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Preface

During my visit at the Electrical Engineering Department of the Notre Dame University,
I had to teach a course on Detection-Estimation.

I could not find really a complete and convenient textbook to cover all the materials
that an Electrical Engineer have to know on the subject. Some books are too mathe-
matical, some others are too oriented on the applications and not enough rigorous on the
mathematics.

The purpose of these notes is to fill this gap: to introduce the reader to the basic theory
of hypothesis testing and estimation theory using the main probability and statistical tools
and also to give him the basic theory of signal detection and estimation as used in practical
applications of electrical engineering.

The contents of these notes are mainly covered by two books:

— Detection and estimation, by D. Kazakos and P. Papantoni-Kazakos, and
— An introduction to signal detection and estimation, by H. Vincent Poor.

Ali Mohammad-Djafari
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Chapter 1

Introduction

Generally speaking, signal detection and estimation is the area of study that deals with
information processing: conversion, transmission, observation and information extraction.
The main area of applications of detection and estimation theory are radar, sonar, analog
or digital communications, but detection and estimation theory becomes also the main
tool in other area such as radioastronomy, geophysics, medical imaging, biological data
processing, etc.

In general, detection and estimation applications involve making inferences from ob-
servations that are distorted or corrupted in some unknown way or too complicated to
be modelled in a deterministic way. Moreover, sometimes even the information that one
wishes to extract from such observations is not well determined. Thus, it is very useful to
cast detection and estimation problems in a probabilistic framework and statistical infer-
ence. But using the probability theory and the statistical inference tools does not forcibly
means that the corresponding physical phenomena are necessarily random.

In statistical inference, the goal is not to make an immediate decision, but is instead to
provide a summary of the statistical evidence which the future users can easily incorporate
into their decision process. The task of decision making is then given to the decision theory.

Signal detection is inherently a decision making task. In signal estimation also we need
often to make decisions. So, for detection and estimation we need not only the probability
theory and statistical inference tools but also the decision and hypothesis testing tools.
The main common tool with which we have to start is then the probabilistic and stochastic
description of the observations and the unknown quantities.

Once again a probablistic or stochastic description models the effect of causes whose
origin and nature are either unknown or too complex to be described deterministically.

The simplest tool of a probabilistic model for a quantity is a scalar random wvariable
X which is fully described by its probability distribution F(z) = Pr{X < z}. The next
simplest model is a random vector X = [X1,---,X,]", where {X;} are random variables.
A random vector is fully described by its probability distribution F(x) = Pr{X < x}.
The next and the most general stochastic model for a quantity is a random function X (r),
where 7 is a finite dimensional independent variable and where for every fixed values
r = r;, the scalar quantity X; = X(r;) is a scalar random variable. For example, when
r = (x,y) represents the spatial coordinates in a plane, then X (z,y) is called a random
field and when r = ¢ represents the time variable, then X (¢) is called a stochastic process.
In the rest of these notes, we consider only this last model.
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A stochastic process X (t) is completely described by the probability distribution

for every n and every time instants {t;}. The stochastic process is discrete-time if it is
described only by its realizations on a countable set {t;} of time instants. Then, time
is counted by the indices j, and the stochastic process is fully described by the random
vectors .Xj = [Xj, Xj_|_1, s ,Xj+n]t.

A stochastic process X (t) is said well known, if the distribution F(x1,- -+, Zp;t1,- -, tn)
is precisely known for all n, every set {t;} and every vector value . The process is
instead said parametrically known, if there exists a finite dimensional parameter vector 8 =
[61,--+,0m]t such that the conditional distribution F(z1,---,Zn;t1, - ,1,|0) is precisely
known for all n, every set {t;}, every vector value & and a fixed given value of 6. A
stochastic process X (t) is non parametrically described, if there is no vector parameter 0
of finite dimensionality such that the distribution F'(z, t|@) is completely described for all
values of the vector @ and for all n,t and . As an example, a stationary, discrete time
process {X;} where the random variables X; have finite variances is a nonparametrically
described process. In fact, this description represents a whole class of stochastic processes.
If we assume now that this process is also Gaussian, then it becomes parametrically known,
since only its mean and spectral density functions are needed for its full description. When
these two quantities are also provided, the process becomes well known.

From now, we have the main necessary ingredients to give a general scope of the
detection and estimation theory. Let consider a case where the observed quantity is
modelled by a stochastic process X (¢) and the observed signal z(t) is considered as a
realization of the process, i.e., an observed waveform generated by X(¢).
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1.1 Basic definitions

e Probability spaces:
The probability theory starts by defining an observation set I' and a class of subsets
G of it, called observation events, to which we wish to assign probabilities. The pair
(T, G) is termed the observation space.

For analytical reasons we will always assume that the collection G is a o-algebra; that
is, G contains all complements relative to I' and denumerable unions of its members,
i.€.;

ifAeg — A°€g

and (1.1)

if A1, A49,...€G — UA; €G

Two special cases are of interest:

— Discrete case: T' = {y1,7y2,---}
In this case G is the set of all subsets of I" which is usually denoted by 2! and
is called the power set of T'.
For this case, probabilities can be assigned to subsets of I' in terms of a proba-
bility mass function, p: T' — [0, 1], by

P(A) =) pw), Ae?. (1.2)
VEA

Any function mapping I" to [0,1] can be a probability mass function provided
that it satisfies the condition of normality

> op(y) =1 (1.3)

2

— Continuous case: I' = R", the set of n-dimensional vectors with real compo-
nents.
In this case we want to assign the probabilities to the sets

{z = (21, +,20) E R"ay < z1 < by, 0y, < zp < by} (1.4)

where the a;’s and b;’s are arbitrary real numbers. So, in this case, G is the
smallest o-algebra containing all of these sets with the a;’s and b;’s ranging
throughout the reals. This o-algebra is usually denoted B™ and is called the
class of Borel sets in R™.

In this case the probabilities can be assigned in terms of a probability density
function, p : R® — R™, by

P(A4) :/Ap(:z:) dz, AcB". (1.5)

Any integrable function mapping R™ to R* can be a probability density func-
tion provided that it satisfies the condition

/R” p(x)dz = 1. (1.6)
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For compactness, we may use the term density for both probability density function
and probability mass function and use the following notation when necessary

P(4) = [ pla)u(da) (1.7)

for both the summation equation (1.2) and the integration equation (1.5).

Random variable:
X = X(w) is a function w + R, where w represents elements on the probability
space.

Probability distribution:
F(z) is a function R + [0, 1] such that

F(z) =Pr{X <z} (1.8)

Probability density function:
f(z) is a function R — R™ such that

fw = 29,
Fz) = Pr{X<a}= [  flt)at (1.9)

—infty

For a real function g of the random variable X, the ezpected value of g(X), denoted
E [g(X)], is defined by any of the followings:

E[g(X)] = > g(w)p(r) (1.10)
Bl(x)] = [ o@)p()de (1.11)
(0] = [ g@)p(a)u(da) (1.12)

Random vector or a vector of random variables:
X = [X1,---,X,] where X; are scalar random varaibles.

Joint probability distribution:

F(z1,-++,2n) = Pr{Xy <z, -, Xp <70}
F(x) = Pr{X <z} (1.13)
Stochastic process

Stochastic process: X (t) = X (¢, w), where X (¢,w) is a scalar random variable for all
t.
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A stochastic process is completely defined by

F(x]_,"',wn;tl,"',tn) = Pr{Xi(ti)Sxi,’i:]_’-..’n}
F(z;t) = Pr{X(t) <=} (1.14)

A stochastic process is stationary if

F('Tla"',ivn;tla"'atn) = F('Tla"',‘Tn;(tl+T),"',(t’n+7))
F(z;t) = F(xz;t+71) (1.15)

A stochastic process is memoryless or white if

F(z1,--@njt1, - tn) = [[ F (2 1) (1.16)
i

Discrete time stochastic process:

F(z) =Pr{X <z} (1.17)
Memoryless discrete time stochastic process:

F(z) = Pr{X <z} = [| Fi(z:) (118)
=1

Memoryless and stationary discrete time stochastic process:

F(z) =[] Fi(z:) and Fi(z) = Fj(z) = F(z),Vi,j (1.19)

=1

A memoryless and stationary discrete time stochastic process generates in time in-
dependent and identically distributed (i.i.d.) random variables.

Well known stochastic process:
A stochastic process is well known if the distribution F(x,t) is known for all n,¢
and x.

Parametrically well known stochastic process:

A stochastic process is parametrically well known if there exists a finite dimentional
vector parameter @ = [0y, - -,0,,] such that the conditional distribution F(x,t|0) is
known for all n, ¢ and «.

Non parametric description of a stochastic process:

A stochastic process X (t) is non parametrically described, if there is no vector pa-
rameter @ of finite dimensionality such that the distribution F'(x,¢|@) is completely
described for every given vector @ and for all n,t and .

Observed data:
samples of z(t) a realization of X (¢) in some time interval [0, T7].
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1.2 Summary of notations

X A random variable

T A realization of a random variable

x ={x1,---,zp}  n samples (realizations) of a random variable

X(t) A random function or a stochastic process

z(t) A realization of a random function

X A random vector or a discrete-time stochastic process

T A realization of a random vector or a discrete-time stochastic process

x, ={x1, - ,x,} n samples (realizations) of a random vector or a discrete-time stochastic process
F(z) A probability distribution of a scalar random variable

f(z) A probability density function of a scalar random variable

Fgy(z) A parametrical probability distribution

fo(x|0) A parametrical probability density function

F(z|0) A conditional probability distribution

f(z]0) A conditional probability density function

F(0|x) A posterior probability distribution of @ conditioned on the observations x
JACIED) A posterior probability density function of 8 conditioned on the observations
S A random scalar parameters

0 A sample of ©

S} A random vector of parameters

(7] A sample of @

The space of possible values of x
The space of possible values of «
The space of possible values of 8
The space of possible values of 8

3+



Chapter 2

Basic concepts of binary
hypothesis testing

Most signal detection problems can be cast in the framework of M-ary hypothesis testing,
where from some observations (data) we wish to decide among M possible situations.
For example, in a communication system, the receiver observes an electric waveform that
consists of one of the M possible signals corrupted by channel or receiver noise, and we wish
to decide which of the M possible signals is present during the observation. Obviously, for
any given decision problem, there are a number of possible decision strategies or rules that
can be applied, however we would like to choose a decision rule that is optimal in some
sense. There are several classical useful criteria of optimality for such problems. The main
object of this chapter is to give all the necessary basic definitions to define these criteria
and their practical signification. Before going to the general case of M-ary hypothesis
testing problem, let us start by a particular problem of binary (M=2) hypothesis testing
which allows us to introduce the main basis more easily.

2.1 Binary hypothesis testing

The primary problem that we consider as an introduction is the simple hypothesis testing
problem in which we assume that the observed data belong only on two possible processes
with well known probability distributions Py and P;:

{HO . X ~ P, @.1)

H1 :XNP1

where “X ~ P” denotes “X has distribution P” or “Data come from a stochastic process
whose distribution is P”. The hypotheses Hy and H; are respectively referred to as null
and alternative hypotheses. A decision rule ¢ for Hy versus H; is any partition of the
observation space I' into I'y and I'g = I'{ such that we choose H; when = € I'; and H)
when & € T'y. The sets I'y and T'y are respectively called the rejection and acceptance
regions. So, we can think of the decision rule ¢ as a function on I" such that

_ =1 ifzely
‘W)_{ §o=0 ifeely=T¢ (2:2)

15
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so that the value of § for a given x is the index of the hypothesis accepted by the decision
rule 4.

We can also think of the decision rule §(z) as a probability distribution {do, é; } on the
space D of all the possible decisions where J; is the probability of deciding H; in the light
of the data z. In both cases dg + 61 = 1.

We would like to choose Hy or H; in some optimal way and, with this in mind, we may
assign costs to our decisions. In particular we may assign costs c¢;; > 0 to pay if we make
the decision H; while the true decision to make was H;. With the partition I' = {I'g, "1 }
of the observation set, we can then define the conditional probabilities

P, =Pr{X =z e [;|H = H;} = P;(T;) :/vpj(w) dz (2.3)

and then the average or expected conditional risks R;(0) for each hypothesis as

ch . = c1;Pj(T1) + ¢ Pj(To), 7=0,1 (2.4)

2.2 Bayesian binary hypothesis testing

Now assume that we can assign prior probabilities mg and 71 = 1—mg to the hypotheses Hy
and H,, either to translate our preferences or to translate our prior knowledge about these
hypotheses. Note that 7; is the probability that H; is true unconditional (or independent)
of the observation data  of X. This is why they are called prior or a priori probabilities.
For given priors {my, 71} we can define the posterior or a posteriori probabilities

mi(@) = Pr{H = H;|X = 2} = % (2.5)

where

x) = ZPJ(:C)WJ (2.6)
j

is the overall density of X.
We can also define an average or Bayes risk r(§) as the overall average cost incurred

by the decision rule §:
5) = 3 Bi(0) (2.7
J

We may now use this quantity to define an optimum decision rule as the one that minimizes,
over all decision rules, the Bayes risk. Such a decision rule is known as a Bayes decision
rule.

To go a little further in details, let combine (2.4) and (2.7) to give

7‘(5) = Z?TjRj((S):ZFjZCZ‘jPJ(PZ
= ZTF]CO] F() +7T]CUP'(P1)

= Z micoj(1 — Pi(T'1)) + mjer P(T1)
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= Z”JCOJ + Z”J c1j = coj) (1)
= Z?U‘Coy +/r1 > (c1j = coj) pj(a) de (2:8)
j j
Thus, we see that r(4) is a minimum over all I'; if we choose
r, = {w € F|Z c1j — coj)mpi(x) < 0} (2.9)

= {z € I1|(011 — co1)m1 p1(x) < (oo — €10)mo po(x)} (2.10)

In general, the costs ¢j; < ¢;; which means that the cost of correctly deciding H; is less
than the cost of incorrectly deciding it. Then, (2.10) can be written

T, = {mer\mpl( 2) M} (2.11)
mopo(T) — Co1 — €11

{:1: eT|P®) 5, Tocw ~cmw COO} (2.12)
po(x) 1 Co1 — C11

= {CB S F|0107T0(£C) + c11m (:1:) < Cooﬁo(m) + 0017r1(:1:)} (2.13)

This decision rule is known as a likelihood-ratio test or posterior probability ratio test due
to the fact that L(x) = Z;gg is the ratio of the likelihoods and ;1 zlgwg is the ratio of the
posterior probabilities.

Note also that the quantity cjomo () + ¢;171 () is the average cost incurred by choosing
the hypothesis H; given that X = x. This quantity is called the posterior cost of choosing
H; given the observation X = x. Thus, the Bayes rule makes its decision by choosing the

hypothesis that yields the minimum posterior cost.

This test plays a central role in the theory of hypothesis testing. It computes the
likelihood ratio L(x) for a given observed value X = x and then makes its decision by
comparing this ratio to a threshold 71, i.e.;

i@={ 4 i 219

A commonly cost assignment is the uniform costs given by

0 ifi=jy
cij :{ | i”#;. (2.15)
The Bayes risk § then becomes
r(6) = moPo(T'1) + mP1(To) = moPor + m1Pro (2.16)

Noting that P;(I';) is the probability of choosing H; when H; is true, r(d) in this case
becomes the average probability of error incurred by the rule §. This decision rule is then
a minimum probability of error decision scheme.
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Note also that with the uniform cost coefficients (2.15) the decision rule can be rewrit-
ten as

@ ={ 5 m)z 211

This test is called the mazimum a posteriori (MAP) decision scheme.

Example : Detection of a constant signal in a Gaussian noise
Let consider

(2.18)

H() X =c
H; X:,U,+6

where € is a Gaussian random variable with zero mean and a known variance o2 and where
@ > 0 is a known constant. In terms of distributions we can rewrite these hypotheses as

Hy X ~N(0,0?)
{ B X <N (no?) (2.19)
where N (u,0?) means
2) _ 2\—1 1 2
N(/J,O’ ) = (2m0°) "2 exp [—ﬁ(x — ) ] (2.20)
It is then easy to calculate the likelihood ratio L(x)
pi(x) [u ]
L(z) = =exp |5z —pu/2 2.21
@ =29 e[ Lo -2 (221
Thus, the Bayes test for these hypotheses becomes
1 ifL(z)>7
o) = { 0 ifL(z) <7 (222)

where 7 is an appropriate threshold. We can remark that L(x) is a striclty increasing
function of z, so comparing L(z) to a threshold 7 is equivalent to comparing z itself to
another threshold 7/ = L 1(7) = %2 log(7) + p/2:

d(z) = (2.23)

1 ifz>7
0 ifz<7

where L~ is the inverse function of L.
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Figure 2.1: Location testing with Gaussian errors, uniform costs and equal priors.

In the special case of uniform costs and equal priors, we have 7 = 1 and so 7/ = p/2.
Then, it is not difficult to show that the conditional probabilities are

o 1-0 (£ forj=1
B~1:Pr{X:x€F1|H:Hj}:Pj(F1):/T’ pj(w)da::{ 1—(I>g2—02)ﬂ) forj':O
(2.24)

and the minimum Bayes risk r(4) is

r(6)=1—a (%) . (2.25)

This is a decreasing function of £, a quantity which is a simple version of the signal to
noise ratio.
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Summary of notations for binary hypothesis testing

Hypotheses H Hy H;
Processes Py P,
Conditional densities
or po(x) p1(x)
likelihood functions
Observation space T’
.- T I
partition
Decisions 6(x) do () 01(x)
Con}gl;t lin}i I;l;(gi:;’t();;ltles Poo, Po1 Py, Py
Costs Cij €00, Co1 C10,C11

Conditional risks
R; =3, cijbij

Ry = cooPoo + c10P1o

R1 = co1Po1 + c11 P11y

Prior probabilities m; o ™
Posterior probabilities (@) (@)
(T)m; mo(x m (x
mi(x) = Lﬂg(%ﬂ
Joint probabilities
Qi; = miP; Qoo, Qo1 Q10, Q11

Posterior costs
Gi(x) =3, ciymj(x)

¢o(x) = coomo(x) + cor1m1(x)

51(.’12) = Cl()’/T()(:B) + 6117T1(CB)

Bayes risk r(d) r(6) =3, miR,(x)
Likelihoods ratio L(z) L(z) = 2
Posteriors ratio —Z;Eg = %;Zégg

Posterior costs ratio

ci(®) _ ciomo(®)Fe11m (T)

co(T) — coomo(®)+corm1(X)

The following equivalent tests minimize the Bayes risk r(4)

Likelihoods ratio test L(z) = ﬁégg >m o=
Posteriors ratio test iégg > T = i;‘;%i‘l"l’
Posterior costs ratio test g;g% >1
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Special case of uniform costs binary hypothesis testing

0 ifi=9j

coo =0, cor=1|cio=1, c11=0

Conditional risks
Rj = >, cijbij

R():Poo R1:P11

Prior probabilities m; m
Posterior probabilities (@) ()
()7 To\L T\
i
Joint probabilities
plitinty Qoo:  Qu Qu. Qu
ij = Tjd4j

Posterior costs
¢j(x) = 3, cijmj(x)

co(x) = mi(x)

él(w) = 7T()($)

Bayes risk 7(d)

r(0) =3, mRj(®) = 33, m;Pj

Likelihoods ratio L(x) L(z) = g;gg
Posteriors ratio Z;gg — %

Posterior costs ratio

51(.’13) o 7T1(1B)

Eo(m) - 7T0($)

The following equivalent tests minimize the Bayes risk r(6)

Likelihoods ratio test

Posteriors ratio test

Posterior costs ratio test

21
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2.3 Minimax binary hypothesis testing

In the previous section, we saw how the Bayesian hypothesis testing gives us a complete
procedure to the hypothesis testing problems. However, in some applications, we may
not be able to assign the prior probabilities {mp, 71 }. Then, one approache is to choose
arbitrarily mo = 71 = 1/2 and continue all the Bayesian procedure as in the last section.
An alternative approach is to choose another design criterion than the expected penalty
r(0). For example, we may use the conditional risks Ry(¢) and R;(d) and design a decision
rule that minimizes, over all §, the following criterion

max{Ry(d), R1(d)} (2.26)

The decision rule based on this criterion is known as the minimaz rule.
To design this decision rule, it is useful to consider the function r(m, d), defined for a
given prior my € [0, 1] and a given decision rule § as the average risk

’)"(7'{'(),(5) = 7TOR0(5) + (1 - 7T0)R1((5) (227)

Noting that r(mg,d) is a linear function of my, then for fixed §, its maximum occurs at
either 79 = 0 or mp = 1 with the maximum value respectively either R;(d) or Ry(9).
So, the optimization problem of minimizing the criterion (2.26) over ¢ is equivalent to
minimizing the quantity

mzreu[%)),(l] r(mo, ) (2.28)
over 0.

