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Abstract. The Bayesian approach has been proven to give a common estima-
tion structure to existing image reconstruction and restoration methods, in spite of
their apparent diversity (Demoment 1989). The goal of this paper is to investigate
diffraction tomography within the Bayesian estimation framework. A regularized
solution to this ill-posed nonlinear inverse problem is defined as the maximum
a posteriori estimate, introducing prior information on the object to reconstruct.
Two equivalent formulations of this definition are available which lead to solution
of a constrained or an unconstrained optimization problem to compute this solu-
tion. Different existing methods for solving this problem — such as Born Iterative
Method (Wang and Chew 1989), Newton-Kantorovitch method (Joachimovicz et al.
1991), Distorted Born Iterative method (Chew and Wang 1990) and Modified Gra-
dient method (Kleinman and van den Berg 1992) — are interpreted as algorithms to
compute the defined solution. This common point of view allows an objective com-
parison between these methods, from the standpoint of their convergence properties
and the solution they provide.

Introduction

Diffraction tomography consists in constructing an image representing the
spatial variation of some physical properties of an inhomogeneous object
(such as dielectric permittivity and conductivity for electro-magnetic waves),
from a finite set of field data scattered by this object. This problem is intrinsi-
cally ill-posed and a satisfactory solution cannot be obtained from imperfect
data without any introduction of a priori information on the object. The
objectives of this paper are to define a regularized solution to this nonlinear
inverse problem within the Bayesian estimation framework and to interpret
some of the existing methods to solve this problem as algorithms to compute
the defined solution.

First, we briefly present the direct model in a functional and in an al-
gebraic framework. The algebraic framework allows a compact presentation
and notably allows us to perceive strong similarities between some classical
methods, which cannot be distinguished in the functional framework in which
they have been proposed.

Then, we define a regularized solution within the Bayesian estimation
framework. Bayes rule is a consistent way to combine information provided by
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the data and prior information on the solution. In this paper, we use Markov
Random Fields to model this a priori information. We define the solution as
the maximum a posteriori estimate; so the solution’s computation requires
resolution of an optimization problem.

Then some of the existing methods to solve the diffraction tomography
problem are interpreted and analyzed as algorithms to compute the defined
regularized solution. Among these methods are Born Iterative Method (Wang
and Chew 1989), Newton-Kantorovitch method (Joachimovicz et al. 1991),
Distorted Born Iterative method (Chew and Wang 1990) and Modified Gradi-
ent method (Kleinman and van den Berg 1992). Three classes of methods are
distinguished: the first one considers successive linearizations of the forward
model, the second define the solution as the minimum of a joint criterion
depending on the object and the field on the object, while methods of the
third class minimize a criterion which only depends on the object.

Finally, an objective comparison between these different classes of meth-
ods and the solution they provide is proposed.

1 Problem Statement

We consider an inhomogeneous 2-D object, embedded in a known homoge-
neous medium, illuminated with a pure harmonic Transverse Magnetic (TM)
plane wave. The object is characterized by its complex contrast function
z(r) = k%(r) — k2, which is related to the dielectric permittivity e(r) and
the conductivity o(r) of the object by k?(r) = w?uo (e(r) + jo(r)/w), ko
is the wave number of the background homogeneous medium and r denotes
a position in IR?. The direct scattering problem is modeled by the coupled
integral equations:

y(rs) = //D G(ri, v )z(r")g(r')dr', 7; € Dy | (1)
6(r) = do(r) + //D Glr,)z(#")g(r')dr', v € Do | @)

where y(r;),7; € Dy is the scattered field on a sensor located at r; in the
measurement area Dy, ¢(r),r € Do and ¢g,7 € D are the total and the
incident field on the object area Dy, and G is the Green function for the
homogeneous background medium.

From an algebraic viewpoint, discretization of (1-2) with a moment method
(Howard and Kretzschmar 1986), leads to:

y=GuX¢ , (3)
¢=¢y+Go X0 , (4)

where y € C™, ¢ € C™, ¢, € C™, X is a diagonal matrix (no X ng) with
the components of the vector € C™ as diagonal elements, ng is the number
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of pixels of the discrete object and ny is the number of measurement sensors.
Note that these notations can be extended for emission from ng different
positions.

