modeling

the image by a Gauss–Markov with Potts prior is more appro-

priate for the second example, and thus the increase in the

performances for this case is still more important.

The 3D extension follows exactly the same steps. However,

here it is more difficult to show the results of those different steps.

6. LIMITATIONS AND CHALLENGES

In all the presented methods, a few steps still need extensions.

These needed extensions can be classified into four main

FIGURE 14. Different steps of the new SR method: (a) Original HR

f(r) and its segmentation z(r); (b) LR image gk(r); (c) interpolated LR

image g̃k(r); (d) first HR estimate f̂(r) and its segmentation ẑ(r). (e)

final HR estimate f̂(r) and its segmentation ẑ(r).
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categories: (a) Forward modeling, (b) Prior modeling of the

HR image, (c) Estimation or determination of the hyper-

parameters and (d) Efficient algorithm implementation.

In this section, we give some directions and challenges to

them.

6.1. Forward modeling

Blurring, noise, geometrical transformation (wrapping),

photographic transformation and DS are the main transform-

ations going from the desired HR image to LR images. For

blurring, assuming a fixed PSF is good enough in many appli-

cations. However, in some applications this model has to be

extended to account for spatial variation of the PSF.

Additive, centered, white and Gaussian noise may be too

restrictive in some applications. However, it is not too difficult

to account for multiplicative or colored or non-Gaussian noise.

Indeed, in RE methods, the non-Gaussian noise property is

accounted for.

In the presented methods, only integer sub-pixel transla-

tional movement and geometrical transformation (wrapping)

are considered. This can be extended to non-integer sub-pixel

translation and also to other more general geometrical trans-

formations such as rotational, zooming and other projective

transformations. However, the computational costs may

increase. Indeed, the estimation of the parameters of such

transformations may become more sophisticated. This

subject is, by itself, a great area of research in image proces-

sing which is called image registration. There are different

approaches to this problems. A survey can be found in the

following references [5, 6, 28, 36, 37, 39, 43, 46].

6.2. Prior modeling of the HR image

The Bayesian framework gives many possibilities to model

and so to improve the performances of SR methods. The clas-

sical Gauss–Markov modeling accounts only for local

smoothness or global continuity and regularity. The main

advantage of this simple model is that the estimation steps

become easy. However, for many images this simple model

is not good enough and we need to account for the presence

of contours and regions (spatial geometrical properties of the

images) as well as the textures. Generalized Gaussian prior

modeling of the images has been proposed and used either

explicitly or implicitly via RR terms to go farther and

mainly trying to preserve the contours during the reconstruc-

tion. However, even if these models have given successful

results, we can still go farther in prior modeling and would

like to model explicitly the contours and regions in images.

The compound Markov modeling is an appropriate tool for

this. Two main models have been developed. First is the

class of non-Gaussian one-layer Markov models with

FIGURE 15. A comparison of the results obtained by two methods:

An RR method and the proposed method; in each group of images,

(a1,2) is the original HR image f0, (b1,2) is one of the K ¼ 9 LR

images, (c1,2) is the reconstructed HR image obtained by an RR

method [for df ¼ 9% and df ¼ 4.9%, respectively, and (d1,2) is the

reconstructed HR image obtained by the proposed method [for df ¼

7% and df ¼ 2.8%, respectively]. (For each of reconstructions the

relative L1 distances to the original HR is given).
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non-quadratic potential and energy functions

pðf Þ/ exp �g
X

r

f f ðrÞ � b
X

r0[VðrÞ

f ðr0Þ

 !( )
ð41Þ

where b ¼ 1/jV(r)j which is in our case b ¼ 1/4 and where

f(t) is a positive potential function such as

j t ja;
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
� 1; logðcoshðtÞÞ;

t2 jtj � T

2Tjtj � T2 jtj . T

�

or

logð1þ t2Þ;
t2

1þ t2
; arctanðt2Þ;

t2 jtj � T

T2 jtj . T

�

and many other convex or non-convex functions.

Second is the class of two-or three-layers (double or triple)

compound Markovian model with contours or region labels

hidden variables. One of the most used models of this class

is a Gauss–Markov model with hidden contour variables

pðf j qÞ/ exp �g
X

r

f ðrÞ � b
X

r0[VðrÞ

ð1� qðr0ÞÞf ðr0Þ

������
������
28<

:
9=
;
ð42Þ

where q(r0) is a binary valued quantity which is equal to 1 if

there exist a contour at the position r0 and is equal to 0 else-

where. In this model q represents the image contours and

b varies as a function of the number of neighbors

which do not rely on the contours, i.e b takes one of the

values f1/4,1/3,1/2,1g depending on the relative position of

the pixel r and the contour positions.

To use this prior, we also need to define p(q). The simplest

model is the Bernoulli model

pðqÞ/ a
P

r
qðrÞ
ð1� aÞ

P
r
ð1�qðrÞÞ

ð43Þ

where a ¼ P(q ¼ 1) and (1 2 a) ¼ P(q ¼ 0) which does not

account for a correlation between the contour elements.

There are also more sophisticated models which account for

possible correlations between them (Markovian models).

Indeed, there are links between these two classes of models.

For example, a truncated quadratic potential function in the

first category becomes equivalent to the two-layer (intensity-

contours) model in the second.

The compound model we considered is also a compound

Gauss–Markov model, but the hidden variables z we con-

sidered correspond to region labels. However, there is a

deterministic relation between z and q (see Fig. 13). This

model can be written in a compact way as follows

pðf j zÞ/ exp �g
X

r

~f ðrÞ � b
X

r0[VðrÞ

ð1� qðr0ÞÞ ~f ðr0Þ

������
������
28<

:
9=
;
ð44Þ

with

~f ðrÞ ¼
f ðrÞ � mðrÞ

s2ðrÞ

and

mðrÞ ¼ ml; 8r [ Rl

and

s2ðrÞ ¼ s2
l ; 8r [ Rl:

This model is still more appropriate than the compound model

in Equation (42), because naturally, it results to the regions

with closed contours q(r) which can be deduced from the

region labels z(r) easily

qðrÞ ¼
0 if zðrÞ ¼ zðr0Þ; 8r0 [ VðrÞ
1 else

�
ð45Þ

With this model, at the end of the estimation process, we have

simultaneously f̂, ẑ, û and, as a by product, q̂(r).

A few references where the Markovian models have been

used extensively are [7, 9, 14, 27, 31, 38, 47].

6.3. Estimation of the hyper-parameters

Practically, all the regularization based methods have, at least,

one parameter (the regularization parameter l) which has to be

fixed either in an ad hoc way or based on cross validation

method or still based on some training data sets. It is also

the same for the parameters b1 and b2 of the RR criteria

(24). In the Bayesian estimation methods too, in general,

there are few hyper-parameters to be fixed, even if, in

theory, it is possible to estimate them during the iterations.

For example, in the presented Gaussian mixture model with

hidden Potts Markov model (31) for region labels, we fixed,

in an ad hoc way, the Potts Markov parameter g. Another para-

meter that we fixed is the maximum number K of region label

classes.
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6.4. Efficient algorithm implementation

The forward and prior modeling result to a posterior prob-

ability law via the Bayes’ rule. Then, by choosing an estimator

based on this posterior law, we try to obtain appropriate solu-

tions to an inversion method. More sophisticated are the

forward and prior models, in general, more sophisticated

will be the inversion and SR reconstruction algorithm and so

the cost of proposed algorithm. Finding a good compromise

between the complexity, performances and cost is also a chal-

lenge. A few references where this compromise has been

discussed are [7, 11, 12, 16, 47–51].
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