Now, for each prior 7, let d;, denote a Bayes rule corresponding to that prior and
let V(mo) = r(mo,dr,); that is V(mp) is the minimum Bayes risk for the prior mp. Then,
it is not difficult to show that V(mg) is a concave function of 7y with V(0) = ¢;; and
V(l) = CpQ-

Now consider the function (g, d,+ ) which is a straight line tangent to V' (m) at mo = =,
and parallel to r(m, ) (see figure 2.3).

From this figure, we can see that only Bayes rules can possibly be minimax rules.
Indeed, we see that the minimax rule, in this case, is a Bayes rule for the prior value 7y = 7,
that maximizes V', and for this prior r(mg,d,,) is constant over my and so Ry(0r,)) =
R1(d7,)). This decision rule (with equal conditional risks) is called an equalizer rule.
Because 77, maximizes the minimum Bayes risk, it is called the least-favorable prior. Thus,
in this case, a minimax decision rule is the Bayes rule for the least-favorable prior 7.

Even if we arrived at this conclusion through an example, it can be prouved that this
fact is true in all practical situations. This result is stated as the following proposition:

Suppose that 7, is a solution to V(7y) = mazr e,V (70). Assume further that
either Ry(0r,) = R1(d,,) or mr, = {0,1}. Then ¢,, is a minimax rule. (see V. Poor for
the proof). We will be back more in details on the minimax rule in chapter x.
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Figure 2.2: Tllustration of minimax rule.

2.4 Neyman-Pearson hypothesis testing

In previous sections, we examined first the the Bayes hypothesis testing where the opti-
mality was defined through the overall expected cost 7(§). Then, we considered the case
where the prior probabilities {7, 71} are not available and described the minimax decision
rule in terms of the maximum value of the conditional risks Ry(d) and Ry(9).

In both cases, we need to define the costs ¢;;. In some applications, imposing a special
cost structure on the decisions may not be available or not desirable. In such cases, an
alternative criterion, known as the Neyman-Pearson criterion, is designed which is based
on the probability of making a false decision. The main idea of this procedure is to choose
one of the hypotheses as to be the main hypothesis and test other hypotheses against it.
For example, in testing Hy against H;, two kinds of errors can be made:

e Falsely rejecting Hy (or in this case falsely detecting H7). This error is called either
a Type I error or a false alarm or still a false detection.

e Falsely rejecting Hy (or in this case falsely detecting Hy). This error is called either
a Type II error or a miss.

The terms “false alarm” and “miss” come from radar applications in which Hy and H;
usually represent the absence and presence of a target.

For a decision rule §, the probability of a Type I error is known as false alarm probability
and denoted by Pp(d). Similarly, the probability of a Type II error is called the miss
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probability and denoted by Pus(d). The quantity Pp(d) = 1 — Py(6) is called as the
detection probability or still the power of 4.

The Neyman-Pearson decision rule criterion is based on these quantities. It tries to
place a bound on the false alarm probability and minimizes the miss probability within this

constraint, i.e.;
max Pp(§) subject to Pp(d) =1—Pp(d) <« (2.29)

where « is known as the significance level of the test. Thus the Neyman-Pearson decision
rule criterion is to find the most powerful a-level test of Hy against H1.

Note that, in the Neyman-Pearson test, as opposed to the Bayesian and minimax tests,
the two hypotheses are not considered symetrically.

The general form of the Neyman-Pearson decision rule takes the forme

1 if L(x) > T
0x)=4¢ v(x) fL(x)="7 (2.30)
0  ifLx) <t

where 7 is a threshold.
The false alarm probability and the detection probability of a decision rule ¢ can be
calculated respectively by

Pe(d) = Eo{6@) = [b@m(e)de (2.31)
Pp() = Ei{(@)} = [b(@pi(@)de (2.32)

A parametric plot of Pp(d) as a function of Pp(¢) is called the receiver operation charac-
terization (ROCs).



Chapter 3

Basic concepts of general
hypothesis testing

In previous chapters, we introduced the main basis of the simple binary hypothesis testing
problem. In this chapter, we consider the more general case of the M-ary hypothesis
testing. First, we give the basic definitions for the case of simple hypothesis testing for
the well-known stochastic processes. Then, we consider the case of composite hypothesis
testing where the stochastic processes are parametrically known. In each case, we try to
make simple classification of different decision rules, describing their optimality criterion
and their performances.

3.1 A general M-ary hypothesis testing problem

To consider a general M-ary hypothesis testing problem, let consider the necessary steps
that any decision making procedure has to follow:

1. Get the data: observe z(t) a realization of X (¢) in some time interval [0, 7.

2. Define a library of hypothesis {H;,i = 1,---, M} where H; is the hypothesis that
the data z(t) come from a stochastic processes X;(t) with either finite or infinite
membership.

3. Define a performance criterion for evaluating the decisions {d;,7 = 1,---, M}.

4. If possible, define a probability measure determining the a priori probabilities of
stochastic processes in the library.

5. Use all the available assets to formulate a general optimization problem whose solu-
tion is a decision.

Evidently, the nature of the optimization problem and the subsequent decisions vary sig-
nificantly with the specifities of the library of the stochastic processes, with the availability
of the a priori probability distribution on these stochastic processes, the necessary perfor-
mance criterion to optimize and the possibility of controling the observation time [0, 7]
dynamically.

25
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Figure 3.1: Partition of the observation space and deterministic or probabilistic decision
rules.

For any fixed specifications on the above issues, the decision then depends on the data.
This is what is called the decision rule or test.
We can distinguish the following special cases:

e If the library has a finite number of members, the decision process is classified as
hypothesis testing.

e If this number is only two, then the decision process is called detection.

o If the stochastic processes are well-known, the hypothesis testing is called simple.
If they are defined parametrically, then the decision process is called parametric, if
not, it is called nonparametric.

3.1.1 Deterministic or probabilistic decision rules

A decision rule § = {¢(x),j = 1,---, M} subdivides the space of the observations I' into
M subspaces {I';,j = 1,---, M}. One can distinguish two types of decision rules:

o Deterministic decision rule:
If these subspaces are all disjoints and for a given data set x, the hypothesis H; is
decided with probability one, the decision rule is called deterministic.

e Probabilistic decision rule:
If some of theses subspaces overlap and for a given data set &, none of the hypothesis
can be decided with probability one, then the decision rule is called probabilistic.
That is, given @, the hypothesis H}, is decided with probability ¢; and H; with
probability ¢; with }°,¢; = 1.
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3.1.2 Conditional, A priori and Joint Probability Distributions

For a given decision rule §, we can define the following probability distributions:

e Conditional probability distribution:
Py;(9) is the conditional probability that Hj is chosen given that H; is true. These
probabilities can be calculated from the probability distribution of the stochastic
process:

Py;(0) = Pr{Hy decided by rule §|H; true}
/ dPr {Hy, decided and x observed |H; true}
r

= / Pr{H}, decided|x observed} dPr{x observed |H; true}
r

/ 5 () dF (@) = / 5u(@) fi(e) dac (3.1)
T r

Note that, in this derivation, we have used the theorem of total probabilities and the
Bayes rule and the fact that the decision induced by the decision rule ¢ is independent
of the true hypothesis. Note also that the decision rule § consists of probabilities

such that .
> 6i(®)=1 Ve el (3.2)
j=1
Using this fact, it is easy to show that
M
> Py=1 Vi=1,---,M (3.3)
k=1

This can be interpreted as: Given the true hypothesis H;, the decision induced by
the decision rule § is restricted to one of the M hypotheses.

e A priori probability distribution:
{mj,i = 1,---, M} is a prior probability distribution on the hypothesis {H;,i =
1,---, M}. Naturally we have

M
dome=1 (3.4)
k=1

e Joint probability distribution:
Using the conditional probabilities P;(d) and the prior probabilities m;, we can
calculate the joint probabilities Q;(¢), denoting the probabilities that Hy, is decided
by the decision rule § while H; is true. We then have:

Qri(0) = miPii(6) =7Ti/r5k($)fi($)d$ (3.5)

M
D Qui = m Vi=1,---M (3.6)
k=1
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M M
DY Qr = 1 (3.7)

k=11:=1
(3.8)

3.1.3 Probabilities of false and correct detection

For a given decision rule §, we can define the following probabilities:

¢ Probability of false decision:
P,(9) is the probability that the decision induced by ¢ is erroneous, i.e.; Hy, is decided
while H; 4y is true.

Pe(8) = D Qri(9) (3.9)
k#i
e Probability of correct decision:

P;(9) is the probability that the decision induced by 4 is correct, i.e.Hj, is decided
while Hy, is true.

Py(8) = Qur(8) =1 — Po(5) (3.10)
k
e One can use these probabilities to define optimal decision procedures:
P.(§*) < P(d), VYéeD (3.11)
Py(6%) > Py(d), VéeD (3.12)

3.1.4 Penalty or costs coefficients

In addition to the M known hypotheses and their a priori probabilities, the analyst may
be equipped with a set of real cost or penalty coefficients cg; such that

cki >0 and  cg > cgg Vk’,’l =1, 7Ma (313)

where c¢y; is the penalty paied when Hy, is decided while H; is true. The implication behind
the condition that each coefficient is nonnegative is that there is no gain associated with
any decision, thus the term penalty and, in general, the penalties c; are chosen greater
than Ckk-

3.1.5 Conditional and Bayes risks

For a given decision rule § and a given set of cost functions cg;, one can calculate the
following quantities:

e Conditional expected penalties or conditional risks:

M
Rz(é) = Z Clcz'Pk:i((s) (3.14)
k=1
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e Expected penalty or Bayes risk:

M M
r(6) =YD cki Qri(d) (3.15)

k=1:=1

3.1.6 Bayesian and non Bayesian hypothesis testing

Different optimization problems which are classically used to define a decision process are:
e Bayesian hypothesis testing:

— If a specific cost function that penalizes wrong decisions is provided, then the
minimization of the expected penalty or the Bayes risk is chosen as the perfor-
mance criterion.

— If not, the probability of making a decision error is minimized instead. This
decision process is called ideal observation test.

e Non Bayesian hypothesis testing:
When an a priori probability distribution is unavailable, then

— If a specific cost function is available, then first a least favorable a priori prob-
ability distribution is defined and then the expected penalty with this least
favorable a priori probability distribution is minimized to obtain a decision
rule. This decision process is what is called the minimaz decision process.

— If a cost function is not available then first one of the hypothesis is selected in
advance as to be the most important and then the performance criterion used is
the maximization of the probability of the detection of that hypothesis subject
to the constraint that the probability of its false alarm does not exceed a given
value a. This is what is called the Neyman-Pearson test procedure.

3.1.7 Admissible decision rules and stopping rule

e Admissible decision rules:
It may happen that, for a given set of optimal criterions, there exist more than one
best decision rule which satisfy these performances criterion, then these rules are
called admissible.

e When a decision rule is designed, one may be intended to know how this decision
rule performs with respect of the observed time interval [0,71], i.e.; the number of
data. The study of the behavior of the decision rule is called stoping rule.

All the above test procedures take a dynamic form if the observation time interval
[0,T] can be controlled dynamically.
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3.1.8 Classification of simple hypothesis testing schemes

To summarize, let again list the richest possible set of assets available to the analyst:
i. A library of M distinct hypothesis {H;,i =1,---, M};

ii. A set of data = which is assumed to be a realization of a well known stochastic
process under only one of these hypotheses;

iii. A prior probability distribution {m;,i =1,---, M} for the M hypotheses;
iv. A set of penalty coefficients {cg;, k,i =1,---, M};

The minimum set of assets that is (or must be) always available consists of those in
i and ii and the performance criterion will suffer limitations as the number of remaining
available assets decrease.

Now, to continue, first we assume that all assets in i to iv are available. Then an
optimal rule ¢* is such that the expected penalty r(d) is lower that any others, i.e.

0*:r(0*) <r(0) VoeD (3.16)

This rule then guarantees a minimum average cost due to the wrong decisions. Note
that this rule may not be unique. When the uniqueness is not satisfied, this means that
there exist a number of admissible rules, among them, we can choose the one which is the
simplest to implement.

If assets in i to iii are available, then an optimal rule ¢* can be defined by using the
induced probability of error P.(d), or the probability of the detection,i.e.

§* : P(8%) < P.(6) V6€D (3.17)

or

5% 1 Py(6*) > Py(d) Vo eD (3.18)

Again, note that there may not exist a unique decision rule, but a set of admissible rules,
among them, we can choose the one which is the simplest to implement.

The hypothesis testing rules based on the above criterions are called Bayesian due to
the basic ingredient which is the availability of the prior probabilities 7; on the hypothesis
space. When the asset iii is not available, then the decision rules are called non Bayesian.

Now assume all assets i, ii and iv are available, then the analyst can choose an arbitrary
prior probability distribution 7 = {m;} and calculate the induced conditional expected
penalty R(4,7). Then, the decision rule

0% :sup R(0*,7) < supR(0,7) Vé €D (3.19)

defines admissible ones. The analyst then can choose between these admissible rules the
one with the lowest complexity. This procedure, when successful, isolates the decision
rule that induces the minimum maximum value of the conditional expected penalty and
protects the analyst against the most costly case. This formalism and procedure is called
minimaz.

Finally, assume that only the assets in i and ii are available, Then, the main idea is to
select one of the hypothesis as to be the principal and use the notion of the power function
P(9).
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General Hypothesis Testing Schemes

H Scheme ‘ A priori ‘ Cost ‘ Decision rule H
Yes Yes | Minimization of expected penalty r(d)
Bayesian
Yes No | Minimization of error probability P, (d)
No Yes | Minimax test rule using conditional risks R;(0)
Non Bayesian
No No | Neyman-Pearson test rule using P.(4) and P;(d)

Classes of Hypothesis Testing Schemes

for Well Known Stochastic Processes.

Scheme | Assets used | Optimization function | Optimal Decision rule §* | Specific Name ||
i, i, iii, iv, v r(9) r(6*) < r(d) Bayesian
Bayesian
i, i, iii, v P.(6) P.(6*) < P.(9) Bayesian
i, ii, iii sup,, r(d, ) supr(6*,m) < supr(d, ) Minimax
p p
Non Bayesian
Py(d) Py(6%) > Pa(9)
ii, iii subject to and Neyman-Pearson
P.(§)<a P.(§) <a
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3.2 Composite hypothesis

Now assume that, the hypothesis H; means that x is a realization of the process X; but
the process X; is only parametrically known, i.e.; its probability distribution is known
within a set of unknown parameters 6 so that, the prior probabilities {m;} depend on the
parameter 8. Now, assume that the partitioning of the decision rule is due to the partition
of the parameter space 7 of possible values of 8, i.e.;

Assume also that, for each value of 8, the stochastic process is defined through its prob-
ability distribution fg(z) and assume that we can define a probability density function
(@) over the space 7. Then we have

M= / ©(0)do (3.21)
Ti
and
P000) = [ 8(@)fgl@)do (3.22)
where
M
> Pg(0)=1 VOeT (3.23)
k=1

We can now calculate the conditional probabilities Py;(d)
Pud) = m /T P, 9(3) v(6) 4

= [/T W(O)dg]_l/rd;c(sk(-’ﬂ)/ﬂfe(:c)w(e)de (3.24)

and the joint probabilities Qg; as follows:
Quld) = mPu(d) = [ P, (6)n(8)d6

= [ aza@) [ fot)m(6)a0 (3.25)

3.2.1 Penalty or cost functions

In addition to the M parametrically known hypotheses, we may be equiped with a set of
real penalty or cost functions c(6).
We can then calculate:

e Conditional expected penalty or conditional risk function:

M

R(5,0) = Y ck(6)P, () (3.26)
k=1

M
. / dz 3" 04 ()ck(6) fo (@) (3.27)
k=1
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e Expected penalty or Bayes risk:
If m(@) is available, then the expected penaly can be calculated by

M
r(8) = /T R(5,0)7r(0)d0:k§::1 / c4(8)P, g(5) Ao (3.28)
M
_ / dz 3" 6 () / ci(8) fo(x)m(8) 48 (3.29)
k=1

3.2.2 Case of binary hypothesis testing

Now, consider the particular case of binary hypothesis testing, where there are only hy-
potheses, and assume that they are determined through a single parametrically known
stochastic process and two disjoint subdivisions of the parameter space 7. Let note these
two hypotheses Hy and H; and the decision rules dg(x) and 61 (x) with do(x) + 01(x) =
1 Vax €T. Now, if we emphasize the hypothesis H; (detection), then dp(z) = 1 — 61 (),
so that we can drop the indices in the decision rule and denote by §(x) = d1(x). Now, we
have

Py(0) = /F 5(x) fo () dz (3.30)

This expression represents the probability that the emphasized hypothesis H; is decided,
conditioned on the value @ of the vector parameter. This function is called the power
function of the decision rule. This is due to the fact that it provides the probability with
which the emphatic hypothesis is decided for each fixed parameter value 8.

3.2.3 Classification of hypothesis testing schemes for a parametrically
known stochastic process

As before, we now summarize the richest possible set of assets available for a composite
hypothesis testing problem:

1. A library of M distinct hypotheses {H;,i =1,---,M}

2. A set of data x which is assumed to be a realization of a parametrically known
stochastic process, the hypotheses {H;,i = 1,---, M} corresponding to the M dis-
joint subdivisions of the parameter space 7.

3. A prior probability distribution 7(€) on the parameter space T
4. A set of penalty functions {c(0),k =1,---, M} defined on 7.

First we assume that all assets in i to iv are available. Then an optimal rule §* is such
that the expected penalty 7(d) is lower that any others, i.e.

0" :r(0%) <r(0) VoeD (3.31)

If assets in i to iii are available, then an optimal rule 6* can be defined by using the
induced probability of error P,(d), or the probability of the detection, i.e.;

§*: P(6*) < P(8) Y6 €D (3.32)
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or

§* : Py(6*) > Py(5) VS €D (3.33)

Again, note that there may not exist a unique decision rule, but a set of admissible rules,
among which we can choose the one which is the simplest to implement.