Formally, the total field ¢ on the object can be expressed from (4) and
introduced in (3). It gives an explicit relation between the contrast and the
data y = A(x) with:

A@) = GuX (I - GoX) ™" ¢, . (5)

The inverse problem, which we are concerned with consists in determining
the contrast x from a given finite set of noisy data y. Moreover, note that one
can have no > ny X ng (number of unknowns larger than number of data)
so that the system of algebraic equations can be highly under-determined.

2 A Bayesian Approach for the Inverse Problem

The Bayesian inference is now a common way to handle ill-posed inverse
problems in signal and image processing (Demoment 1989). We recall the
main basis of the Bayesian framework before considering its application to
nonlinear diffraction tomography.

2.1 General Framework

In a general Bayesian framework of parameter estimation from experimental
data, the relation between the unknown parameters £ € R™ or C" and the
data y € R™ or C™ can be written:

y=Alx)+n ,

where A models the observation mechanism (direct problem) and n mod-
els errors on the measurements (measurement noise as well as modeling and
discretization errors, which can often be considered additive on the data).
Without particular knowledge on the errors, they are usually modeled by zero
mean white Gaussian random variables, circular in case of complex quanti-
ties, with known variance ¢2 and independent of . These assumptions are
considered hereafter.

From this modeling, the likelihood function of the object for given data
can be deduced:

p(ylz) = (%)mexp (—;—%lly — A(m)||2) .

n

The a priori state of knowledge, that is before any measurement is carried
on, is taken into account through a probability law:

p(z) < exp {—pld(z)} ,
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where U has to be chosen to enforce desired properties on the solution.
Bayes rule allows to combine information supplied by the data and prior
model in the a posteriori probability law of the parameters:

p(y|z)p(z)

p(zly) = o)

’

where, p(y) is a normalizing coefficient.

From a strictly Bayesian viewpoint, the posterior law is the solution to
the problem as it sums up all information available on the object. However,
it is necessary to decide on a value to give to x. Different estimators can be
exhibited following the chosen decision rule, such as Maximum a posteriori
(MAP), Maximum Marginal a posteriori (MMAP) or Posterior Mean (PM)
estimators. Parameters which maximize the a posteriori law (MAP) are fre-
quently chosen and this leads to an optimization problem. Indeed, the MAP
estimate corresponds to the minimizer of the criterion:

J (@) = lly — A@)|” + XU(z) ,

where A = o2 can be considered as a regularization parameter which bal-
ances between fidelity to the data and prior information.

2.2 Application to Nonlinear Diffraction Tomography

This general framework can be applied on many ways to the considered prob-
lem. We propose herafter two distinct formulations, depending on whether
the contrast & has to be estimated from the data y or both the contrast x
and the field ¢ on the object have to be estimated.

First Formulation : Estimation of . This formulation is straightfor-
ward. The solution is defined as the MAP estimate of x:

Ty,p = Arg maa}xp(a:|y) .

From the explicit relation (5) it corresponds to the global minimizer of the
criterion

T (@) = |ly — A@@)|” + (=) , (6)
with
A(m) = GMX(I — G0X)71¢0 .
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Second Formulation : Joint Estimation of x and ¢. The solution is
defined as the joint MAP estimate of & and ¢:

(@, @)uar = arg max p(zx, ¢|y) .
(x,9)

)

Thanks to Bayes rule, the a posteriori law can be written:

p(ylz, d)p(dlz)p(z)

p(y) @

p(z, dly) =

In this relation, p(y) is a constant with respect to & and ¢, so only the three
numerator terms intervene in the MAP criterion:

— Using (3), with the considered error model, the first term can be written:

1
ple, 8) xexp { - Sl - GuX P} |
b

— The second term corresponds to the probability law of ¢ for a known x.
As ¢ is the total field on the object, it is uniquely determined for a given
x by (4). Thus, if § denotes the Dirac distribution:

p(dlr) = 6(¢ — Py — Go X ) ;

— p(x) corresponds to the prior model on the object: p(x) x exp {—uld(x)}.