Now assume that the assets i, ii and iv are available, then the analyst can use the
induced conditional expected penalty R(d,0). An optimal rule would induce relatively
low R(,8) values for all values of @ € T. So, if there exist two rules 6() and §(® such
that

R(6M,0) < R(6@,0) VvOoeT (3.34)

then 62 should be rejected in the presence of §(!). The rule 6 is said to be uniformly
superior than the rule 6(2). But, it may happen that R(6(1),8) < R(5(?, 8) for some values
of @ and R(6(),0) > R(6®, ) for other values of . In this case, we may ask to prefer
6 to 6@ if
sup R(6(1),0) < sup R(5?, 9) (3.35)
Oct OcT
Thus, the selection procedure has, in general, two steps: first reject all the uniformly
inadmissible rules, and then between the remaining ones, define the optimal rules:

0% : sup R(6*,0) < sup R(5,0) Vé €D (3.36)
OcT OcT
which are admissible. Finally, the analyst then can choose between these admissible rules
the one with the lowest complexity. This procedure, when successful, isolates the decision
rule that induces the minimum maximum value of the conditional expected penalty and
protects the analyst against the most costly case. This formalism and procedure is called
minimaz.

R(6®,0) R(6®,0)
R(6M,0) R(6M,0)

0 0

Figure 3.2: Two decision rules §(!) and §(2 and thier respectives risk functions. In both
cases 02 is rejected in presence of §(1).

Finally, assume that only the assets in i and ii are available. Then, the main idea is to
select one of the hypotheses as to be the principal and use the notion of the power function
Py(0). Let note Hy the emphasized hypothesis, 77 its associated region in 7 and Pg(J)
the power function associated to it. It is then desirable that Pg(d) for any @ € 71 has a
value higher that its value for other hypotheses, i.e.;

P06T1 (6) > P067} ©) (3.37)



3.2. COMPOSITE HYPOTHESIS 35

The quantity supg.,. Pg(0) is the false alarm induced by d. The value of Pg(d) for a given
value of @ € 77 is the power induced by the decision rule §. If the subspaces 7y and 77 are
fixed, then the best decision rule ¢* is the one that induces the highest power subject to
a false alarm constraint, i.e.;

0" : Py(6*) < Pg(0) VO €Ty subjectto sup Py(d*)<a, VéeD (3.38)
0cTo

The procedure, as in the minimax scheme, may have more than one solution.

Py(5) Py(6M)

%K

6o ¢

Figure 3.3: Two decision rules §() and §(2) and thier respectives power functions. In this
case 6(1) is prefered to §(2).

Classes of Hypothesis Testing Schemes
for Parametrically Known Stochastic Processes.
[ Scheme | Assets used | Optimization function |  Optimal Estimate 6* | Specific Name
i, ii, i, iv, v r(0) r(6*) < r(d) Bayesian
Bayesian
i, ii, iii, v P,(9) P.(6*) < P.(9) Bayesian
i, i, iii supg. R(5,6) o R(s%,0) < o E(5,6) Minimax
Non Bayesian
Pyee, (6) Pyeo,(07) > Pyeo,(9)
i, iii subject to and Neyman-Pearson
sup P(6) < sup Py(8) < o
€60 €60
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3.3 Classification of parameter estimation schemes

The basic ingredient that distinguishes the parameter estimation from the hypothesis
testing is the dimension of the hypothesis space and the nature of the stochastic process
corresponding to each alternative. In hypothesis testing the dimension of the hypothesis
space is finite and any of the M alternatives are represented by one stochastic process.
In parameter estimation, we are face to an infinite number of alternatives represented by
some m dimentional vector parameter 8 that takes its values in 7.

The basic elements of parameter estimation are then the vector parameter 8 and a
stochastic process X (t) which is parameterized by € and we still can distinguish two
cases:

o If for a fixed 6 the stochastic process is well-known, then we have a parametric
parameter estimation scheme.

e If for a fixed @ the stochastic process is a member of some class Fg of processes,
then we have a non parametric or robust parameter estimation scheme.

In both cases, the main assumption is that the value of the parameter and so the nature
of the stochastic process remains unchanged during the observation time [0,7]. The main
objective is then to determine the active value of the parameter 8. Given a set of data x,
the solution is noted 8(z) and is called parameter estimate.

Between the different criteria to measure the performances of an estimate 5(:1:), one
can mention the following:

e Bias :
For a real valued parameter vector 8, the Euclidean norm

oo o]

is called the bias of the estimate a(:c) at the process. If the bias is zero for all @ € T,
then the estimate () is called unbiased at the process.

o (Conditional variance :
The quantity

B[Jocx) - & [6x)]] 6]
is called the Conditional variance of the estimate 6(x).

In general, the bias and the conditional variance present a tradeoff. Indeed, an unbiased
estimate may induce a relatively large variance, and very often, admitting a small bias
may result in a significant reduction of the conditional variance.

A parameter estimate a(a:) is called efficient at the process, if the conditional variance
equals a lower bound known as the Cramer-Rao bound.

A more general criterion is here also the expected penalty, if we define a penalty
function c[@(x), 8] a scalar, non negative function whose values vary as # and 6 vary in
T. We can then define:
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e Conditional expected penalty or conditional risk function:
R(0,0) =E [c[é(X), 0] | 0] = / (), ] fo(x) dz (3.39)
r

where fg(z) is the probability density function of the stochastic process defined by
0 at the point x.

e Expected penalty or Bayes risk function:
When an a priori probability density function 7(8) is available, we can calculate the
expected value of R(a, 0) for all @ € T , and thus definec the total expected penalty
or the Bayes risk function by

r(@) = r(0,7) = /r R(9,6) () d6 (3.40)

Now, let try to make a classification of parameter estimation schemes. For this, we list
the richest possible set of assets:

i. A parametric or nonparametric description of a stochastic process depending on a
finite dimensional parameter vector 6.

ii. A set of data x which is assumed to be a realization of one of the active stochastic
processes with the implicite assumption that this process remains unchanged during
the observation time.

iii. A parameter space 7 where 0 takes its values.

iv. An a priori probability distribution 7 (@) defined on the parameter space 7.

~

v. A penalty function c[f(z), 8] defined for each data sequence &, parameter vector 6
and the estimated parameter vector 8(x).

Here also, some of the assets listed above may not be available and we will see how
different schemes come out from partial availability of these assets.

The minimum set of assets that is (or must be) always available consists of those in
i, ii and iii and the performance criterion of the estimation will suffer limitations as the
number of remaining available assets decrease.

First we assume that a parametric description of the stochastic process is available.
When all the assets are available, we will have the Bayesian parameter estimation scheme
where the performance criterion is the expected penalty or the Bayes risk

r(8) = B[[8(X),0]] = /T /F c[B(z), 8] fg(x) 7(0) dz d6 (3.41)

with respect to the estimate 5(:1:) for all  in the observation space I'.
The Bayesian optimal estimate is then defined as the estimate 0*(:1:) which minimizes
the expected penalty function, i.e.

0'(x): r@ (x)<r6(z) VOeT (3.42)



38 CHAPTER 3. BASIC CONCEPTS OF GENERAL HYPOTHESIS TESTING

If assets in i to iv are available, then we can calculate the posterior probability density
function of @, using the Bayes rule:

p(x|6)7(6)  fg(x)m(6)

= 4
7(8|x) @) (@) (3.43)
where
m(z) = / fo(z)7(8) 8 (3.44)
T
and define an estimate, called mazimum a posteriori (MAP) estimate by
6 (x): =(@|z)>n6lz) VOeT (3.45)
or written differently .
0 = argmax{n(0|x)} (3.46)

OcT

If assets in i to iii and v are available, then an optimal estimate 6 (z) can be defined
by using the expected conditional penalty

R(6,0) =E [c[a(X),o]w]] = /F c[B(X),0]fg(x)d (3.47)

where fg(x) is the probability density function of the stochastic process defined by 6 at
the point . We are then in the minimaz parameter estimation scheme which is based
on the saddle-point game formalization, with payoff function the expected penalty r(a, )
and with variables the parameters estimate 8 and the a priori probability density function
.

In summary, we can say that, if a minimax estimate 6 exists, it is an optimal Bayesian
estimate at some least favorable a priori probability distribution pg, i.e.

8 (z):3mo:  r[0 (), 7] < r[@ (), < r[B(x),m] VO €T and Vr (3.48)

When only the assets i to iii are available, then the analyst can use the induced
conditional probability density function fg(z). The scheme is called mazimum likelihood
and the main idea is to use the induced conditional probability density function fg(x) as a
function [(0) = fg(x), called likelihood of the vector parameter § and define the maximum

likelihood (ML) estimate 8 (x) as the one who maximizes the likelihood 1(8), i.e.
6 (z): 16)>10) VOeT (3.49)

All the above schemes comprise the class of parametric parameter estimation proce-
dures with the common characteristic of the assumtion that the stochastic process that
generates the data is parametrically well-known.

When, for a given vector parameter 8, the stochastic process is nonparametrically
described, then the parameter estimation is called nonparametric or sometimes robust. As
in minimax scheme, the robust estimation scheme uses a saddle-point game procedure,
but here the payoff function originates from the likelihood. So, in this scheme, in addition
to the nonparametric description of the stochastic process, the only assets ii and iii are
used to define a performance criterion using the likelihood function. We will be back more
in details on this scheme in future chapters.
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Classes of Parameter Estimation Schemes

for Parametrically Known Stochastic Processes.

Decision rule

[ Scheme [ A priori | Cost |
Yes Yes Minimization of expected penalty r(8)
Bayesian
Yes No | Maximization of the posterior probability m(6|x)
No Yes Minimax estimation using r(a, )
Non Bayesian
No No Maximum likelihood tests using (@)

Classes of Parameter Estimation Schemes

H Assets used Optimization function ‘ Optimal estimate 0 Scheme H
i, ii, ii, iv, v r(0) 0 : r@)<r® VOeT Bayesian
i, i, iii, iv m(0|z) (0 |z) < 7(@lz) VOET MAP
i, ii, iv R(a, 0) sup R(a*, 6) < sup R(a, 6) Minimax
Oec1 Oc1
[N 0 Maximum likelihood

0 : 10)>10) VvOeT

i,ii
nonparametric
description
of the
stochastic process

Based on [(0)

Appropriate saddle point
optimization

Robust estimation
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Summary of notations and abbreviations

0={bk,k=1,---,M}

A decision rule (or a set of possible actions)

F={Ty,k=1,---,M}

The partitions of the observation space I corresponding to the hypotheses { Hx} and
the decision rule §

T= {77“]{: = ]-aaM}
The partitions of the parameter space 7 corresponding to the hypotheses { Hy} and
the decision rule §

{mi}

A prior probability distribution for the hypotheses { H;}

()

A prior probability density function for a scalar parameter 6

(8)

A prior probability density function for a vector parameter 6

{m:(0)}

Conditional prior probability density functions for the vector parameter @ under the
hypothesis H;

{ri(0)} = {mim:(6)}
Unconditional prior probability density functions for the vector parameter @ under
the hypothesis H;

fo(x) = p(x|0)

Conditional probability density function of the observations for a given 6

1(0) = fg(x) = p(«|0)

Likelihood function of @ for a given data x

fg@)(0)  px|0)~(8
m(x) = om(.’n) =2 'r|n(2£)( :
Posterior probability density function of @ given the observations

m(z) = / p(x|0) 7(8) 8
Marginal distribution of the observations x

{cki}

Penalty coefficients

{cki(0)} or {ck(0)}

Penalty functions

{Pri(0) }

Conditional probabilities of the decision rule § for a well known stochastic process
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e {P,,9(0)} or {P, g((5)}
Conditional probabilities of the decision rule ¢ for a parametrically known stochastic
process

o {Qki(6) = miPi(d)}

Probabilities of the decisions in the decision rule §

« P0)= Y Quild)

Probability of the error due to the decision rule §

. ZQkk ) =1—=F(6)

Probablhty of the correct detection due to the decision rule &

L4 Pfa(d) = Q10(5)
Probability of false alarm in a binary hypothesis testing

* Prq(0) = Qo1(9)
Probability of false detection in a binary hypothesis testing

* Pe(d) = Qo1(6) + Q10(9)
Probability of the error due to the decision rule ¢ in a binary hypothesis testing

e Py(6) = Qoo(d) + Q11(9)
Probability of the correct detection due to the decision rule § in a binary hypothesis
testing

e Conditional expected penalty or Risk function

M
8) = ckiPri(0)
k=1

for a well known stochastic process

for a parametrically known stochastic process

e Expected penalty or Bayes risk function

M
8) = > ckiQri(0)
k=1

for a well known stochastic process

ch QkO

for a parametrically known stochastic process
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Chapter 4

Bayesian hypothesis testing

4.1 Introduction

Let start by reminding and precising the notations and definitions. First we consider a
general case and we assume that there exists a parameter vector @ of finite dimensionality
m and M stochastic processes, such that for every fixed value of @ € 7T, the condi-
tional distributions {Fg ;(x) = Fi(x|6), ¢ = 1,---, M} and their coresponding densities
{fg:(x) = fi(x]0),i=1,---, M} are well known, for all values z € T".

We also assume to know the conditional prior probability distributions

{7"1(0) :7T(0|HZ'), i:l,...’M}’
their coresponding unconditional prior distributions

and the penalty functions {c;(0)}.
For a given decision rule 6(x) = {d;(x),j = 1,---, M} we define the expected penalty

M M
r(6) = Jp de 3 6ul@) [ 3 (O (@) ri0) s (4.1

Note that, this general case reduces to the two following special cases:

e When the M stochastic processes coresponding to the M hypotheses are described
through a single parametric stochastic process with M disjoint subdivisions {71, -, Tar}
of the parameter space 7, then the quantities 7;(@) and r;(@), both reduce to 7(0),
and the quantities {fg ()} and {ck;(0)} reduce to {fg(x)} and {c;(0)}. We then
have

r(8) = /r dmkglék(a:) /T c(8)fo(z)7(8) 4 (4.2)

e When the M stochastic processes coresponding to the M hypotheses are all well
known then we can eliminate 6 from the above equations and the quantities fg ,(z),

43
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7i(0) and {ck;(0)} reduce respectively to {fi(x)}, m = Pr{H;} and {cx;}. We then
have

M M
1(0) = [, de Y 6u(@) 3 e filw) mide (43)
k=1 =1

Note that, in all the three above cases we can write

r(8) = [, do 3 dil@)gn(a) (4.4)
k=1

where g () is given by one of the following equations:

@ = [ chz )Jo(@)7:(6)d8 (45)

gr(z) = /T cx(6) fg(x)(8) A0 (4.6)
M
gr(x) = chifi(a’)ﬂ'idw (4.7)

4.2 Optimization problem

Now, we have all the ingredients to write down the optimization problem of the Bayesian
hypothesis testing. Before starting, remember that for any decision rule § = {d;(x),j =
-, M}, we have

M
O(x) >0, k=1,---,M and Zék(w)zl Ve el (4.8)
k=1

Now, consider the following optimization problem:

M
Minimize  r(5) = /F dz 3" bx(@) gi(x) (4.9)
k=1
. 6k($)20, k:]-a""Ma
subject to { SM 5 (z)=1, Voel (4.10)
where {gx(x), k =1,---, M} are non negative functions defined on I'. Their expression

can be given by either (4.5), (4.6) or (4.7).

This optimization problem does not have, in general, a unique solution and there may
exist a whole class D* of equivalent decision rules. we remember that two decision rules
07 and 05 are equivalent if

r(67) =7(d3) < r(6) VieD (4.11)

The calss D* includes both random and determinist decision rules. For the reason of
simplicity, in general, one chooses the non random decision rules. Noting that J; are then
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either 0 or 1 depending on the conditions @ € T'; or & ¢ T';. The expression (4.9) of r(d)
becomes

r(8) = Ek:/rk gk(z) do (4.12)

Now, assuming that gx(x) > 0 V& € T', the Bayesian hypothesis testing scheme consistes
of the following steps:

e Given the observations &, compute

t() = min g («); (4.13)

e Select a single k* = k(x) such that gy« gz)(z) = t(z);

e Define
%(®@) = { 0 J# k()

The function ¢(xz) together with the index k(x) are called the fest and the statistic
behavior of the pair [¢(X), k(X)] is called the test statistics.

To go more in details we consider some examples from general cases to more specific
ones.

Let start with a general case. We here we assume that during any n observations the
transmitted signal is exactly one of the M possibles {s;, ¢ =0,---, M —1}. Then we have
M hypotheses:

(4.14)

Hi: :CNfi(:B), ’i:O,---,M—l (415)
Then, we have
M
gr(@) = e filz) m (4.16)
i=1
and
M
t(x) = mkingk(a:) = Ir}cianki fi(z) m (4.17)
i=1

Given the observation «, the search for some index k() that satisfies (4.17) can be realized

via the differences
M

> (ki — cu) fil) m; (4.18)

i=1
The optimal index k*(x) is such that

M
k‘*(.’D) : Z(Ck*i - Cli) fz(.’li) T S 0 Wi (4.19)

i=1

If « is such that fo(x) > 0 and if 7y > 0, then we have

() : %( o) T Sy (4.20)
Z): 2 Cl*4 Cl; - fo(:l:) S .



46 CHAPTER 4. BAYESIAN HYPOTHESIS TESTING

The ratio {%((ﬁ))} are called the likelihood ratios, so that, the procedure to obtain the
decisions now counsists in comparing the likelihood ratios against some thresholds. The
test induced by (4.20) thus consists of a weighted sum of the likelihood ratios. This
weigthed sum is called the test function. So, in general, the test function is compared with
the threshold zero which is independent of the observation.

Note also that we can rewrite (4.20) in the two following other forms:

M

K () : Y (cps — i) mi(@) <0 W (4.21)
i=1 mo ()
or still u u
kE*(x) : ch*i mi(x) < chi mi(xz) Vi (4.22)
i=1 i=1

mi(x)
mo(@)
expected posterior penalties.