Using these expressions, the posterior probability law can be written:
1
bl 9ly) x xp { - S ly = GuX S - () | 66— b — GoX ) .
b

The MAP estimate of (x, @) corresponds to the maximum of p(x, ¢|y),
i.e. it minimizes the criterion:

jch{AP(w’¢) =|ly - GMX¢||2 + \XU(x) (8)

subject to the constraint:

¢—¢0_G0X¢=0- (9)
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2.3 Prior Models

Introduction of a priori information on the object is the basis of regulariza-
tion. In the Bayesian framework, this information is modeled by a probability
law p(x) or equivalently by an energy function U(x).

We consider the class of Markov Random Fields (MRF) models, which
is frequently used in image processing (Geman 1990) and allows the intro-
duction of local correlations between the elements of an image. The energy
function of a MRF can generally be written:

U) =D > plai—x)) ,

i i

with p(t) a potential function, and ¢ ~ j stands for neighbors pixels 7 and
j. Note that for complex fields, p operate separately on real and imaginary
parts of x if they are considered independent.

A large choice of such potential functions has been proposed in the liter-
ature and certain of them are summarized in Table 1 and represented Fig. 1.

Table 1. Some potential functions and their characteristics

Name Potential function Characteristics
L, norm, Gaussian p(t) = t strictly convex, scale invariant
L; norm, Laplacian p(t) = || convex, scale invariant
L, norm p)=1tP,1<p<2 strictly convex, scale invariant
. t7if |t < 1
H fi = | o
ubert function p(t) {2|t| C1if > 1 convex
2 .

fltg|<1 . c s

Truncated Quadratic p(t) = { |1t|if 1|t||t>|I non convex, implicit line process

The L, norm corresponds to a first order Tikhonov regularization. This
kind of regularization is of significant interest when the relation between the
unknown and the data is linear because a linear explicit relation between the
MAP estimate and the data is then available:

Zyw = (ATA + XW) LAty |

with W' the correlation matrix of the Gaussian process. However, such an
interest decrease for nonlinear direct models, unless linear approximations
are considered.

Nonconvex potential functions, like the truncated quadratic or other mod-
els including implicit or explicit line processes, can improve considerably the
reconstruction of piecewise continuous images (Kiinsch 1994). However, as
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local minima may appear in the energy function, choosing such a model gen-
erally largely increases the difficulty of computing the solution.

Convex potential functions, such as L, norms or Hubert function, seem to
be a reasonable choice for nonlinear inverse problems. They corresponds to
a compromise between L, norm and nonconvex functions, as large variations
of the field are less penalized than for the Ly norm, but more than noncon-
vex functions. Using such models, allows better reconstruction of piecewise
continuous images than Tikhonov regularization with no difficulty increase
of the solution computation.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig.1. 1D representation of some potential functions: Ly (—); Li (——);
L,, p=1.3 (---); Huber function, T =1 (—-); Truncated Quadratic T = 1(- -).

2.4 A Computational Challenge

The regularized solution has been defined as the contrast & which minimizes
criterion (6) or as the contrast x and the total field ¢ that jointly minimize
criterion (8) under constraint (9). These two distinct formulations are equiv-
alent in the sense that they define the same solution (for x), but one may
consider using different techniques to solve them.

Note that the Bayesian framework is not indispensable for defining the
solution as the minimum of the criterion (6). Indeed, this criterion can be
considered as a penalized least square criterion within a deterministic frame-
work. However, the definition of the joint solution as the minimum of (8)
under constraint (9) is not straightforward from deterministic arguments and
other joint criteria are often proposed, which will be studied in § 4. Anyway,
the Bayesian framework is not only useful to define a regularized solution to
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an inverse problem but also offers probabilistic tools e.g. to characterize the
solution (Tarantola 1987) and to estimate some additional parameters such
as the regularization parameter (Idier et al. 1996).