Further simplifications can be acheived with uniform cost functions

M
The fractions are the posterior likelihood ratios and ¢(x) = chi mi(x) are the
i=1

0 ifk=1
ki = { 1 ifk#i (4.23)
and with uniform priors
1
M=M= =M= (4.24)

With these assumptions, the Bayesian decision rule becomes

E*(2): Lg«(x) > Li(x) VI (4.25)
where fi(@)
Li(z) = Fol@) (4.26)

Now, let consider some special cases.
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4.3 Examples

4.3.1 Radar applications

One of the oldest area where the detection-estimation theory has been used is the radar
applications. The main problem is to detect the presence of M knwon signals transmitted
through the atmosphere. The transmission chanel is the atmosphere and it is assumed to
be statistically well knwon. A simple model for the received signal is then

X(t) = S(t) + N(2) (4.27)

where N (t) is the additive noise due to the chanel. In the discrete case, where we assume
to observe n samples of the received signal in the time period [0, T'], this model becomes

Xj:Sj—I-Nj, j=1---n (4.28)

or still
r=s+n. (4.29)

Consider now the case where one of the signals s; is null. Then the M hypotheses
become:
Hy : z=n
4.
{Hi T x=s8+n, i=1,... M—-1 (4.30)

Assume that we know also the conditional probability density functions fo(x) and f;(x)
of the received signal under the hypotheses Hy and H;. The likelihood ratios L;(x) then
become

-1 ¢

: exp |5z (x — 8;)" (T — 8;) _

Li(x) = filz) = [2_2 ! ! ] = exp | —5 (—2stz + sls;) (4.31)
fo(z) exp [27—12:1:75:1:] 202 ' ’
a
and k*(x) satisfies:

* ¢ L ¢ Lt

E*(x): sp.x+ 35k Sk > 81T + 35181 Vi (4.32)

Figure 4.3.1 shows the structure of this optimal test.
Indeed, if we assume that all the signals have the same energies |s;|? = sls;, then we

have
E*(x): sh.ax>siz Vi (4.33)

Figure 4.3.1 shows the structure of this optimal test.
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Figure 4.1: General structure of a Bayesian optimal detector.
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Figure 4.2: Simplified structure of a Bayesian optimal detector.
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4.3.2 Detection of a known signal in an additive noise

Consider now the case where there is only one signal. So that, we have a binary detection
problem:

Hy : z=n — fo(z) = f(x) (4.34)
H : z=s+n — fi(z)=f(x—3s) '
Then, we have:
fi(z)
L(z) = (4.35)
fo(z)
General case:
The general optimal Bayesian detector structure becomes:
> — H;
r —> L(m) —_— = T —H or Hy
< — H
Figure 4.3: General Bayesian detector.
Case of white noise:
Now, if we assume that the noise is white, we have:
Hy : z=mn —>f0(m):]_[]f(a:j) (4.36)
H : z=s+n — fi(z)=]l; f(zj —s;)
and consequently
flzj — s5)
L(x) =[] L)) = [] == (4.37)
> — H;
n
Tj —» logllj(z;)] |— (-) > = T —+ or Hy
j=1
< — Hj
Figure 4.4: Bayesian detector in the case of i.i.d. data.
Case of Gaussian noise:
In this case we have
Hy : z=n — fo(x) x exp [—%gccta:] (4.38)
H : z=s+n — fi(x)xexp [—#[m—s]t[a}—s]] .



50 CHAPTER 4. BAYESIAN HYPOTHESIS TESTING

-1 t
exp [ (@ — 8)(@ — 5) 1
L(z) = h(@) = [202 ] = exp [—2(—23tm + s's) (4.39)
fo(w) exp [%mtw] 20
We then have
1 >
dp(x) =< 0/1 if sl(xz—s) = 7 (4.40)
1 <
The detector has the following structure:
n > — H;
ij(Q—-@—» SO b= n o
—
! < — fﬂ)

Sj/2 Sj

Figure 4.5: General Bayesian detector in the case of i.i.d. Gaussian data.

Note that we can rewrite (4.32) as:

1 >
dp(x) =< 0/1 if stz = 7' (4.41)
1 <
> — IIl

Y
|

n
C) = T2 —| or Hy

J
< > fﬂ)

1
Sj

Figure 4.6: Simplified Bayesian detector in the case of i.i.d. Gaussian data.

Case of Laplacian noise:

Hy:z=n — fo(z)= H %exp —az |x9|] (4.42)
j=1 | =t

H:zx=s+n — fl(w)zngexp —aZ\a@-—sﬂ] (4.43)
j=1 | =1

L(z) = [] Lj(zy) (4.44)
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with
fi(z;)
Li(z;) = = = exp [a|z; — s;| + a|zj]]
)= ) el
exp [—als;|] if sgn(s;)z; < 0
= expfal2z; —s;| if 0< sgn(s;)z; < |s (4.45)
expf—als;| if sgn(s;)z; > s
where
+1 if z>0
sgn(z) = 0 if z=0 (4.46)
-1 if <0
Considering then two cases of s; < 0 and s; > 0 we obtain
Aout
> — I
+ " -
a;]. I= Z () > = T — H1 (
j=1
< — I
5;/2 sgn(s;)

Figure 4.7: Bayesian detector in the case of i.i.d. Laplacian data.
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4.4 Binary chanel transmission

In numeric signal transmission, in general, we have to transmit binary sequences. If we
assume that the chanel transmits each bit separately in a memoryless fashion and that
each bit s; is transmitted correctly with probability ¢, then we can describe this chanel
graphically as follows

0 q 0
1
q
1 1
l—q
Input bit Output bit

Figure 4.8: A binary chanel.

A useful binary, memoryless and symetric chanel should have a probability of correct
transmission higher than the probability of incorrect transmission, i.e.¢ > 0.5 and 1 — ¢ <
0.5.

With these assumptions on the chanel we can easily calculate the probability of ob-
serving x conditional to the transmitted sequence s

n n
Pr{z|s} = [[Pr{zlsllsli]} =1]] gt @lal®sli) (1 — ¢)lilesli)
Jj=1 i=1

— o\ 2o (alil@sli])
— (%) ' (4.47)

where @ signifies binary sum.

Now, assume that, during each observation period, only one of the M well knwon
binary sequences sy, (called codewords) are transmitted. Now, we have received the binary
sequence x and we want to know which one of them has been transmitted.

Indeed, if we assume p; = p2 = --- = pyr = 1/M and if we note by

H (s, s1) Z sk[7] @ s1[4) (4.48)
the Haming distance between the two blnary words s; and s;, then, the likelihood ratios

have the following form:

Pr{z|si} _ ﬁ lescliD (1 _ g)alilesili)

Pr{xz|s;} it

<.

_ o\ XM @lileskli)
- " (M) ' (4.49)

q
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and the Bayesian optimal test becomes:

>1 Vi=1,....M (4.50)

q
Taking the logarithm of both parts we obtain the following condition on k*(z):

n n

kE*(x) : Z(a:[] D Sks[J Z z[j] ® si]j]) log (1 q) >0 Vvi=1,...,.M (4.51)
i=1 i=1 q

We can then discriminate two cases:

e Case 1: Let ¢ > .5, which means that the transmission chanel has a higher probability
of transmitting correctly than incorrectly. Then l;q < 1 and k*(x) satisfies

n n
E*(x) : Z (z[7] ® sks[j Z (x[4] & s[4 vi=1,...,.M (4.52)
Jj=1 J=1
or still
k*: H(x,sks) < H(z,s;), Vi=1,...,.M (4.53)

The test clearly decides in favor of the codeword s, whose Hamming distance from
the observed sequence x is the minimum one. This is why this detector is called the
minimum distance decoding scheme.

Let now the M codewords be designed so that the Haming distance between any
two such codewords equals (2d + 1)/n, where d is a positive integer, i.e.

H(sg,s)=(2d+1)/n, VE#L kil=1,....M (4.54)

and d such that 4

; (7;) <o /M (4.55)

Then, via the minimum distance decoding scheme, if the distance between the re-
ceived word @ and the codeword s, is at most d/n, then the codeword sy, is correctly
detected and we have

d

Py(sp) > > (?) " (1 - g)’ (4.56)
1=0

M d
Pi= Y (/MPs) > 3 ()00 (4.57)
k=1 i=0
d
P.=1-Pd < Z( ) “(1—q) (4.58)
=0

(4.59)

e Case 2: In the case of ¢ < 0.5, by the same analysis, the Bayesian detection scheme
decides in favor of the codeword whose Hamming distance from the observed se-
quence is the maximum. This is not surprising because if ¢ < 0.5, then with
probability 1 — ¢ > 0.5, more than half of the codeword bits are changed in the
transmission.
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Chapter 5

Signal detection and structure of
optimal detectors

In previous chapters we discussed some basic optimality criteria and design methods for
general hypothesis testing problems. In this chapter we apply them to derive optimal
procedures for the detection of signals corrupted by some noise. We consider only the
discrete case.

First, we summarize the Bayesian composite hypothesis testing and focus on the binary
case. Then, we describe other related tests in this particular case. Finally, through some
examples with different models for the signal and the noise, we derive the optimum detector
structures.

At the end, we give some basic elements of robust, sequential and non parametric
detection.

5.1 Bayesian composite hypothesis testing
Consider the following composite hypothesis testing:

X ~ fo(z) (5.1)

and define the decision §(x), its associated cost function c[d(x), 8]. Then the conditional
risk function is given by

Rg(8) = Eg{c[6(X),0]} = E[c[6(X),O]|0 = 0]
_ /r clo(z), 8]fg (z) dx (5.2)
and the Bayes risk by
r(6) = E[Rg(d(X))] =E[E[c[é(z), 0]|® = 0]

_ / / cl6(z), 8] fg ()7 (6) dz 48
— / / (0]) d8 de
= E[E[c[6(X ) (")]lX = ] (5.3)

55
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From this relation, and the fact that in general the cost function is a positive function,
we can deduce that minimizing r(d) over § is equivalent to minimize, for any € T, the
mean posterior cost

dxz|6] = E[[6(X), O]|X = z] = /T c[6(x), ]7(8]z) 6. (5.4)

5.1.1 Case of binary composite hypothesis testing

In this case, we have

1 >
dp(x)=1{ 0/1 if E[[1,0]X =2] = E[c0,0]|X = ] (5.5)
0 <

If the two hypotheses correspond to two disjoint partitions of the parameter space 7 =

{70, T1}, we have

C[i, 0] = Cjj if 8¢ 7; (56)
and if we consider the uniform cost function, then we have
1 >
.. Pr{@emi| X=2} _
dp(xz) =< 0/1 if P{fc Xz} —E(l)‘l’_ﬁ(l’(l’ (5.7)
0 <

Now, using the Bayes’ rule, we have

Pr{X =z|0 €T;}Pr{6cT}

Pr{@eT;| X =} = , 0,1 5.8
T =) = e P (X —al6 e Ty Pr{feT) -
The decision rule (5.7) becomes
1 >
. Pr{X=x|0cT _
op(x) =< 0/1 if L(x) = w = e (5.9)
0 <
where
m=Pr{@ €T}, i=0,1. (5.10)
The conditional probability density functions of 8 are noted r;(#) and given by
) 0 if 0&7T;
ri(6) = { p(O)/mi if OCT; (5:11)

The expression of Pr{X = |0 € 7;} is then given by
Pr{X=z|0cT) = / fo(x)r:(6)d6
T
1
= — x)p(0)dé
= | tote1000)

= —Fi{je@) (5.12
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where E; { f@(a:)} stands for the expectation under the hypothesis H;. We can then
rewrite (5.9) as:

1 >
E:{ /g @)
Sp(x) =14 0/1 i L(w):M — o (5.13)
Eo{f@(m)}
0 <

With such hypotheses, the false alarm and correct detection probabilities become respec-
tively
PF((S,G) = Ee {J(X)} for @ € Ty (5.14)
Pp(6,0) = Eg{d(X)} for 6 €T; (5.15)

5.2 Uniform most powerful (UMP) test

The a-level uniform most powerful (UMP) test is defined as:
max Pp(4,0) s.t. Pp(8,0) <« (5.16)

Unfortunately, this optimization problem may not have a solution. In those cases, we can
try to design a test by following the Neyman-Pearson scheme which is summarized below.

Neyman-Pearson lemma:

Suppose the hypothesis Hj is simple (7 has only one component 8y), the hypothesis H;
is composite and we have a parametrically defined probability density function p(@) for
6 € T1. Then the most powerful a-level test for Hy against H; has a unique critical region
given by

Ty = {a: €T fgla) > 7 f(,o(w)} (5.17)
where 7 depends on «. The corresponding test is given by
1 >
é(x) =4 0/1 if fo(x) = 7 fg () (5.18)
0 <

5.3 Locally most powerful (LMP) test

The UMP test is too strong and the optimization problem may not have a unique solution
in some more general cases. To illustrate this test, let consider the following case:

H() s 0:90
{Hl L 0=0>0, (5.19)

The a-level locally most powerful (LMP) test is based on the development of Pp(4,6) in
Taylor series around the simple hypothesis parameter value 6,
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8Pp(6,0)

Pp(6,0) ~ Pp(6,60) + (6 — 6)) + 00— 6p)? (5.20)

00 0=0¢
Noting that Pp(d,6) = Pp(d,6), then the Neyman-Pearson test
max Pp(9,6) s.t. Pr(4,0) < « (5.21)
becomes 8Pn(5.0
X L‘ st.  Pp(8,0) <« (5.22)
00 =00
Noting that
Po(5,0) = By {5(X)} = [ 6(@)fo(@) de (5.23)
and assuming that fp(x) is sufficiently regular in the neighbourhood of 6, we can calculate
OPp(é,0) Ofo(z)
Pl (5,6y) = 220400 :/5 d 5.24
'»(6,60) 9 loes, It (@) =259 sg 1 (5.24)

In conclusion, the a-level locally most powerful (LMP) test is obtained in the same way
that the a-level most powerful test by replacing fy(z) by fg, (z) = %(ew)‘ . The critical
0=0o

region of Hy against H; is then given by

ro={e T |1 > 1 fp,@)} (5.25)
and the test becomes
1 >
d(z) =< 0/1 if fé’,o(m) = Tfoo(iv) (5.26)
0 <

where 7 and 7 depend on «.

5.4 Maximum likelihood test

In the absence of the aformentionned optimal tests, we can design a test just based on the
likelihood ratios
1 >
maxgeT; fo(T)

é(x) =4 n if maxge, 19 (&) = T (5.27)
0 <
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5.5 Examples of signal detection schemes

To illustrate the common structure of these test designs, consider the following signal
detection test:

{HO 2 X =N, j=1,...,n (5.28)

H, : Xj:Sj—I-Nj ’

Assume that the noise is i.i.d. with known probability density function f(z)

H() : X] ZNj, —>f0(:v) :Hj f(.’I?J) .
, =1,...,n 5.29
{H1 2 Xj=S8+N; — file) =11, f(z; — 55) g (529)
The likelihood ratio becomes
_ N oy S5 —s5)
L(z) = [[ Lj(z;) with Lj(z;) = —2—2 (5.30)
j f(zj)
and the test becomes
1 >
6(x) =4 0/1 if > ;logLj(z;) = logT (5.31)
0 <
> — H1
Tj —  Inlj(z;) — () > = T —H; or Hy
j=1
< — H()

Figure 5.1: The structure of the optimal detector for an i.i.d. noise model.

5.5.1 Case of Gaussian noise

In this case we have 1
f(z;) o< exp [_W w?] (5.32)

and the log likelihood L;(z;) ratios become

g L) = log LI =2 = = [oy (0, - )] (5.3

Noting by 71 = 02 log 7, we have the following structure for the optimal detector:
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.’L‘J_><+;>_><;>_>

55/2

Y

Hy

—P-Hl or H()

H,

Figure 5.2: The structure of the optimal detector for an i.i.d. Gaussian noise model.

In reporting the constant value }°; s? in the treshold, we note 79 = 7 + % 2?21 3? and

obtain the following scheme

:

Zj

Y

Figure 5.3: The simplified structure of the optimal detector for an i.i.d. Gaussian noise

model.

5.5.2 Laplacian noise

In this case we have

f(z5) o< exp [—alzj]]

and the log likelihood L;(z;) ratios become

log L;(z;)

55/2

f(zj —s5)

ut

= —alzj — 55 + alz]

—alsj|
asgn(z;) [2z; — s %f 0 < sgn(sj)z;
als;]

sgn(s;)

(5.34)
< 0
< sl (5.35)
> sy
> — H1
> = T — H, or H
< —> H,

Figure 5.4: Bayesian detector in the case of i.i.d. Laplacian data.
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5.5.3 Locally optimal detectors

Consider the following problem:

H() : Xj:Nj
Hy : X;=N;+0s;, 0>0

We remember that the a-level uniformly optimal test for this problem is:

1
6(@)=1{ n if Lo(a)
0

AN Y
\"

and the a-level locally optimal test for this problem is:

1 >
§z)=+¢ n if _8Lg§m) = T
0=00
0 <

where 7 and 7 depend on «. For the case of i.i.d. noise model we have

Then, it is easy to show that
Olog Lg(x) ‘ -
G =3 s la)
00 6=0o E IR
where of
aa;w . f’(-T)

90(®) = =30y = )

61

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

and the structure of a locally optimal detector is given in the following figure.

Y
Il
S

>, ()

Tj — In[g(z;)] H@-* _
’ <

1
8j

Figure 5.5: The structure of a locally optimal detector for an i.i.d. noise model.
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It is clear from (5.41) that, if we know the expression of the probability density function
of the noise f(z), we can easily determine the expression of g;,(z). For example:

e For a Gaussian noise model we have

1 1
f(x) x exp [——3:2] — gio(r) = == (5.42)
202 o2
ut > S H]_
n
T — 4.@_. (. M= 1  |—HorH
j=1
< — HO
85

Figure 5.6: The structure of a locally optimal detector for an i.i.d. Gaussian noise model.

e For a Laplacian noise model we have

f(z) ocexp[—alz|] — gio(z) = asgn(x) (5.43)
AOut > H1
n
2O £0 - s
7=1
] < — H)
Sy

Figure 5.7: The structure of a locally optimal detector for an i.i.d. Laplacian noise model.

e For a Cauchy noise model we have

1 2z
= 5.44
f($)0(1+$2 —>gl0(x) 1+ 22 ( )
ut > S Hl
n
Tj —> 3 H@—' () > = T —H, or Hy
j=1
< — H()
Sj

Figure 5.8: The structure of a locally optimal detector for an i.i.d. Cauchy noise model.
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5.6 Detection of signals with unknown parameter

Here, we consider the case where the transmitted signals depend on some unknown pa-
rameter 6:

{ Hy @ Xj = N;+ Sp,(0) N ~ f(n) (5.45)

Hy : X;=N; +S1j(9) ’
The main quantity that we need to calculate is

B {f@—s1,0)]
Bo {f(x - 50,(0)) }

L(x) (5.46)

In the following we consider the particular case of sy = 0, s; = s(6) and i.i.d. noise. Then
we have

{H°’&:M N; ~ £(n5) (5.47)

H, : Xj:Nj+Sj(9) ’

Lm:=ﬁﬁ%§@mww
o [z —s5(0)
I8 G e L

_ = / Lo(z) p(6) do (5.48)

Example: Non coherent detection:
Consider an amplitude modulated signal

2
$i(0) = ajsin[(j — VwcTs + 0], j=1,...,n, wT,s=m % (5.49)

where w, is the career frequency, T is the sampling rate, m is the number of periods in the
observation time [0,7 = nTs] and n/m is the number of samples per cycle. The carrier
phase is unknown. With a uniform prior p(f) = % and the i.i.d. noise assumption we

have
L(z) = % /027r exp [é [i zj55(0) - %isf(e)” dé (5.50)

Using the trigonometric relations:

sin(fa+b) = cosasinb+ sinacosb (5.51)
1 1
sin’(a) = 573 cos(2a) (5.52)

we obtain:

ijsj(ﬁ) = Z.sinf + x5 cos b (5.53)
j=1
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with
def < .
T = Zaja:j cos[(j — 1wT5] (5.54)
7=1
def < Ny
s = Y ajzisinf(j — DwT}] (5.55)
7j=1
From (5.49) we have
2550 =52 aj+5 > ajcos2(j — DT +26] (5.56)
7j=1 7j=1 7j=1

The second term is, in general either equal to zero or negligeable with respect to the first
term.

Noting a? = = 3%, a?, we obtain

na?| 1 (27
| =5z | o7 |, o
na?| 1 T

where I is the zeroth-order Bessel function, which is monotone. Then the detection rule
becomes

L(z)

1
— |z,sinf + x5 cos B]| dO 5.57
o2

1 > > _
y if @) = 1 —{ v if r = 7' =02l (TeXp [%Z]) (5.59)
0 < 0 <

The structure of this detector is given in the following figure.
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sin[(j — 1)wT5]

a;

-
—~
;/

<
Il
—

/2

cos[(j — 1w.Ts]

local
oscillator

a;j

Figure 5.9: Coherent detector.
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Performance analysis:
We need to calculate the probabilities such as

Pi(R>1)=Pj(R*>1"), j=0,1 (5.60)

with R? = X2 + X2.

Note that X, and X are linear combinations of X;. So, if X; are Gaussian, X, and
X, are Gaussian too.

Under the hypothesis Hj, we have

BIXH| = BX[H]=0 (5.61)
Var [X,|Hy] = Var[X,|H] = ""22“2 5.62)
Cov { Xy, X.|Ho} = 0 (5.63)
and ) )
Bol) = //r?:mgﬂcgzr’? nrola? P [ nmwo2a? (o + )] e dry (5:64)

With the cartesian to polar coordinate change (z.,zs) — (r,0) we obtain

1 27 ,’,.2
A = n7r02a_2/0 /r' TP " no2a? drdo

1 12
T nmola? P l_'rw?a_Q] (5.65)

Under the hypothesis Hj, noting that for a given value of § z|6 ~ N (s(8),02I) we
have

)

E (X |H,0=0] = %Sine (5.66)
2
E[X,|H,0 =0 = %cose (5.67)
2.2
Var [X,|H,,© = 0] = Var|[X,|H,0=¢]="2"2 5.68
2
Cov { Xy, Xo|H1,0 =0} = 0 (5.69)
and
1 g 1 1
plecal) = 5= [ —= exp|-— = d@ezina/2,0)| @ (570
na? r
= p(xc,ﬂ}'S'HO) exp [—E] I() (p) (571)

The detection probability becomes then

Pp(s) = P(Ty) = // 2+ . Pl sl H) deda, (5.72)
=T xr T

exp 40_2 /271'/ ( r )
T ex Iy —= ) drd8 (5.73
" nmoZa? P n02a2 "\ o2 ( )
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Noting b? = ggz and 79 = 37> and changing the variable z = ;5 we obtain

Po(6) = P(T1) = /Oowexp [—%(m2+b2)] L(be)de Qo7 (5.74)

Q(b, 1) is called Marcum’s Q-function.
Note also that Pf(d) = Q(0,70). So for a a-level Neyman-Pearson detection test we
1

have 7/ = [n o2aZlog(1/ a)] ? and the probability of detection is given by

Pp(8) = Q [b, 2[log(1/)]?] (5.75)

’ [
2 - .
so, b% = 5oz is a measure of S/N ratio.

Note also that

SENS

ﬁ: s§(9)] =a?/2 (5.76)
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5.7 sequential detection

T={X;,j=12...} (5.77)
H() : X] ~ P()
{ H X~ P (5.78)

A sequential decision rule is a pair of sequences (A, §) where :

e A={A;,j7=0,1,2,...} is the sequence of stopping rules ;

0 ={d;,7=0,1,2,...} is the sequence of decision rules ;

o Aj(z1,...,z;) is a function from R/ to {0,1} ;

e §;(z1,...,7;) is a decision rule on (R?, B7) ;
o If Ay(z1,...,2,) =0 we take another sample ;
o If A, (z1,...,2,) =1 we stop sampling and make a decision.

e N = min{n|A,(z1,...,z,) = 1} is the stopping time ;
e Ay(z1,...,zy) is the terminal decision rule.

e (Ay, dp) correspond to the situation where we have not yet observed any data. Ay =0
means take at least one sample before making a decision. Ay = 1 means make a
decision without taking any sample.

Note that N is a random variable depending on the data sequence. The terminal decision
rule dy(x1,...,2x) tells us which decision to make when we stop sampling.

The fixed-sample-size N decision rule can be defined as the following sequential detec-
tion rule:

0 if j#N
Aj(zy,...,35) = {1 ¢ ;izv (5.79)
{5(:1:1,...,xn) if j=N

arbitrary if j#N (5.80)

6j(.’131, P ,.’L‘j)

In the following we consider only the binary hypothesis testing and we analyse the

Bayesian approach with the prior distribution {my = 1 — 71,71} and the uniform cost

function. We assume that we can have an infinite number of i.i.d. observations at our

disposal. However, we should assign a cost ¢ > 0 to each sample, so that the cost of taking
n samples is nc.

With these assumptions, the conditional risks for a given sequential decision rule are:

R()(A,5) = Ej {5(5E1, ,:En)}-i-E() {CN} (5.81)
Ri(A,8) = 1—FE1{8(z1,...,70)} +F1 {cN} (5.82)

where the subscripts denote the hypotheses under which the expectation is computed and
N is the stopping time. The Bayes risk is thus given by

T(A,0) = (1 —m)Ro(A,d) + mR1(A,6) (5.83)



5.7. SEQUENTIAL DETECTION 69

and the sequential Bayesian rule is the one which minimizes (A, §).
To analyse the structure of this optimal rule we define

V* () et min r(A,0), 0<m <1 (5.84)
Ao =0
1—m
1
V()
c C
0 TL T 1

1

Figure 5.10: Sequential detection.

Since Ag = 0 means that the test does not stop with zero observation, V*(m) cor-
responds then to the minimum Bayes risk over all sequential tests that take at least one
sample. V*(m1) is in general concave and continuous and V*(0) = V*(1) = ¢. Now, let
plot this function as well as these two specific sequential tests:

e Take no sample and decide Hy, i.e., Ag = 1,09 = 0 and
e Take no sample and decide Hq, i.e., Ag = 1,09 = 1.
Note that the Bayes risks for these tests are

T(A76)|A0=1,50=0 = 1-m

T(A75)|A0:1,(50:1 = m

These tests are the only two Bayesian tests that are not included in the minimization of
(5.84). We note, respectively by my and 7, the abscisses of the intersections of the lines
’I‘(A, 6)|A0:1’50:0 and T(A, 6)|A0:1,50:1 with V*(Tf'l).
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Now, by inspection of these plots, we see that the Bayes rule with a fixed given prior
Ty is:

° (Aozl’(SO:O) ifﬂ']_ STrL,
e (Ag=1,0=1)ifm >ny;

e The decision rule with minimizes the Bayes risk among all the tests such that (Ag =
0) corresponds to a point such that 7, < m < 7.

In the two first cases the test is stopped. In the third one, we know that the optimal
test takes at least one more sample. After doing so, we are faced to a similar situation
as before except that we now have more information due to the additional sample. In
particular, the prior 7 is replaced by m1(z1) = Pr{H = H;|X; = z1} which is the poste-
rior probability of H; given the observation X; = z;. We can apply this method to any
arbitrary number of samples. We then have the following rules:

e Stopping rule:

0 if 7w <mi(x1,...,zn) < 7O
An(@1;-- 5 2n) = { 1 otherwise. (5.85)
e Terminal decision rule:
0 i mi(z,...,2n) <7
On (21, 2n) = { 1 if m(zg,...,2,) > 7y. (5.86)
It has been proved that under mild conditions the posterior probability m (z1, ..., %)

converges almost surely to 1 under H; and to 0 under Hy. Thus the test terminates with
probability one. The only knowledge of the probabilities 77, and ny and an algorithm to
compute 71 (1, ..., Ty) are sufficient to define this rule. The computation of m1(z1,...,zy)
is quite easy, but unfortunately, it is very difficult to obtain exactly 7 and 7.

Now consider the case where the two processes Py and P; have densities fo and fi.
Then the Baye fomula yields

T H?:l fl(wj)

(@, 2) = mo [Tj=1 fo(z;) + m1 [Tj=1 fi(=z))
T An(.’Bl, ‘e ,:I:n)
Ty + 1 )\n(flil,...,xn)
(5.87)
where
Mo, yea) = [ ;;gj; (5.88)

J=1

is the likelihood ratio based on n samples.
Noting that m1(z1,...,z,) is an increasing function of A\, (z1,...,z,) we can rewrite

(5.85) and (5.86) as:
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7T1(.’L‘1,...,.’En)

1

H,y

/
U
I

st /
TL

Hy

0 1 2 3 4 5 N=6 n

Figure 5.11: Stopping rule in sequential detection.

e Stopping rule:

_J 0 i < Ap(zr,. . 2n) < T
An(@1;-- 5 2n) = { 1 otherwise. (5.89)
e Terminal decision rule:
)0 if Ay(z1,...,zp) <m
On(@1;- -5 2n) = { 1 if M(z,...,zn) > 7. (5.90)
where
def _ Tome g mdef MO0 (5.91)
w1 (1 —mp) w1 (1 — 7y)
In conclusion, the Bayesian sequential test takes samples until the likelihood ratio
falls outside the interval [z, 7] and decides Hy or Hj if A, (z1,...,zy) falls outside of this
interval.

The main problem in practical situations is to fix the values of the boundaries a = &
and b = 7. This test is called the sequential probability ratio test with the boundaries a
and b and is noted SPART (a,b).

The following theorem gives some of the optimality properties of SPART (a,b).

‘Wald-Wolfowitz theorem :
Note by
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An(l'l,... ,.’L‘n)
H,
/
b
_

71'1/71'0/
a

Hy

0 1 2 3 4 5 N=6 n

Figure 5.12: Stopping rule in SPART (a,b).
Pr(A,0) = Pr{dn(z1,...,2n) =1|H = Ho}
Py(A,6) = Pr{dn(z1,...,2n) =0/H = Hi}
and (A*,6%) the SPART (a,b). Then, for any sequential decision rule (A, d) for which

Pr(A,9d)
Py(A,6)

Pr(A*,8")

<
< Pu(A%67)

we have

E[N(A)|H = Hj] > E[N(AY)|H = Hj], j=0,1

The validity of Wald-Wolfowitz theorem is a consequence of the Bayes optimality of
SPART(a,b). The results of this theorem and other related theorems are sumarized in
the following items:

e For a given performance, there is no other sequential decision rule with a smaller
expected sample size than the SPART (a,b) with the same performance.

e The average sample size of SPART (a,b) is not greater than the sample size of a
fixed-sample-size test with the same performance.

e For a given expected sample size, no sequential decision rule has smaller error prob-
abilities than the SPART (a,b).
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Two main questions remains:
e How to choose a and b to yield a desired level of performance?
e How to evaluate the expected sample size of a sequential detector?

The following result gives an answer to the first one.

Let (A,8) = SPART(a,b) witha <1 <band o = Pp(A,d),y=1—-p8=
Py(A,6) and N = N(A). Then the rejection region of (A, d) is

I, = {:c c R"O‘)\N(ml, o) > b} — U, 00 (5.92)
with
Qu={2 € R®IN =, Xo(ar,.. aw) 2 b} = U, Qn (5.93)

Since @, and @Q,, are mutually exclusive sets for m # n, we have

@ = Pr{\n(z1,...,zn) > b|H = Hy} = Z/Q I] folz;)dz;  (5.94)
n=1 nj=1

On @, we have
n 1 n
11 fo(z;) dz; < b 11 71(=z;) dz; (5.95)
Jj=1 j=1

So, we have

1 1
<3 2/ Hﬁ 2j)dzj = 3 Pr{A(er,..,zv) > bH = Ho} = 3 (1—7)
(5.96)
and in the same manner we obtain
y = Pr (s, on) < alH = Hi} <a(1— o) (5.97)
From these two relations we deduce
1=
{ b<7g (5.98)
a > T—a
The following choice is called the Wald’s approximation:
b~
{ o~ l‘i (5.99)

To be completed later
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5.8 Robust detection

To be completed later



Chapter 6

Elements of parameter estimation

6.1 Bayesian parameter estimation

Throughout this chapter we assume that the data are samples of a parametrically known
process {Py; 0 € T}, where Py denotes a distribution on the observation space (T, G):

X ~ 'Pe(m) (6.1)

The goal of the parameter estimation problem is to find a function a(a:) :I' = 7 such

that a(m) is the best guess of the true value of 8. Of course, the solution depends on

a goodness criterion. As in the hypothesis testing problems, we have to define a cost

function ¢[8(X), 8] : T x 7 — R™ such that c[a, 8] is the cost of estimating the true value
of 8 by a.

Then, as in the hypothesis testing problems, we can define the conditional risk function

~ ~

Rg(0) = Eg{c0(X),0]} =E[[8(X) 0O =]
- /r (), 8] (x) dx (6.2)
and the Bayes risk
r@) = E[Rg@(X))]
_ /T /P c[B(z),8]fg(z)7(8) dz 4

_ /r /T c[B(), 6]r(8|z) A6 dz
= E[E[b(X),0]| X = =] (6.3)

From this relation, and the fact that in general the cost function is positive, we see that
7(@) is minimized over @, when for any x € T, the mean posterior cost

fz] =B [c[8(X),0]| X =z| = / [0(x), 0] (6|z) dO (6.4)
T
is minimized.
It is clear that the resulting estimate depends on the choice of the cost function. In

the following section we first consider the case of a scalar parameter and then extend it
to the vector parameter case.
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6.1.1 Minimum-Mean-Squared-Error

In case where 7 = R, a commonly used cost function is
cla,0] = c(a — 0) = (a —0)?, (a,0) € R? (6.5)

The corresponding Bayes risk is E [(g(X ) — @)2] , a quantity which is known as the Mean-

Squared-Error (MSE). The corresponding Bayes estimate is called the Minimum-Mean-
Squared-Error (MMSE) estimator.
The posterior cost is given by

E[0(X)-0)|X =2| = B[*(X)|X =2|-2E[)(X)0|X =z| +E[0?| X =z
= [BX)P-20X)E[0| X =2]+E[0?| X =g (6.6)
This expression is a quadratic function of §(X ) and its minimum is obtained for
Ormse(X) =E[0]| X =z (6.7)

Thus the MMSE estimate is the mean of the posterior probability density function. This
estimate is also called posterior mean (PM) estimate.

6.1.2 Minimum-Mean-Absolute-Error

In case where 7 = R, another commonly used cost function is
cla,f] =c(a—0)=la—-0], (a,0) €R’ (6-8)

The corresponding Bayes risk is E [|§(X ) — ®|], a quantity which is known as the Mean-
Absolute-Error (MAE). The corresponding Bayes estimate is called the Minimum-Mean-

Absolute-Error (MMAE) estimator.
The posterior cost is given by
~ S8 ~
E[0(X)-0||X =2] = / Pr{|f(z) - O] > 2| X ==} dz
0 A
= / Pr{@ >z—|—0(a:)\X=w} dz
0

+/()00Pr{®<—z+§(m)|X:m} dz
(6.9)

Doing the variable change ¢ = z+8(z) in the first integral and ¢ = —z+6(z) in the second
one we obtain

E[f() -0/ X =a] = /5(m)Pr{®>t|X:m} dt

o)
+/ Pr{®<t|X =a}di (6.10)
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~

This expression is differentiable with respect to 6(x) and

OE [|0(X) - 0]| X =2
96(x)

~

= Pr{0 <f(x)| X =z}

—pPr{0>i(z)| X ==z} (6.11)

This derivative is a nondecreasing function of 8(z) which approaches —1 as O(z) — —o0

and +1 as f(xz) — +00. The minimum of (6.11) is achieved at the point (x) where the
derivative vanishes. Consequently, the Bayes estimate satisfies

Pr{®@<t|X =2z} < Pr{®>t|X=zx}, t<0(x
and

Pr{® <t|X =z} Pr{®@>t| X ==z}, t>0(z)

v

or

Pr{e<§(m)|xzm}:Pr{@>§(m)\xzw}. (6.12)
6(x) is the median of the posterior distribution of © given X = :
Ornrap(X) = median of 7(0| X = x) (6.13)
6.1.3 Maximum A Posteriori (MAP) estimation
Another commonly used cost function in the cases where 7 = R is

0 if [a—0|<A
c[a,O]:c(a—H):{ L if Ia—OI;A (6.14)

where A is a positive real number. The corresponding Bayes risk is given by

~

E[cff(X)-0]|X =2] = Pr{[i(z)-6]>A|X =z}
= 1-Pr{ff(z) - 6| < A| X =z} (6.15)
To minimize this expression we consider two cases:

e O is a discrete random variable taking its values in a finite set 7 = {01,...,05}
such that |6; — 0;| > A for any i # j. Then we have

E[cf(X),0]| X =2| =1-Pr{0=0(z)| X =2} =1-7(0(x)|z) (6.16)

where 7(6 | ) is the posterior distribution of © given X = x. The estimate is the
value of ©® which has the maximum a posteriori probability:

Orap = argmax {r(0 | z)} (6.17)
0eT
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e O is a continuous random variable. In this case, we have

~

o(x)+A

E[c[g(:c),(a]\X:m}zl—/A (0] X =) do

o(xz)—A

(6.18)

If we assume that the posterior probability distribution 7(@|x) is a continuous and

smooth function and A is sufficiently small, then we can write
E[f(z),0]| X = 2| =1- 24 n(f(z) | X = x)
and again we have

Oriap = argmax {7(0 | z)}
0eT

Example 1: Estimation of the parameter of an exponential distribution.
Suppose both distributions fg(z) and (@) are exponential:

folz) = { Oexp[—0x] if >0

0 otherwise
and
| aexp[-ab] if 6 >0
() = { 0 otherwise
Note that
EX]=6
Var{X} =E [(X — 0)?] =6
and

{ E@ =«
Var {0} =E [(© — a)?] = a?

Then, we can calculate the joint distribution ¢(z, 0)

) abexp[—Oz—af] if 6>0,2>0
#(z,0) = { 0 otherwise.

The marginal distribution m(z) is given by

(e = JoT @b exp[—(a+ z)6] dazﬁg if >0
0 otherwise.

and the posterior distribution 7(6|z) is given by

abexpl_(atall] — (o 4 z)2exp [—(a +2)8] if §>0

(0|z) :{ , @

Note that we have

a+x

Var{O | X =z} = 2

{ EO|X =z1]=-2
(atz)

otherwise.