Due to the non-linearity of the direct problem, it is easy to show that the
criteria (6) and (8) are not convex functions. Thus, even if the prior informa-
tion is modeled with a convex energy function, the criteria may have local
minima. From simulation experiments, appearance of local minima is closely
linked to a high contrast value, a limited number of measurements and a low
signal-to-noise ratio. Thus computation of the solution may be a cumbersome
task, especially in these difficult configurations. However, the problem seems
to be less difficult in more favorable configurations.

In the multiplicity of methods proposed for solving nonlinear diffraction
tomography problems, we tried to establish a classification, even if not ex-
haustive. Three types of methods has been emphasized which can be inter-
preted and analyzed in terms of algorithms to compute the defined regularized
solution.

3 Successive Linearizations

Methods of the first type consider iteratively linear approximations of the
direct model, which leads to solve successively linear inverse problems. Dif-
ferent methods of this type have been proposed in the literature to solve the
nonlinear inverse problem of diffraction tomography. As the nonlinear inverse
problem is ill-posed, each of the linear inverse problem is ill-posed and reg-
ularization has often been introduced to stabilize the solution of each linear
problem.

Before comparing these different methods, we propose a successive lin-
earizations algorithm specifically designed to minimize the criterion (6). Fi-
nally, we study the convergence properties of such techniques.

3.1 A Successive Linearizations Algorithm to Minimize J"*"

At a given iteration n, a linear approximation of A has to be taken into
account for x near x,. The theoretical most coherent linear approximation
of A near x,, is given by its first order Taylor series expansion:

A(z) = A(zn) + Ve A(z,) (T — 20) + O (T — 1))

(strictly speaking, one has to account for the Taylor series expansion of the
real and imaginary parts of 4 to define such a relation for complex values
functions). Let AJ™M = Vi A(x,,), calculus of A can be done easily. If
¢, = (I — GoX,)"1¢, denotes the field on the object for contrast x,, and
&, its corresponding diagonal matrix, A" can be written:

A%MAP — GM [I + Xn(I - GoXn)_IGO] dsn .



An Overview of Nonlinear Diffraction Tomography ... 9

Thus minimization of J"** can be performed with successive lineariza-
tions of A:

Initialize n = 0, xg.
Tterate for n = 1,2... until convergence towards a stationary point:

1. Compute the field on the object ¢,, and the matrix A"™**" corresponding
to the linear approximation of A near current solution x,,.

2. Compute @p41 = argmin TJIMAR () with

stMAP(m) — ||,y _ A(m") — A%MAP(m — mn)||2 + /\Z/{(m) .

Note that in such a scheme, for convex energy functions i, all these
criteria are convex functions and consequently have a unique global minimum.

3.2 The Born Iterative Method

The Born Iterative Method (BIM) has been introduced to circumvent the
non-linearity, solving iteratively each of the coupled equations (1-2) (Wang
and Chew 1989). Indeed, both integral equations are bilinear with respect
to z and ¢ and solving each equation with respect to one of these variables
leads to solve linear equations. Using algebraic notations, the BIM scheme
can be summarized:

Initialize ¢,, = ¢, (Born approximation).
Iterate for n = 1,2 ... until convergence towards a stationary point:

1. Compute .41 for field ¢, on the object, i.e. solve the linear inverse
problem: y = Gy®,x.

2. Compute the total field on the object ¢,,,,, corresponding to contrast
Lp+41-

The linear approximation of the direct model which is accounted for in
step 1. can be written:

A(z) = A(z,) + AN (2 — ), with AN = Gu®, .

It appears in calculus of A;™*", that A>™ corresponds to take a zeroth order
approximation, with respect to 6z, of [I — Go(X,, +6X)]™". This term is
approximated by [I — GoX n]_1 so that the approximation of the BIM is
coarser than the approximation of SLMAP.

In (Wang and Chew 1989), the linear inverse problem of step 1. is solved
using a zero order Tikhonov regularization on . Hence, the original BIM is
equivalent to SLMAP where A”"" is replaced by A}, with U(z) = ||z||?
and x = 0 is taken as initial solution.
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3.3 The Distorted Born Iterative Method

The Distorted Born Iterative Method (DBIM) (Chew and Wang 1990) is
based on a scheme similar to the BIM, using distorted wave Born approx-
imations. At each iteration, a known inhomogeneous background medium
with contrast x, is considered, with corresponding Green function G" and
incident field ¢,,, and an additional inhomogeneity dz has to be computed.