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
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The MMSE estimator is given by
Oumse(z) = B[O]X =a]

o

_ / o (0]z) dO
OOO

= / (o + z)%0% exp [~ (o + z)0] dO
0
2

a+x

and the corresponding MMSE is:
MMSE = r(Oymse) =E[Var{©| X}
o0

2
> 2«
- "2 g
/0 (a+z)* o
2
302

The MMAE estimate 84p55(z) is such that

| w(bl) a0 = [1+ (o + 0)Banslexp [ (o + a)ans] = 5
0

ABS

It is easily shown that
Ty

a+x

Oans(z) =

where T} is the solution of
1
(1 + T()) exp [—T()] = 2 — Ty ~ 1.68

To calculate 0, Ap(z), we can remark that

Ologm(0|x) 1

0 g @t?)
logm(0|z) 1 <0
06? 62
So, we have
~ 1
0 =
map(z) a+z
The following table sumarizes theses estimates:
¢ § 2
MMSE(T) = ot
~ Ty
0 =
| Pass(@) a+x
duapl@) = —
€T =
\ MAP o+

79

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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Example 2: Estimation of the location parameter of a Gaussian distribution.
Assume X|0 and © have both Gaussian distributions:

X0 ~ folz) = N(6,0%)
© ~ w(0) = N(6,03)

Then, the joint distribution ¢(z,#), the marginal distribution m(z) and the posterior
distribution 7 (6 | z) are

X,0 ~ ¢z,0) = N((a,eo),(‘f ;L))

[4
X ~ m(z) = N(0,02=0%+0))

o~

01X ~ n(0ls) = N(9,0%)

with

2
~ o 2
— [’} g
0 — 0'% 00 U% X
o2 — 008

Oz

In this case all the estimators are equal and we have

~ o~ ~ -~ g g
Onmmsp(z) = 0aps(z) =Opap(z) = 6="L0+ == (6.36)
U$ UI'
2 2
0'0 g
= — =0+ ——7 6.37
o? + o} 0+U2+03x (6:37)
(6.38)
They also have the same posterior variance
— _ 009 _ 00y 6.39
7 o2 o+ o) (6:39)

Note also the following limit cases:

When 02 —5 0 then 0 —» 0o
When o3 — 0 then 0 — =z
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Example 3: Estimation of the parameter of a Binomial distribution.
Assume that

X|0 ~ f(z|0) =Bin(z|0,n)=CE0*(1—-0)"*

© ~ 7(6) =Beta(dla,p) =gz 0* ' (1-0)F"

Then, the joint distribution ¢(z,#), the marginal distribution m(z) and the posterior
distribution (0 | z) are

(X, @) ~ (]5(.7,‘,9) = B(((jlnfﬂ) 9&"‘5671 (1 _ 9)ﬂ+n,w,1

X ~ m(z) :%B(a+x,n+ﬁ—x)

— gz L(eth) T(atz)l(ntf—z)
n I'(a)T(B) I'(atp+n)

O|X ~ =w(fz) gotr=1(1 — g)Btn—a-1

_ 1
~ B(a+z,f+n—z)

= Beta(a+z,n+ 0 — )
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6.2 Other cost functions and related estimators

Here are some other cost functions and corresponding Bayesian estimator expressions.

Name Cla, 6] 0
Quadratic q(a — 0)? E[O|z] = [ 6 (0|x)dO
Weightefi w(0)(a — ) EE[)"J(Q) o _ /w(0) 6 7(0|x) d0.
Quadratlc [w(©)|x] /w(e) 7r(9|a:) de
Absolute la — 6] [ m(0)x)ds = fgoo m(0x)do = 3
Nonsymetric ko(60 —a) si6<a, ) _ +o0
Absolute { ki(a—0) sif>a. ki oo m(0]a) A0 = Ky 0 m(6]x) do
_ _ _ —_0) — _1 _
. Blexp[ala — 0)] — ala — 6) ~ 1], | L log (B [exp[~a6) | a])

a#£0,8>0

—" Llog[f exp[—af] p(flz) d]

(a—8)* 1 _ 1

6 Ejijeix) = [ ;=(6|x)de
(a0 VE[O%[z] = /[ 62 (0|z) db
— In[a(6)] m(6)

Table 6.1: Relations between the data, a priori, marginal and a posterior: distributions.
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6.3 Examples of posterior calculation

83

In previous sections, we saw that the computation of Bayesian estimates requires the
posterior probability distribution. The following table gives a summary of the expressions
of the posterior probability distributions in some classical cases.

Observation law Prior law Marginal law POSte?();lea)“;r )

7(zl6) (6) m(s) = [ (l6)n(6)d6 | m(la) = T
m(z)
Discrete variables

Binomial Beta Binomial-Beta Beta

Bin(z|n,0) Bet(0|a, 5) BinBet(z|a, 8,n) Bet(fla+z,8+n — x)

Negative Binomial | Beta Negative Binomial-Beta Beta

NegBin(z|n,0) Bet(0|a, 5) NegBinBet(z|a, 3,0) Bet(f|la+n,B8 + z)

Poisson Gamma Poisson-Gamma Gamma

Pn(z|0) Gam(0|o, B) PnGam(z|w,3,1) Gam(f|a +z,6+1)

Continuous variables

Gamma, Gamma Gamma-Gamma Gamma,

Gam(z|v,0) Gam(0|a, f) GamGam(z|a, 5, v) Gam(f|la+v,B + )

Exponential Gamma Pareto Gamma

Ex(s]0) Gam(f]e,f) | Par(zla, f) Gam(d|a + 1, 6+ z)

Normal Normal Normal Normal

N(a|6,0?) N(©lu, ) | Nzlu+0,7)? N (ufcinie, 227

Normal Gamma Student (t) Gamma

N(olu, 0) Gam(0]2,2) | St(olu,a) Gam (6]241,2 + L (4 — 2)?)

Table 6.2: Relation between the data, a priori, marginal and a posteriori distributions.
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6.4 Estimation of vector parameters

In the case where we have a vector parameter @ = [01,...,0,,]' we have to define a cost
function c[a, 8] : R™ x R™ ~ R™. Then it is again possible to define the Bayes risk. In
many cases the cost function is of the form

cla, 0] = in:cZ [a;, 6 (6.40)
We then have .
E[c[f(),0]| X = 2| = ZE [cilbi(2), 0] | X = | (6.41)

Here after, we consider some common cost functlons.

6.4.1 Minimum-Mean-Squared-Error

In case where 7 = R™, a commonly used cost function is

m
cla,8] = [la— 6] = (ai - 6;)° (6.42)
i=1
The corresponding Bayes risk is E [||§(X ) — ®||2] and the corresponding Bayes estimate
is the Minimum-Mean-Squared-Error (MMSE) estimator or the Bayes estimate:

01mse(X) =E[O| X = z] (6.43)

Thus the MMSE estimate is the mean of the posterior probability density function. It is
also called posterior mean (PM) estimate.
Note that, as in the scalar case, the following weighted quadratic cost function

cla,0) = | — ][} = [a — 6]'Qla 6] (6.44)

gives the same estimate as in (6.43), i.e. the MMSE estimate does not depend on the
weighting matrix . However, the corresponding minimum Bayes risks are different and
we have

E [||6(X) - @||b] = tr {QE[Cov{®| X = z}]} (6.45)

6.4.2 Minimum-Mean-Absolute-Error

In case where 7 = R, another commonly used cost function is

m

cla,8] = > |a; — 64, (6.46)
i=1
The corresponding estimate is such that
Pr{0; <f(z)| X ==z} =Pr{0; > fi(z)| X = =}, (6.47)

which means that @(m) is the median of the marginal posterior distribution of ©; given
X =g, ie 7(0;| X =)
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6.4.3 Marginal Maximum A Posteriori (MAP) estimation

Another commonly used cost function in the cases where 7 = R™ is

m . 0 if ; — 0; <A
C[a,O]:ZC[ai_H’i] with c[ai—ei]:{ 1 ;f IZ;_QZI;A

=1

where A is a positive real number. The corresponding estimate is given by :

0; = arg max {r(0; | z)}
0,€T

if A is sufficiently small.

6.4.4 Maximum A Posteriori (MAP) estimation

Two other cost functions which give the same estimates are :

. 0 if maxz|az—01|§A
C[a’e]_{ 1 if max;la; —0;| > A

and ,
o0 i Ja-o2<A
C[“"’]—{ 1 if la—82> A

where A is a positive real number.

85

(6.48)

(6.49)

(6.50)

(6.51)

In both cases, if the posterior distribution 7(8 | ) is continuous and smooth enough,

we obtain the MAP estimate.
The corresponding estimate is given by :

Orap = argmax {7(0 | z)}
Oct

(6.52)

Note that the MMAP estimate in (6.49) and the estimate (6.52) may be very different.
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6.4.5 Estimation of a Gaussian vector parameter from jointly Gaussian
observation

The case of the estimation of a Gaussian vector parameter § € R™ from a jointly Gaussian
observation & € R" is a very useful example and is used in many applications.
Suppose ® and X have the following a priori distributions:

0 ~ N(007R®)

X ~ N(:B(), Rx)

;KO o ’ 1{)(@ 1{
Wllh R@ X — RtX'@.

It is easy to show that the posterio law is also Gaussian and is given by

and

O|X ~ N(6,R) (6.53)
with
0 = 6o+ RoxRy'(x— ) (6.54)
R = Ro - RoxR3'Rxo (6.55)
We also have
E@|X=x] = 8 (6.56)
Cov{®@|X =2} = R (6.57

The corresponding minimum Bayes risk is

r() = tr {QR} = r {QRo} — tr {QRox R5'Rxo (6.58)
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6.4.6 Case of linear models

When the observation vector is related to the vector parameter 8 by a linear model we
have

m
XiZZhi,jG)j—l-Ni, 1=1,...,n (6.59)
j=1

or in a matrix form
X="HO®+ N (6.60)

with
® ~ N(6,Ro)

N ~ N(0,Ry)

Then we have

X|@=6 ~ N(HO,Ry)

Rx = HR@Ht+HR@N+RN@Ht+RN

Rxe = HRo+ Ron, Rex = Rke

If we assume that the noise IN and the vector parameter ® are independant, we have

Rx = HRoH'+ Ry (6.61)
Rxe = HRo, Rox = RLH' (6.62)
Ry = Ry - Ry'H (Rg'+ H’fR;Vlﬁrf1 H'Rg! (6.63)
and L
®|X ~N(6,R) (6.64)
with

= E[®|z] =60y + RoxRy (z — HO)
= E [(0 — O)t(G — 0) |m] =Rg — RexR}lRX@

—N
m) )
|

& = 6o+ RoH'[HRoH'+ Ry] ' (x— HEy)
-1
60+ [H'R'H + Ro'| H'R,'(z — Hy) (663
R = Re - RoH'HRoH'+ Ry] 'HRe '

_ [H'Ry'H + RG] o

Consider now the particular case of Ry = 021, Rg = 02(D'D) ! and 6y = 0. We then

have {

— (H'H+AD'D) ' H'z,

. 6.66
= o2(H'H+AD'D)"', with A\=o0?/o (6.66)

D
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6.5 Examples

6.5.1 curve fitting

We consider here a classical problem of curve fitting that any engineer is almost anytime
faced to. We analyse this problem as a parameter estimation : Given a set of data
{(zi,t;),i = 1,...,n} estimate the parameters of an algebraic curve to fit the best these
data. Among different curves, the polynomials are used very commonly.

A polynomial model of degree p relating x; = z(t;) to t; is

z; = x(t;) = 0+ Ort; + Oot? +--- + 0,7, i=1,...,n (6.67)

Noting that this relation is linear in 6;, we can rewrite it in the following

z1 1t 2 ... v P 6o
T2 _ 1 2 t% te v tg 91 (6 68)
T 1 t, t2 .- P 6,
or
z=HG0 (6.69)

The matrix H is called the Vandermond matrix. It is entirely determined by the vector
t= [tlat2, s ,tn]t'

In the case where n = p + 1, this matrix is invertible iff ¢; # ¢;,Vi # j. In general,
however we have more data than unknowns, i.e. n > p+ 1.

Note that the matrix H'H is a Hankel matrix:

n n
[H'Hy =) 5 ' =3 "2 ki=1,...,p+1 (6.70)

=1 =1

and the vector H'zx is such that

n
[H'a], => ti 'z, k=1,....,p+1 (6.71)
=1

Line fitting is the following particular case

x1 1 ¢
) 1 t2 90

3 I (01> (6.72)
T, 1 t,

In this case we have

HH=| , it (6.73)
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o

z; =0p+ O1t; + -, Optt

K3

Z; y o

Figure 6.1: Curve fitting.

and

n
>_wi
i=1
n

> tiai
i=1

In the following we consider the line fitting case and will see how different assumptions
about the problem can give different solutions.

H'z = (6.74)

Model 1:
The easiest model is to assume that ¢; are perfectly known, and we only have uncertainties
on x;, i.e.

x; =$(ti) =0y +60it;i+e, i=1,....n (675)

where e; represents the error on z;. In a geometric language, e; is the signed distance
between the point (¢;,z;) and the point (¢;,6¢ + 01t;) (see figure 6.5.1).

Here, we have € = HO + e with @ = [0, 0;]". The matrix H is perfectly known. Note
that in this model, if we assume that e; are zero mean, white and Gaussian

€ = XT; — 00 - gltz’ ~ N (0, O'z) (676)
then the likelihood function becomes

f(@16) =N (0,02I) o exp [—2}7||w - H0||2] (6.77)

and the maximum likelihood estimate is

~

0= argmin{”m - H0||2} (6.78)
(7]
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o

z; = O + 011;

Zj / o

Figure 6.2: Line fitting: model 1: e; = x; — (6y + 61t;)

If the H'H is invertible, 8 is given by
6=[H'H| 'H'z (6.79)

To define any Bayesian estimate, we have to assign a prior probability law to 8. Let
assume that 6y and 6; are independent and

0o ~ N (0,03) . O ~N (1,0%) (6.80)
(@) () (3 4 wwm

e Write the complete expressions of f(z;|8), f(x|8), 7(0) and «(0|x)

Exercise 1:

e Show that the posterior law 7(0 | ) is Gaussian, i.e.
(@|z) ~ N (8,%) (6.82)
and give the expressions of 6 and .

e Show that the MAP estimate is obtained by
6 = argmin {J(0)} (6.83)
0

with

1
—sllz — HO||” + (8 — 60)'=, (6 — 6o)
le "
= = (mi — 00— 01t;)> + (6 — 00)" S5 (0 — 6q)
[

%¢ =1
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e Show that, in this case an explicite expression of 0 is available and is given by

S~ J1 L1 _
6=|HH-+Y, 1] [;Hta: +X;'60 (6.84)
[

e

e Compare this solution to the ML solution (6.79) which is equal to least square (LS)
solution.

Model 2:
A little more complex model is

x; =x(t;)) =0+ 01ti+e;, i=1,...,n (6.85)
with the assumption that
€; x; — 0y — O11;

T; = €; COS p = =
\/ 1+ 62 V1+62

the distance of the point (¢;,z;) to the line z(t;) = 6y + 61t; is zero mean, white and
Gaussian with known variance o2 (See figure 6.5.1.)
Note that r; is no more a linear function of 8.

I o
e; z; =0y + 011,
T
Zj o
0

Dl

0o t; t
o )

0

Figure 6.3: Line fitting: model 2: r; = e; cos ¢ = \/18-i|-Q2 = “710_;9921”
1 1
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Exercise 2: With this model and assuming that r; are zero mean, white and Gaussian

with known variance 02 =1 :
e Write the expressions of f(z;|0), f(x|8), 7(@) and 7 (0 | x)
e Show that the MAP estimate is obtained by

6 = argmin {J(8)}
0

with
1

J(@) =nln (27!’(1 + 9%)0’3) + W

i=1
where 0 = [90,01]t.

e [s it possible to obtain explicit expressions for 50 and 51 ?

Model 3:

A little different model assumes that ¢; are also uncertain, i.e.

i =x(t;)) =00+ 01(t; +€) +e, i=1,...,n

(6.86)

> (@i — 00— 01t:)* + (8 — 60)'; " (6 — )

(6.87)

(6.88)

where ¢; represents the error on ¢;. Here also, we have € = HO + e with 8 = [0, 6], but

the matrix H is now uncertain.
Note that we have

xz; = x(t;) = 6p + 01t; + 016 +ei, i=1,...,n

which can also be written as
cr=H0+HZO0O+e

with

(6.89)

Exercise 3: With this model and assuming that ¢; are zero mean, white and Gaussian
with known variance o2 and that e; are also zero mean, white and Gaussian with known

variance og:

e Write the expressions of f(z;|8), f(x|@), 7(@) and 7(0 | x)
e Give the expressions of the ML and the MAP estimators.

e Compare them to the solutions of the previous cases.
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T o
€; r; = 00 + glti
T
Ty \& o
o

Dl

o t; t
o o

o

Figure 6.4: Line fitting: model 3

Model 4:

This is the combination of cases 2 and 3, i.e.
T; :x(ti) 200+01(ti+6i)+6i, 1=1,...,n (6.90)

where
€; x; — 0y — 01¢;

1+ 62 - V1+6?

the distance of the point (¢;, ;) to the line z(¢;) = 0y + 6:t; are assumed zero mean, white
and Gaussian.

7§ = €; COS p =

Exercise 4: With this model and assuming that ¢; are zero mean, white and Gaussian
with known variance a? and that r; are also zero mean, white and Gaussian with known
variance o2

e Write the expressions of f(z;|0), f(x|8), 7(@) and 7(0 | x)
e Give the expressions of the ML and the MAP estimators.

e Compare them to the solutions in previous examples.
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A 0 A 0
x; = 0y + 01t; € zi = 0o + 01t;
€; T3
Z; / o T o
o o
Dl
t; 1 o t; t
o o o
o

Model 1: e; = z; — (6 + 61t;) Model 2: r; = [z; — (6 + 61t;)] cos ¢ = i~ (fo+01t:)

Figure 6.5: Line fitting: models 1 and 2.

Vi+e®
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z|0 ~ N(HO, Ry)
6 ~ N(6, Ro)
8z ~ N6, R)

0 = 6o+ RoH'[HRoH'+Ry] ' (x— H6,)
-1
= 6+ [H'Ry'H + Rg'|  H'Ry'(z - H6,)
R = Re- RoH'[HRoH'+ Ry] ' HRe
= |H'Ry'H + RS'|
Model 1:
€; ~ N(07 02)
zi|@ ~ N (6 + 61t;, 0'2)
x| ~ N(HE, )
~ —1
6 = 6o+ [H'H+ ogRéll Ht(z — HO,)
R = o!|H'H+0lRS'|
Model 2
T = \/161—0% ~ N(O, 03)
€ ~ N (0, (1+67)07)
;|0 ~ N (6o +0:ti, (1+ 9%)03)
2o~ N(H0 (14 62)02I)
T(07) = o 2r(l+ 6302 2 exp [—2(1—+},m||m — HO|> - 1(6 — 60)'R5"(0 — 00)]
Orvap = argming {J(0)}
J(0) = —§m2r(l+6%)07] - sprgmyslle — HO|? — 5(8 — 60)'Rg' (6 — 60)
Model 3:

€ ~ N(07 Ug)

€; ~ N(Oa Ug)

z;|0 ~ N (90 + 01t;, 9%0’62 + 0’2)
z|6 ~ N(HO (0202 + o)1)

T0lz) = gy [2m(002 +02)] /7 exp [—Wllw ~ Ho|” - 5(6 — 60)'Rg' (6 — 00)]
aMAP = arg mlno {J(0)}
J0) = —§m2n(0F0? +02)] - sy lle — HO|? — 3(8 — 60)'Rg' (6 — 8)

Model 4:

N(0, 02)

€; ~ N(0, (1+61)%02)

)0  ~ N (0o +0it;, 0202 + (1 +01)20 )
N (6 + 01, 0%(0? + 0?) + )
N(

€; ~

x|6 ~ HO, (?(c% +o )-I—O')I)

w(0le) = g 27(03(02 + 02) + 02)] /2 exp [—mnm — HO|> - 3(0 - 60)'Rg"(8 — 60))
Ovap = argmlng {J(6)}

JO) = —5W[(6}(02 +0?) + 02)] - spmriaez |2 — HO|” — 5(6 — 60)'Rg' (0 — 6)

2(07 (02 +02)+02)
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Remark: To do these calculations easily we need the following relations:

e If A, B and A + B are invertible, then we have
-1
[A'+B'| = A[A+B]'B=B[A+B]'4 (6.91)
—1 —1
(A —I—B]_l — Al [A—l + B_l] B l=pB1 [A_l + B_l] Al

If A and C are invertible matrices, then we have

[A+BCD] '=A1-A"'B [DA*lB + 0*1] “'pa (6.92)

A special case very useful in system theory

[1+B(sI-C)'D| '=1-B[sI-C+DB|'D (6.93)

If A is invertible then,
A lu) (v'ATY

7 a1 (
[A+u'| =4 = (6.94)
e If A is a bloc matrix
A= (A An)
Ay Ay

then B = A~! is also a bloc matrix

By, B12>
B =
(le By,

and
— If Ay, exists, then

A— I A12A221) (All — A12A521A21 0 ) ( I 0)
—\o I 0 Ay ) \AL Ay T

and we have

rank {A} = rank {An — A12A2_21A21} + rank { Ago}

A~ exists iff the matrix T = Ay, — A12A2_21A21 is invertible. Then we have

1
B, =T"' = (An - A12A2_21A21)
By = = A, + A, Ay Bi1ApA,
Bi; = —-BjApAy
By, = —A3 Ay By

Written differently, we have

(An 1‘112)_1 _ ((An — A Ay Ayt —Bj1Ajp Ay )
Ay Ap —~ A5 Ay By, Ay + AL A Bl A Ay
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— If A3, exists, then we have

By= = A +A['A;3BpAyA
By =D7' = (Ayp - Ay A7l'Ap)™!
By = —Aj'A;sBy
By = —-BynAynAj}

The matrices T' and D are called the Shur’s complement of the matrix A.

e Particular case 1 :
If A is a superior bloc-triangular, i.e. A9y = 0, then B is also superior bloc-
triangular, i.e.

B (An Am>_1 _ (Alll —A111A12A221)
0 Aogo 0 A2_21

e Particular case 2 :
If A is an inferior bloc-triangular matrix, i.e. Ajo = 0, then B is also an inferior
bloc-triangular matrix, i.e.

(AH 0 )1 ( ATl 0 )
B = = -1 -1 -1
A21 A22 _A22 A21A11 A22

e Particular case 3 :
If Ao is a sclar and A and Ao are vectors, we have

A= (A=), moan o L(eadpet )
z Y o v 1
where a, w, and v are given by:

1 _ 4]

= , w=-A e, v=—-Az
(y—ztAe)  |Ax| H H

o=

e If A is a [N, P| matrix
I+ AA'=[Iy+ AR'AY[Iy + ART'AY'
where R =Ip + [Ip + A'A]'/2.

o If x is a vector and u(x) a scalar function of « and if we define the gradient vector
Vu = g—% = [5—;], then we have the following relations

_pt _ Ou __
fIfu—BwthenVu—%—O

—If u = 2t Az then Vu = g—% =2Ax
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Generalized Gaussian

201(1/p) p oF
1 |z — o]
=1— = = Ul
p(z) = o p[ =
1 1 |z — zo|?
=2 — ex R
p( ) \/% pl o2
o —s /20 if |[z—=x| <o
p= p(z otherwise

Centered case 2o = 0.

1/20 if |z| <o
otherwise

Multivariable case:
Separable:

pn_n/p 1 n »
p(x) = Wn(l/p)eXp _Iﬁ; |5 ]

Correlated: Markov models

p(x) = Z(a) exp [—a z": Z d(z; — xj)]

i=1j4

Z(a) = /expl—aZZqﬁ —:v]]

=171

Example: ¢(z) =22, ji=1i—1

p(z) = Z(« )expl awl—az i~ Tio1 ]

This can be written as
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with
1 0 0
1 -1
D - 0O 1 -1
1 -1
0 0 1 -1
Z(a) = (2m) "?* (20)"*| D' D
Extension :

with ¢(z) = |z|P
The questions are:
Z(a) exists ?
Can we obtain an analytical expression for it 7

99
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Chapter 7

Elements of signal estimation

In the previous chapters we discussed the methods for designing estimators for static
parameter estimation. In this chapter we consider the case of dynamic or time varying
parameters (signal estimation).

7.1 Introduction

In many time-varying systems, the physical quantities of interest z can be modeled as
obeying a dynamic equation
L1 = fn(wna un) (71)

where

e x(,1,..., s asequence of vectors in RY, called the state of the system, representing
the unknown quantities of interest;

® uy,Ui,..., is a sequence of vectors in RM, called the state input of the system,
representing the influencing quantities acting on xy;

e fo,f1,-.., is a sequence of functions mapping RY x RM to RM, called the state
equation of the system, representing the dynamic model relating x, and u,;

A dynamic system is such that, for any fixed k and I, x; is completely determined from
the state at time [ and the inputs from times [ up to £ — 1. So, complete determination of
Ty,n =1,2,... requires not only the inputs u,,n = 0,1,2,... but also the initial condition
Q.

The equation (7.1) is called the state equation. Associated to this equation is the
observation equation

zn = hp(xp,vn) (7.2)
where
® 20,21,..., is a sequence of vectors in RY representing the observable quantities;
e vy, v1,..., is a sequence of vectors in R” representing the errors on the observations;
e hg,hi,..., is a sequence of functions mapping R" x RY to R representing the

observation model.

101
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The main problem then is to estimate the state vector xj, from the observations zg, z1, ..., 2.

Example 1: One-dimensional motion
Consider a moving target subjected to an acceleration A; for ¢ > 0. Its position X;
and its velocity V; at time ¢ satisfy

dp,
X, =45
dt (7.3)

Assume that we can measure the position V; at time instants ¢, = nT and we wish to
write a model of type (7.1) describing its motion. Assuming 7' is small, a Taylor series
approximation allows us to write
X ~X,+T
n+1 n+ Vn (7 4)
Vn+1 ~ Vn + TAn

From these equations we see that two quantities X,, and V,, are necessary to describe the
motion. So, defining

=(v)  [=-(%)
—\v "=\,

we can write

{ Tpny1 = Fx, + GU,

oot ZFend Gy F:(l T),G:<O),H=(1 0)  (7.6)

0 1 T

{ fol@,u) = Fx+ Gu (7.7)

h,(x,v) = Hz+v

In this example, we assumed that we can measure directly the position of the moving
target. In general, however, we may observe a quantity z(n) related to the unknown
quantity z(n) by a linear transformation:

z(n) — ‘ Linear System‘ — z(n)
non observable observable
and we want to estimate z(n) from the observed values of {z(n),n = 1,...,k}. The
estimate Z(n) is then a function of the data {z(n),n = 1,...,k} and we note

~ def
Z(n|z(1),2(2),...,2(k)) = Z(n|k)
Three cases may occur:

e we may want to estimate z(n+k) from the past observations. The estimate Z(n+k|n)
is called the k-th order prediction of z(n) and the estimation procedure is called
prediction.
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e we may want to estimate z(n) from present and past observations. The estimate
Z(n|n) is the filtered value of z(n) and the estimation procedure is called filtering.

e we may want to estimate xz(n) from past, present and future observations. The
estimate Z(n|n + 1) is the smoothed value of z(n) and the estimation procedure is
called smoothing.

7.2 Kalman filtering : General linear case

In this section we consider the linear systems with finite dimensions described by the
following equations:

xry1 = Frxp+ Gpug state equation,
zZy = H; x; + vy, observation equation

where
e £k =0,1,2,... represents the discrete time ;
e x; is a N-dimensional vector called state vector of the system ;
e z; is a P-dimensional vector containing the observations (output of the system) ;

e v, is a P-dimensional vector containing the observations errors (output noise of
the system) ;

e u; is a M-dimensional vector representing the state representation error (state
space noise process) ;

e Fi, Gy and H, with respective dimensions of (N, N), (N, M) and (P, N) are the
state transition, the state input and the observation matrices and are assumed to be
known.

e The noise sequences {u} and {v;} are assumed to be centered, white and jointly
Gaussian.

e The initial state xy is also assumed to be Gaussian and independent of {ur} and

{ve}:
Vi R, O 0
E l<m0> (vf,:cf),uf)j| = ( 0 P, 0 ) Ok
Uk 0 O Qk

where Ry is the covariance matrix of the observation noise vector v, Q) is the
covariance matrix of the state noise vector Q, and Py is the covariance matrix of
the initial state .

Remember that the aim is to find a best estimate Zj; of ) from the observations
Z1,%29,...,2;. Depending on the relative position of £ with respect to 7 we have:

o If k>1[ prediction
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o If k=1 (fltering
e If k<l smoothing.

Of course, for fixed k¥ and [, this problem is not different from the vector parameter
estimation of the last chapter. However, we are usually interested in producing estimates
eith in real time or at least on-line for increasing k.

Three different approaches can be used to obtain the Kalman filtering equations.

e Linear Mean Square (LMS) estimation :

~  def
Zp = LMS(zy | 21,.. -, 21)

which minimizes
B ([ — @x) Wi [ox — 2p)]

e Maximum A posteriori (MAP) estimate :

Ty = arg max {p(z | 21,...,21)}
e Bayesian MSE estimate :
Zy = E[zg [21,. .., 24]

We know that, for linear relations and Gaussian assumption all these estimates are equiv-
alent. We consider here the last approach.

The main procedure is to apply the Bayes rule recursively to find the expression of the
posterior law p(xy | z1, ..., 2;). Note that, we can obtain easily this expression thanks to
the following facts :

1. All variables are assumed Gaussian ;
2. {uy} and {vy} are assumed white, Gaussian and mutually independent ;
3. The state and the observation models are linear ;

4. All the conditional laws such as p(zgy1|Tk+1) and p(zx41|21.,) are Gaussian. So,
the posterior law

P(Zk+1|Tk+1)

P\Tp+1|21:k+1) = P\PE+1121:k) — 72 12
(Trt1lz1:841) = P(Th+1|21:8) pGrailzie)
is also Gaussian.

To obtain the equations in the general case we note

o T, the estimate of the state vector at time k from the observations up to time & ;

® Zj1q)x the estimate of the state vector at time k + 1 from the observations up to the
instant k ;
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® €py1 = Zky1 — Hpy1 @ppqp, the innovation process of the observations at the instant
k+1

e The covariance matrix of the innovation by
R . ,=E|e el
k+1 k+1]k €k+1]k
which is diagonal;
e The covariance matrix of the prediction error by
~ ~ t
Piip=E [$k+1 - -’Bk+1\k] [$k+1 - mk+l|k] ;
e The posterior covariance matrix of the estimation error by
~ ~ t
P11 =E [‘Bk—l—l - -'Ek+1|k—|—1] [ivk+1 - wk—|—1|k—|—1]

which is also called the covariance matrix of the filtering error.

With these definitions, we obtain easily:

E [zk|21:4] = Ty
def
Cov{zi|z1k} = Py
def .
E [@)1|21:4] = B
def
Cov{ziyiilzik} = Pryip
E [2p41] 1] = Hpp1 @
Cov{zii1|Tpt1} = Rt
E [©h11|21:4] = FpZy
Cov {;ck+1|z1;k} = Fk PkF}; + Gk Qk G}:c
E[zk+1|z1;k] = Hyy Fy aIc\lc
Cov{zkii|z1k} = Hpgi Pk+1|kH§c+1 + Ry 11

Replacing the expressions of p(zkt1|®k+1) and p(zky1]|z1:x) we obtain :

1 - _ ~
p(xpi1|z1:611) = Aexp [—§[$k+1 - mk+1|k]th41—1|k+1[mk+1 - $k+1lk]]

with
~1/2

1 ¢ 1/2 —1/2

A= @ ‘Hk+1 Pk+1\kch+1+Rk‘ | R | ‘Pk+1|k‘
—1

Tpir = FrZgp+ Pryp Hiyy [Rk—|—1 + Hyp1 P HZH] [Zk+1 — Hp1 Fr Ty,

Py = FpPypFi+GLQ, G

—1 _ —1 1 —1
Pk = Prip T Hep By He
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These equations can be rewritten in many different ways. Here are two of them:

e Prediction-Correction form :

— Prediction (Time update) :

Ty = FrZpp
Py, = FypPyFi+GrQ, G

— Correction (measurement update) :

Tpiht1 = Tppak + K[z — Hipr Bpqp)
K, = Prap Hj . (Rf )"
i1 = Rpp1+Hp Py Hp
Pippyr = - K£+1ch+1]Pk+1|k

e Compact form for prediction :

Tpior = FrZpp+ Ki(RE) 'zp — Hy g 1]
R = Ry+H;Py_1Hj
K, = FyPy H,
Py = FipPyy_1Fi+GLQ, Gl — Ki(R;)™ ' K|

e Compact form for filtering :

B = Bpp—1 + Kjlzp — Hy Tppp—1]
K{ = Pyj_1Hj[Ry+ HyPyj_, H]™'
Pyy = Py — K{HpPp_4
Py = FpPppFi+GrQ, G

e Very compact form for prediction :

Tppie = Fr@pp—1 + Kilzp — Hi Bpjp_]
K{ = P, H}[Ry+ HPy_, H;]"!
Py = FpPyy 1 F,— FyK{HPy Fj +G,Q, G,

where K, is called the Kalman filter gain and Kj = K;(R{)~! the generalized
Kalman filter gain.

In all cases the initialization is :

Zo-1=0 Py =Py



7.3. EXAMPLES 107

7.3 Examples

7.3.1 1D case:

Tpn+1 = fon+u,
{ Zn = hzp,+ vy (78)

where u,, and v, are assumed independent, zero-mean, white and Gaussian with known
variance q and r respectively. z( is also assumed Gaussian with known mean my and
known variance pg

Up ~ N(an)

vy, ~ N(0,7) (7.9)

zo ~ N (mo,po)

The equations in this case reduce to

Tntiln = fxn|n
Tnln = Zpln-1 + kn (zn - h$n|n—1) (710)
k — pnlnflh — 1 Pnjn—1

n h2pn|n—1+7' h pnln—l_}'r/h2

The role of the Kalman gain in the measurement update is easily seen from these expres-
sions. Pnln—1 is the MSE incurred in the estimation of z,, from z.,_1, and the ratio 1"/h2
is a measure of noisiness of the observations. It is interesting to compare these equations
with the Bayesian estimation of the signal amplitude as described in Example ().

For this particular time-invariant model, we have

2
Pntin = [ Pnnt4q
{ mln T PR (7.11)
Pnn T bk 3 Pan—1+1

We can eliminate the coupling between these equations and obtain

f2p -1
Pn+ijn = hz# +q (7.12)
- Pnjn—1 +1

We see here that as n increases, p, |, and so the gain k, approaches a constant. Note

that if p, 1), does approach a constant, say peo, then po, must satisfy

2
Poo= L2 1 g (7.13)
Tpoo+1

This equation is quadratic and has a unique positive solution

1 T 12 4rq 12 r
= |=0-fH- — - —(1—f? 14
Pec 2{[h2< ) -q +h2} (1= 4 (7.14)
2 Pnjn—1 Poo
Pntljn —Poo| = f - ‘
‘n " 00‘ ’:-_2pn|n—1+1 h72poo+1
S f2 pn|n—1_p00|




108 CHAPTER 7. ELEMENTS OF SIGNAL ESTIMATION

‘pn+1|n - poo‘ < FA |py — po|
2
< f ‘pn|n71 _poo‘

This means that if [ f| < 1 then p, 1), converges to pe. So [f| < 1 is a sufficient condition
for Kalman-Bucy filter to approach a steady state.

7.3.2 Track-While-Scan (TWS) Radar

Let consider the example of one dimentional moving target and assume that the target is
subject to random acceleration A,. Then we have

() = G D)) (2)

Z, = (1 0)<§:>+en

For a more general case in 3D we have a state vector with 6 components (3 positions
and 3 velocities). But, if we assume that the measurement noise in 3 dimensions are
independent of one another and independent to the components of the acceleration, the
problem can be treated as 3 independent one-dimensional moving target.

The Kalman equations for this simple model become

():\{n—kln) _ (Xnnj_ TVnn)
Vn—l/—\1|n N Vn|n
X Xon— K S
An\n _ An\n 1 n,l 7 _ X
( Vn|n ) ( Vn|n_1 ) + (Kn,Q) ( n n|n—1)
P(1,1
K,1\ P(l(,l)—i)—r
K,,) = \_pen

where P(k,1) is the (k — [)th component of the matrix Py,_.
To reduce the computation, the time varying elements of the Kalman gain vector can
be replaced with some constants (the steady states values) to obtain

(2= () (i) -

with constatnt values for o and 3.

<

njn—1 ) (715)

7.3.3 Track-While-Scan (TWS) Radar with dependent acceleration se-
quences

The simple model of the previous example is not very realistic, because there was assumed
that the target is subjected to random acceleration. For a heavy target, we can do a little
better by assuming that the acceleration A,, is modeled as

Aps1 = pAn +W,, n=0,1,...
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a first order autoregressive (AR) model. The value of p can be choosed in accordance of
the target. p near to 0 means a very low inertia target and p near to 1 means a high
inertia target.

To account for this equation, we can extend the state vector and we obtain

Xpt1 1 T 0 X, 0
An-l—l 0 0 P An 1

Xn
Ap

We again can apply the Kalman equations to this model and obtain:

):\(:n—l—1|n {?n|n + T?n|n
Yn—kl\n = Vn|n -I:\TAn\n
Ani1|n N pAn|n
)fn|n )£n|n—1 Kn,l R
‘//:n\n = Yn|n—1 + (KH,Q ) ( Zp, — Xn\n—l )
An|n An|n—1 Kn,S
K1 P(1,1)
(Knﬂ = ( P(21,31()1,1)1t€3,1) )
Kps PO+ PO+

where P(k,1) is the (k — [)th component of the matrix Py ,_;.
Again to reduce the computation, the time varying elements of the Kalman gain vector
can be replaced with some constants related to its steady state value and obtain

):(n\n ):\{nm—l « R
An|n An|n—1 ’y/TQ

with constant values for o, 8 and 7.
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7.4 Fast Kalman filter equations

The general equations of the Kalman filtering do not assume any stationarity of the system
and all the matrices of the system F, G and H, and also R and Q may depend on the
index k.

Through the simple example in previous section, we saw that, when these quantities
are independent of k, i.e.

oy = Foyp1 + Kp(RE) ez — HEypp 1]
Rz = R+HPk|k_1Ht
K, = FPy, H'

Py = FPy F'+GQG' — K(R;) ' K],

the system can reach a stationnary point and we can use the steady state values of the gain

or an approximation to it to reduce the calculation cost. But doing so does not give an

optimal estimate and may not give a very satisfactory solution. Here, we present shortly

a slightly better way to obtain fast algorithms without loosing too much its optimality.
Let assume a constatnt system and note by §Py, K Z and 6 R}, the increments

0P = Ppp_1— Pr_qp_2
K} = K]-Kj |
ORy = Rj— Rj_,
Then, it can be shown that the 0Py, can be factorized by
§Pry1 = [F—Kj_ H|6P,—- 6P, H'(R,) ' HP)[F - K]_H'
= [F - K{H|[§Py+ 6P, H'(R;_,)” HP{][F — K{H]'

Then, it is possible to reduce the cost of the calculations by noting that if P} can be

factorized as:
(5P1 = Z()Mozé,

then 0 Py, can also be factorized as
§Pyy1 = zp My 2},

and we obtain then the following equations:

6Py = zp Myzj
Zr = [F - KzH]zk—l
My = My 1+ M, iz [H'(Rj |) " Hzy_1 My,

#1 = Rj+Hz, Mz, H

Kiyn = Kj R, =Ky+Fz, Mz H'
k—1

Pyr1 = Po+) zM;z;

=0
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which are called Chandrasekhar equations.
Note that if @ = rang {0 P} where

6P, = FPoF'+ GQG' — Ko(R§) 'K} — Py

then zj has dimensions (N, «), M has dimensions (o, @). So, in place of updating, at
each time k the matrix Pj with dimensions (N, N) we only have to update the matrixes
2y and M with dimensions (N, «) and (a, a).