Hereafter, ¢y, ¢y; denote the field ¢,, on the object and on the measure-
ment points respectively, Gy; denotes a matrix corresponding to discretization
of the Green function for inhomogeneous medium ,,. The DBIM scheme can
then be summarized:

Initialize o = 0,GT, = Gy and the incident fields ¢ = @2, 7 = @3
(Born approximation).
Tterate for n = 1,2... until convergence towards a stationary point:

1. Compute contrast &, 11 = x, + dx for the distorted wave Born approx-
imation (field on the object ¢; and matrix GY;), i.e. solve the linear
inverse problem: y + ¢ = @i + GrdLiT.

2. Compute incident fields ¢2 1, @2 and matrix GIt' corresponding to
the new inhomogeneous background x,1.

If discretization is performed with a moment method with pulse basis and
test functions, as suggested in (Chew and Wang 1990), the update of G7; can
be written:

Gl\",[ == GM + G;,LIXnGO .

Note that this algebraic relation is not valid for other basis and test functions
such as piecewise continuous ones, in which case the study of DBIM in an
algebraic framework is not as easy. Using algebraic notations, it can be shown
that, at each iteration, the first step accounts for a linear approximation of
A which can be written:

Alx) = Alz,) + A™(x —x,) , with AXP™=Gu(I-X,Go)'®, .

It can be shown that the approximation of the DBIM is identical to that of
the SLMAP. Indeed,

(I-XnGo) ' =T+ X,(I-GoX,)'Go ,

which can be verified by calculating the product of these matrices.

In (Chew and Wang 1990), zero order Tikhonov regularization on §x has
been introduced to solve the linear inverse problem of step 1, i.e. it accounts
for an energy function U(x — x,,) instead of U(x) in the SLMAP scheme.
Thus the solution given by this method does not correspond to a minimum
of the MAP criterion (6).
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3.4 The Newton Kantorovitch Method

The BIM and the DBIM are specific to the modeling of the forward problem
with coupled equations such as (2-1). The Newton-Kantorovitch method is a
more general method to solve nonlinear functional equations y = A(z) (Roger
1981). An iterative scheme is introduced, whose iteration consists in calcu-
lating variation dz added to z, so that y — A(z,) = A(z, + 0z). As dz is
assumed to be small, A(z, + éz) is linearized for each iteration.

A Newton-Kantorovitch Method (NKM) has been proposed to solve the
problem concerned (Joachimovicz et al. 1991). The linear approximation taken
into account in (Joachimovicz et al. 1991) can be written:

Alx) = Alz,) + ANz —2,) , with AN =Gu(I - X,Go) '®, ,

which is strictly equivalent to that of the DBIM. Let us recall that this
relation can be established for the DBIM when the discretization is performed
with a moment method with pulse basis and test functions, while it is still
valid for other functions for the NKM.

In (Joachimovicz et al. 1991), the solution of each linear inverse problem
is computed using zero order Tikhonov regularization on §z. Thus the DBIM
and the NKM are strictly equivalent.

3.5 Interpretation and Analysis of the Solutions

In terms of linear approximations, the SLMAP, the DBIM and the NKM are
strictly equivalent, while the BIM accounts for a coarser approximation of A
at each iteration.

The DBIM and the NKM are identical and only differ the from the
SLMAP on the way according to which the regularization is introduced. In-
deed, in the DBIM and the NKM, regularization is introduced to stabilize the
solution of each linear inverse problem and not to regularize the whole nonlin-
ear inverse problem. Regularization is performed on dx and does not take into
account any prior model on x ; so the provided solution does not correspond
to a minimum of J™*". Note that for such a regularization, the algorithms
seem to be very sensitive to the regularization parameter. In (Joachimovicz
et al. 1991) a specific adjusting method has been proposed for this parameter
in the NKM. In (Chew and Wang 1990) it has been observed that the DBIM
can diverge more easily than the BIM. It seems to be contradictory with
the fact that the BIM accounts for a coarser approximation of 4 than the
DBIM, but it can be easily understood from the fact that the DBIM does not
regularize the nonlinear inverse problem satisfactorily but each linear inverse
problem independently.

On the other hand, the SLMAP is a successive linearizations algorithm
designed to compute a regularized solution to the nonlinear inverse problem,
defined as the minimum of J"*".
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The properties of the SLMAP in terms of minimization of J"*" can be
studied. At each step, J"*" is approximated by a convex criterion J5""4"
with same value at x,, and — due to the first order Taylor series expansion —
same slope at this point:

ijLMAP(wn) — jMAP(wn) and ijnSLMAP(wn) — ijMAP(wn) .
The properties of such an algorithm are:

1. There exists no convergence guarantee and algorithm could diverge.
2. If it converges, a stationary point &, is reached and

vmj;LMAP (moo) — vijAP(moo) — 0 ,

so this point corresponds to a local minimum of the criterion J™**.

3. Possible convergence and reached stationary point depend upon the ini-
tialization of the algorithm.

Note that second property is not valid for the linear approximation taken
into account in the BIM. If the BIM converges towards a stationary point,
this point is not guaranteed to be a minimum of J*** because VzJ>™ (x,) #
VeI (x,)- In this sense, the BIM is sub-optimal compared to the SLMAP
(moreover, the SLMAP has been shown to converge more rapidly than the
BIM (Carfantan and Djafari 1996)).

4 Minimization of a Joint Criterion

Some recently proposed methods — methods of the second type — define the
solution as the minimum of criteria which account for errors on both cou-
pled equations (3-4) with possible additional terms (Kleinman and van den
Berg 1992), (Sabbagh and Lautzenheiser 1993), (Caorsi et al. 1993). In these
methods, the solution is defined as the minimizer of a criterion, jointly on
the contrast  and the field on the object ¢, with the following generic form:

F(z,0) = ay|ly — GuX¢|° + a0 ||p — g — GoX B> + Md(z,$) . (10)

Such a criterion is very easy to understand intuitively: it corresponds to
minimize jointly the errors on (3) and (4) and, as the problem is ill-posed, a
penalization term on the unknowns is added to regularize it.

The proposed methods differ on several points:

— Criteria differ from value of parameters ay and «,. For example, these
parameters are fixed to normalize the errors on both equations for ¢ = 0:
a, = 1/||@ol]? and ay = 1/||y||? in (Kleinman and van den Berg 1992),
while they are fixed to 1/2 in (Sabbagh and Lautzenheiser 1993).
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— There are differences on the regularization term. Originally, no regular-
ization was introduced (Kleinman and van den Berg 1992), (Sabbagh and
Lautzenheiser 1993). Then, it has been proposed to regularize both on
z and ¢, with U(z, @) = Az||z]|* + Ap||@||* in (Barkeshli and Lautzen-
heizer 1994) and with U(z, @) = Ap||A1d + (X + k3 1) D||> + Az|| D12
in (Caorsi et al. 1993), where A; and D; corresponds to discretization
of Laplacian and gradient operators. Finally, it has been proposed to in-
troduce a single regularization term on @, corresponding to a Markov
random field with a line process in (Caorsi et al. 1995), and to a total
variation penalization in (van den Berg and Kleinman 1995), which is
equivalent to a L; regularization term.

— The methods also differ from the techniques used to compute the solution.
Usual gradient type local minimization techniques has been used (Sabbagh
and Lautzenheiser 1993), (Barkeshli and Lautzenheizer 1994) as well as
local techniques specially designed for such a criterion (Kleinman and
van den Berg 1992) and global minimization techniques such as Simu-
lated Annealing (Caorsi et al. 1995).

4.1 Bayesian Interpretation

Recall that joint estimation of & and ¢ leads to problem P.: minimization
of criterion (8) subject to constraint (9). The constraint can be equivalently
written ||¢ — ¢y — GoX¢|* = 0, so that the Lagrangian of P, can be written:

L(@, ¢y, 1) = lly = GuX |’ + ]l — ¢ — Go X ¢|I” + MU (=), (11)

with the scalar Lagrange multiplier p. This Lagrangian looks like generic
criterion (10), so that the adopted Bayesian framework gives a new way
to look at it. It corresponds to the Lagrangian of the constraint optimiza-
tion problems P, in which the Lagrange multiplier is fixed intuitively (u =
llyl|?/l|doll* (Kleinman and van den Berg 1992) or u = 1 (Sabbagh and
Lautzenheiser 1993)).

Moreover, this viewpoint gives indications for regularizing such a criterion
with an energy function U(x). Using Bayes rule for the considered model of
errors on measurements, we can see on (7) that there is no need to introduce
prior model on ¢.

Note that in (Caorsi et al. 1995) another Bayesian interpretation has been
given for this criterion. It is shown that if additive gaussian error are assumed
on both coupled equations (3-4), the joint MAP estimate of  and ¢ mini-
mizes a criterion of form (10). However, it can be shown that such a criterion
is obtained introducing zero mean circular Gaussian (conditionally to &) noise
with covariance matrix Cyy = 031 + 03 [(GuX)T(GuX)] ~! on the measure-
ments. It seems to be a very strong and unjustified hypothesis as it considers
a particular correlation between the measurement errors and the unknown
object.
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4.2 Analysis of the Solutions

The Lagrangian theory provides a link between solutions of constrained opti-
mization problems and saddle-point of the corresponding Lagrangian. How-
ever, in the considered case where neither the criterion nor the constraint are
convex, the only available property is the following:

If ((z, @), ) is a saddle-point of Lagrangian (11), (x, @) is a solution to con-
strained optimization problem P,.

However, there is no guarantee that such a saddle-point exists.

Among the different methods proposed to minimize a criterion of form (10),
none tries to reach a possible saddle-point of Lagrangian (11), but only a
minimum of it for a fixed value of Lagrange multiplier. The given solution
is then not necessarily a solution of P.. Moreover, note that criterion (10) is
not convex, so it can have local minima. The solution computed with local
minimization techniques will then possibly corresponds to a local minimum
of the Lagrangian, for fixed Lagrange parameters.

It is possible that the given solution corresponds to a saddle-point of the
Lagrangian. If the fixed Lagrange multiplier corresponds to a maximum of
the Lagrangian, the solution is solution of P.. It can be shown that if (x, ¢)
is a local minimum of L, for u fixed and that constraint is verified, then x
corresponds to a local extremum of the unconstrained criterion J“*". But
if the constraint (9) is not verified, the solution cannot be characterized as
easily.

Note that from this definition of the joint solution as the solution of
P., specific algorithms can be designed to compute this solution (Carfantan
1996).

5 Minimization of the MAP Criterion

From presentation of § 2, a natural idea to compute the defined solution —
which corresponds to methods of the third type — is to minimize directly the
MAP criterion (6).

Different methods have been proposed in the literature which defined the
solution as the minimizer of the mean square error (MSE) between exper-
imental and simulated data, possibly taking into account a regularization
penalty term (e.g. (Garnero et al. 1991), (Xia et al. 1994)). However, an ex-
plicit formulation of criterion (6) using the explicit algebraic relation (5) of A
has only been proposed recently (Carfantan and Djafari 1995). Note that it is
not necessary to express such a relation to try to minimize the MSE and it is
sufficient to be able to simulate the forward problem. However, one can take
advantage of such an expression to design specific algorithms to minimize
this MSE and the criterion (6).

Different optimization techniques have been used to compute the mini-
mum of this criterion and will not be detailed hereafter: local techniques such
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as conjugate gradient (Xia et al. 1994), (Lobel et al. 1996) or global ones such
as Simulated Annealing (SA) (Garnero et al. 1991), Graduated non Convex-
ity (GNC) (Carfantan and Djafari 1995), or a cheaper Iterative Conditional
Mode (ICM) (Carfantan et al 1996).

Using any minimization technique to minimize J"*" guarantees the solu-
tion to be a minimum, possibly local, of this criterion. However, in difficult
configurations, when this criterion has local minima, a global minimization
technique may be used to compute the solution.

MAP

6 A Comparative Study

The presented classification of existing methods allows to better compare
them. One can study the number of considered unknowns, the computation
cost, the convergence properties and the robustness with respect to some
parameters for each type of methods. No simulation results are shown in this
paper and the reader can refer to (Carfantan 1996),(Carfantan and Djafari
1996) for more details. The main conclusions of this study is presented in the
following.

6.1 Number of Unknown

In methods of both first and third types, the unknown is the contrast € C™°
while in methods of second type, the contrast and the total field on the
object for each incident field ¢ € €™ *™ have to be reconstructed. So, if the
number of data is increased, considering more source positions, the number
of unknown is increased as well in methods of the second type.

6.2 Computation Cost

In methods of the first type, evaluation of the criterion requires an order
of O(ng * nu * ng) complex operations. However, these methods require the
update of some matrices between each iteration which includes resolution
of the direct problem. For the BIM, the cost of these updates is of order
O(no® +no? * ng + nonyng) while it is of order O(no® + no? * (ng + ny)) for
the SLMAP, the DBIM and the NKM.

The methods of the second type do not need any updates and evaluation
of the criterion has a cost of order O(no2ns+mno*ns*ny) complex operations.

On the other hand, the third type methods require evaluations of crite-
rion (6) whose computation order is O(no® + no2ns + no * ny * ng). Indeed,
for each evaluation of the criterion, the direct problem has to be solved. For-
tunately, algorithm such as SA (Garnero et al. 1991) and ICM (Carfantan et
al 1996), which update the contrast image pixel by pixel, can perform these
updates without computing the whole criterion for each pixel but only once
for the sweep of the whole image.
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6.3 Convergence Properties

We already studied the convergence properties of each type of methods which
can be summarized as follows. Methods of the first type, such as the SLMAP,
can diverge while the other are guaranteed to converge towards a stationary
point. On the other hand when the SLMAP converges, the provided solution
corresponds to a local minimum of the MAP criterion (6) (which is not true
for the BIM, the DBIM and the NKM). Methods of the second type are guar-
anteed to converge towards a minimum, maybe local, of the criterion (10).
This solution corresponds to the MAP estimate only if the constraint (9) is
verified, which is not guaranteed by these methods. The third type methods
are guaranteed to converge towards a minimum, possibly local, of J¥*".

6.4 Robustness with Respect to the Regularization Parameter

It has been experimentally established that methods of the second and third
types are more robust with respect to the value of the regularization param-
eter A (Carfantan 1996) than first type methods. For example, method of the
first type can give good results for a value of A and diverge for a nearby value,
while the second and third types methods are in general not very sensitive to
a change of a factor ten of this parameter, on the same configuration. This is
an important point to consider as no automatic adjustment of this parameter
is available, only the user’s experience.

7 Conclusion

In this paper, we have studied diffraction tomography within the Bayesian
estimation framework. It allows to consistently introduce prior information
on the solution of this nonlinear ill-posed inverse problem and to define a
regularized solution, the MAP estimate, with reasonable assumptions.
Different existing methods have been classified in terms of algorithms to
compute the MAP estimate. Three types of methods have been distinguished.
Methods of the first class correspond to successively approximating the non-
linear object/data relation with a linear one. Methods of the second type
define the solution as the joint minimizer of a criterion depending on the
object and on the total field on the object. Third type methods directly min-
imize the MAP criterion depending on the object. These methods have been
compared on their convergence properties and on the solution they provide.
Three major key ideas can be emphasized:

— As regularization consists in introducing prior information on the solu-
tion, one can get benefits from introducing more advanced models than
a simple Ly (Tikhonov) one.
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— A successive linearizations algorithm has been proposed to compute a
regularized solution to this nonlinear inverse problem. It is both more
efficient than the BIM for its linear approximation and than the NKM
and the DBIM from a regularization viewpoint.

— The solution given by the minimization of a (penalized) joint criterion
does not correspond to the minimum of the (penalized) mean square error
on the measurement.
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