Note also that M is the signature matrix of P and the value of a depends on the
choice of the initial covariance matrix Py. It is not unusual to have o = 1 which greately
reduces the computation cost.



112

CHAPTER 7. ELEMENTS OF SIGNAL ESTIMATION

7.5 Kalman filter equations for signal deconvolution

Starting by the convolution equation:

rewritten in matrix form

p—1
z(k) = h(i)z(k — i) + b(k)
=0
z(1) hip-1) hyo) z(—p) b(1)
Z(k) = 0 h(p,l) s h(o) 0 :L'(O) + b(k)
z(M ) 0 0 hpoy - h('o) x(M) z(M)

we can propose the following models:

e Constant state vector model
Tyl = Tp=x = [:v_p,...,w_l,mo,xl,...,xn]t
2k = h}tc - L+ Vg
hg=(0 0 0 hyy ... By 0 0)

where coefficient hg is in the k-th position. Then we have

=
a-(‘k
+
il

I

If we note by

O ... ... 00
0 1 0 ... 00
G,=1 withD=|0 1 0o : :
Dh!, : :

0 1 0

E[x] = x E [[:L' — xo][x — mo]t] = P

we obtain
Tk
rf
Ky,

Pk

E [’Uk] =0 E [Uk’l)j] = ’I"(Skj

= Byy_1 + Ki(rf) yk — b, - Tpppi]
r+ hi Py by
Py 1 by,

= Py — Ki(rp) ' K},

Note that the observations y; are scalar. So, rj, is also a scalar quantity, but « is a
N-dimensional vector and so the covariance matrix P has the dimensions (N x N).
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e Non constant state space model

we can choose

h=lho,...,hp-1]", @k = [Tk, Th—1, .-, Tp—ps1]’

z(k) = h'xy + b(k), dimension of ¢, =p < N
But now we need to introduce a generating state space model for xy.

One of such models is an AR model :

z(n+1) :Za(i)x(n—i+1)+u(n+1)

=1

where
Efu,] =0, E [|un|2] =2, Eunu, =0, m#mn

It is easy then to see that we can write

z(n+1) 1 0 0 z(n) 1
z(n) 0 1 0 0 z(n—1) 0
= +
z(n —q+2) 1 0 z(n—q+1) 0
Thus we have
Tpr1 = Fop+ Gugg
ye = hb-zp+
a; ag agq
1 0 ... 0 1
0 1 0 0 0
F = : y G = .
0
1 0

113

u(n + 1)

This model has the advantage that F, G and H are constant and we can use fast
algorithms, but the main drawback in practical applications is the determination of

gand ag, k=1,...,q.
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Consider the following convolution model :

f)—~ H

/f ') dt’ + b(t)

and assume the following hypotheses :

)= [ )

) f ") dt' + b(t)

e The signals f(t), g(t), h(t) are discretized with the same sampling period AT = 1,

e The impulse response is finite (FIR)
vVt > pAT.

Then we have :

: h(t)

Z h(k)f(m — k) + b(m), m =0,
k=—q
or in a matrix form
h(p) --- h(0) -+ h(-q) 0
9(0) 0 .
9(1) :
| hp) - h(0) h(=q)
9(M) 0 0 h(p) h(0)
g=Hf+wv

= 0, for ¢ such that ¢t < —¢gAT or

Note that g is a (M + 1)-dimensional vector, f has dimension M +p+q+ 1, h =
[h(p),- -+, h(0), -+, h(—q)] has dimension (p + g + 1) and matrix H has dimensions (M +

1) x (M +p+q+1).

Now, if we assume that the system is causal (¢ =

9(0) h(p) --- h(0)
9(1) 0

= h(p)
g(M) 0

0

0) we obtain
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If the input signal is also assumed to be causal, we obtain :

9(0) h(0) £(0)
g(1) h(1) - f(@)
= h(.p) ... h(0) (7.17)
g(M) o .-« 0 h(p) - h(0) f(M)
and finally if p = M we have :

9(0) h(0) £(0)

g(t) | _| (1) RO) f(1)

o) \nony o ) wo)) \ )

Remark that, in all cases matrix H is TOEPLITZ.
In the case where the input signal and the system are both causal, (7.17) can be
rewritten as

9(0) £(0)
g9(1) h(1) f(1)
: : h(p) :
h(p) h(0) 0 0

-1 0 -
g(M) 0 0 h(p) --- h(0) 0 f(M)
0 5 0
: - w0 :
0 0 ... o0 h(p) - h(0) 0

where f and g have been completed artificially by some zeros. This operation is called
zero-filling and the main advantage to do so is that the matrix H is now a circulant matrix.
Starting by the Kalman filter equations:

Zk =Hyxp + v observation equation
zpy1 = Frxi + Grug state equation
Tpp = Fr@pp
¢ ¢
P = FrPppFrp+GpQ, Gy
~ S f ~
Thtilk+1 = Trt1jk T+ Kk+1[zk+1 —Hy wk+1|k]
i) _ t e -1
Ky = PrupHp(RE)
e _ t
Ri,y = Ryy1+Hpy1 Py Hy

Priijgr = [I—K£+1Hk+1]Pk+1\k
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7.5.1 AR, MA and ARMA Models
AR model

e(n)—|H(z) =

MA model

ARMA model

In a dynamic system, in general, we are interested in a physical quantity x through
the observation of a quantity z related to « by the following system of equations

Tp+1 = fn(mnaun)
{ Zn+ = hn(mnavn) (7'18)



Chapter 8

Some complements to Bayesian
estimation

8.1 Choice of a prior law in the Bayesian estimation

One of the main difficulties in the application of Bayesian theory in practice is the choice
or the attribution of the direct probabilities f(z|0) and 7(6). In general, f(z|@) is obtained
via an appropriate model relating the observable quantity X to the parameters 8 and is well
accepted. The choice or the attribution of the prior 7(f) has been, and still is, the main
subject of discussion and controversy between the Bayesian and orthodox statisticians.
Here, I will try to give a brief summary of different approaches and different tools that
can be used to attribute a prior probability distribution. There are mainly four tools:

e use of some invariance principles
e use of maximum entropy (ME) principle
e use of conjugate and reference priors

e use of other information criteria

8.1.1 Invariance principles

Définition 1 [Group invariance] A probability model f(z|f) is said to be invariant (or
closed) under the action of a group of transformations G if, for every g € G, there exists a
unique 6* = g(0) € T such that y = g(x) is distributed according to f(y|0*).

Exemple 1 Any probability density function in the form f(z|0) = f(z — 6) is invariant
under the translation group

G :{g:(z) : gc(z) =7 +¢, ceR} (8.1)
This can be verified as follows

z~flz—0) —y=c+c~ fy—0") with 0" =0+c¢

117
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Exemple 2 Any probability density function in the form f(z|f) = 3f(%) is invariant
under the multiplicative or scale transformation group

G:{gs(z):g9s(x) =sz, s>0} (8.2)
This can be verified as follows
1 1 ] .
~ — — = ~ — —_— h * —
x ef(e)—>y sz 0*f(9*) with 6* =356

z—61

Exemple 3 Any probability density function in the form f(z|61,62) = % f(55,1) is in-
variant under the gffine transformation group

G :{gap(z) : gop(z) =az+b, a>0,beR} (8.3)
This can be verified as follows
1 -0 1 — 0%
g~ Sy=az+b~ —f(ETL) with 05 =abs, 60F =a +b.

0," "\ 0 057\ 0

Exemple 4 Any multi variable probability density function in the form f(x|@) = f(x—8)
is invariant under the translation group

G:{9c(z) : ge(x) =z —¢c, ceR"} (8-4)

Exemple 5 Any multi variable probability density function in the form f(x) = f(||z]|)
is invariant under the orthogonal transformation group

G:{ga(2):ga(®) = Az, A'A=a4'=T} (8.5)

Exemple 6 Any multi variable probability density function in the form f(z|0) = 5 f (H";’%”)

is invariant under the following transformation group

G:{94,®):ga,(x)=sAz, A'A=AA'=T, s5>0} (8.6)
This can be verified as follows
1 =] _ 1oyl o e

From these examples we see also that any invariance transformation group G on z € X
induces a corresponding transformation group G on 6 € 7. For example for the translation
invariance G on z € X induces the following translation group on 8 € T

G :{Gc(0) : Ge(0) =0 +c, ceR} (8.7)
and the scale invariance G on z € X induces the following translation groupe on 6 € T
G :{gs(0): gs(0) =56, s> 0} (8.8)

We just see that for an invariant family of f(z|6) we have a corresponding invariant
family of prior laws 7(f). To be complete, we have also to consider the cost function to
be able to define the Bayesian estimate.



8.1. CHOICE OF A PRIOR LAW IN THE BAYESIAN ESTIMATION 119

Définition 2 [Invariant cost functions] Assume a probability model f(z[f) is invariant
under the action of the group of transformations G. Then the cost function 0[9 9] is said
to be invariant under the group of transformations G if, for every g € G and 6 c T, there
exists a unique 6* = =g(é ) € T with § € G such that

cl9, 6] = c[g(6), 6*] for every 0 € T.

Définition 3 [Invariant estimate] For an invariant probability model f(z|6) under the
group of transformation Gec and an invariant cost function c[f, 9] under the corresponding
group of transformation G, an estimate g is said to be invariant or equivariant if

0g(x)) = 3 (0(=))

Exemple 7 Estimation of ¢ from the data coming from any model of the kind f(z|6) =
f(x — 6) with a quadratic cost function c[8, 0] = (6 — 6)? is equivariant and we have

G§=G=G={g(z) : g.(x) =z —¢, c€eR}

Exemple 8 Estimation of 6 from the data coming from any model of the kind f(z|0) =
% f (%) with the entropy cost function
c[0, é\] =

—In(x)—1

SSYESS
SSYRSY

is equivariant and we have

= {95(z) : gs(z) =52, s>0}

g
G = {gs(6):95(6) =56, s>0}

G =

Proposition 1 [Invariant Bayesian estimate] Suppose that a probability model f(z|0)
is invariant under the group of transformations G and that there exists a probability
distribution 7*(#) on 7 which is invariant under the group of transformations G, i.e.,

7 (g(A4)) = 7" (4)
for any measurable set A € 7. Then the Bayes estimator associated with 7*, noted o
minimizes
/R (0,8) () a0 = /R (0.90) =" (0) a0 = /E 9 (0x))]] 7" (©)d0 over 8.
If this Bayes estimator is unique, it satisfies
0*(z) = 57" (F(g(=)))

Therefore, a Bayes estimator associated with an invariant prior and a strictly convex
invariant cost function is almost equivariant.

Actually, invariant probability distributions are rare. The following are some examples:

Exemple 9 If 7(0) is invariant under the translation group G, it satisfies 7(8) = 7(6+c¢)
for every 6 and for every ¢, which implies that 7(6) = 7(0) uniformly on R and this leads
to the Lebesgue measure as an invariant measure.

Exemple 10 If # > 0 and (@) is invariant under the scale group G, it satisfies 7(6) =
s(s0) for every 6 > 0 and for every s > 0, which implies that 7(8) = 1/6.

Note that in both cases the invariant laws are improper.
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8.2 Conjugate priors

The conjugate prior concept is tightly related to the sufficient statistic and exponential
families.

Définition 4 [Sufficient statistics] When X ~ Py(z), a function h(X) is said to be a
sufficient statistic for {Py(z),0 € T} if the distribution of X conditioned on h(X) does
not depend on 6 for § € T.

Définition 5 [Minimal sufficiency] A function h(X) is said to be minimal sufficient for
{Py(z),0 € T} if it is a function of every other sufficient statistic for Py(z).

A minimal sufficient statistic contains the whole information brought by the observation
X =z about 6.

Proposition 2 [Factorization theorem| Suppose that {Py(x),0 € T} has a corresponding
family of densities {pg(z),0 € T}. A statistic T is sufficient for € if and only if there exist
functions g4 and h such that

po(z) = go(T'(2)) h(z) (8.9)
forallzeTand 9 e T.

Exemple 11 If X ~ N (0,1) then T'(z) = x can be chosen as a sufficient statistic.

Exemple 12 If {Xy, Xo,..., X, } are i.i.d. and X; ~ N (6,1) then

flalo) = (@m)7"exp [—% > (e - e)Z]
=1

1 2 -n/2 2 .
= exp [—5 Zwll (27) ™2 exp [—59 ] exp [OZ:B,
=1 =1
and we have T'(x) = >} | ;.

Note that, in this case, we need to know n and z = % Y i1 zi. Note also that we can write

f(z]0) = a(z) g(0) exp [6T ()]
where

g(0) = (27r)7"/2 exp [—292] and a(x) = exp [_% ngl

=1
Exemple 13 If X ~ N (0,0) then T(z) = 22 can be chosen as a sufficient statistic.

Exemple 14 If X ~ N (61, 02) then Ti(z) = z? and Ty(z) = = can be chosen as a set of
sufficient statistics.
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Exemple 15 If {X;, Xo,..., X, } are i.i.d. and X; ~ N (01, 65) then

_ 1 &
J(@lfr,0:) = (2m) /20, exp l_ 205 2% - (’1)2]
i=1
. _ —1/2 i 1 ~2, 0%
= (2n) ™20, exp [—%] exp l—% Zzzlwz + 0_2;%
and we have T1(x) = 3% ; z; and Ty(x) = 10, z2.

Note also that we can write

1(@(0) = a(x) g(61, 62) exp [Z—;mm) - 2—;2T2<m>]

where ,
9(01,09) = (2#)*”/20;1/2 exp l—g—zl] and a(x) =1.
2

In this case, g—; and % are called canonical parametrization. It is also usual to use n,

I=21y" z;and 22 = 1577 | 22 as the sufficient statistics.
Exemple 16 If X ~ Gam(q,6) then T'(z) = z can be chosen as a sufficient statistic.
Exemple 17 If X ~ Gam(#,3) then T'(z) = Inz can be chosen as a sufficient statistic.

Exemple 18 If X ~ Gam(6;,62) then T1(z) = Inz and T»(z) = = can be chosen as a
set of sufficient statistics.

Exemple 19 If {X;, Xo,..., X} are i.i.d. and X; ~ Gam(6,02) then it is easy to show
that T (z) = > i Inz; and Th(x) = Y1 ;.

Définition 6 [Exponential family] A class of distributions {Py(x),6 € T} is said to be
an exponential family if there exist: a(x) a function of I on R, ¢(8) a function of 7 on
R, ¢x(0) functions of 7 on R, and h(z) functions of I on R such that

K
po(@) = p(|0) = a(@)g(6)exp [zm(a)hk(w)]
k=1
= a(x)g(8) exp [¢'(8)h(w)]

for all @ € T and z € T. This family is entirely determined by a(z), ¢(@), and
{¢r(0),hx(xz), k=1,---, K} and is noted Exfn(z|a, g, ¢, h)

Particular cases:

e When a(x) =1 and g(@) = exp [—b(0)] we have
p(x(8) = exp [¢'(6)h(x) — b(6)]

and is noted CExf(z|b, ¢, h).
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e Natural exponential family:
When a(x) =1, g(0) = exp[-b(0)], h(x) =  and ¢(0) = @ we have

p(x|6) = exp [Otm — b(O)] Exf(xz|b).
and is noted NExf(x|b).

e Scalar random variable with a vector parameter:

p(z|0) = Exf(z|a,g,¢,h)

K
= a(z)g(0)exp LZI ¢k (0) Py (56)]
= a(x)g(6) exp [¢'(8)h(s)]
and is noted Exfk(x|a, g, ¢, h).
e Scalar random variable with a scalar parameter:
p(z]0) = Exf(z|a, g, $, h) = a(2)g(6) exp [¢(0)h(z)]
and is noted Exf(x|a, g, ¢, h).
e Simple scalar exponential family:

p(z|0) = Oexp[—0z] = exp[—0z +1nb], x>0, 6>0.

Définition 7 [Conjugate distributions] A family F of probability distributions 7(8) on
T is said to be conjugate (or closed under sampling) if, for every 7 (@) € F, the posterior
distribution 7w (@|x) also belongs to F.

The main argument for the development of the conjugate priors is the following: When
the observation of a variable X with a probability law f(z|f) modifies the prior 7(0) to a
posterior 7(6|z), the information conveyed by z about 6 is obviously limited, therefore it
should not lead to a modification of the whole structure of w(#), but only of its parameters.

Définition 8 [Conjugate priors| Assume that f(x|@) = [(8|x) = [(O|t(x)) where t =

{n,s} ={n,s1,...,8;} is a vector of dimension k + 1 and is sufficient statistic for f(x|@).
Then, if there exists a vector {ry, 7} = {70, 71,..., 7} such that
m(0|T) = f(s= (1, -+, 7)]0,n = 79)

/f S = 7'1, Tk)‘el,n:To)del

exists and defines a family F of distributions for @ € T, then the posterior 7(8|x, ) will
remain in the same family F. The prior distribution 7(@|7) is then a conjugate prior for
the sampling distribution f(x|0).
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Proposition 3 [Sufficient statistics for the exponential family] For a set of n i.i.d. samples
{z1, -+ ,z,} of a random variable X ~ Exf(z|a,g, 8, h) we have

n K n
" (H a(:vj)) exp [Z P(0) ) hk($j):|
j=1 k=1

f(x|0) = H f(x;10)

= ¢"(0) a(x)exp l¢t(0) Zh(wj)] ;

Jj=1

where a(z) = []}_; a(z;). Then, using the factorization theorem it is easy to see that

{ Zhl (x;), zz: K (z; }

is a sufficient statistic for 6.

Proposition 4 [Conjugate priors of the Exponential family] A conjugate prior family for
the exponential family

F(216) = a(z) g(6) exp [2 5(0) 1)
is given by

K
(870, 7) = 2(7)[g(0)]™ exp [Z Tk¢k(0)]

k=1
The associated posterior law is

K n
(8], 70,7) o [g()]"Fa(x)2(r) exp [Z (Tk + th(:v])> qﬁk(G)] )

k=1 j=1

We can rewrite this in a more compact way:

If
f(z|0) = Exfn(z|a(z),9(0), ¢, h),
then a conjugate prior family is
w(0|T) = Exfn(0|g™, 2(7), T, @),
and the associated posterior law is
7(0|z, T) = Exfn(0|g"*™, a(x) 2(1), 7', 9)
where

n
o =Tk + Y hi(z;)
j=1
or .
' =7+4+h, with hy= th(xj).
=1
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Définition 9 [Conjugate priors of natural exponential family] If
f(x]0) = a(x)exp [Ota: - b(O)]
Then a conjugate prior family is
m(6]70) = 9(8) exp |78 — d(7o)]
and the corresponding posterior is
7(0]z,70) = 9(6) exp [7,0 —d(7y)] with Tn=7o+&

where
1 n
Ty = — E T
n “
J=1

A slightly more general notation which gives some more explicit properties of the
conjugate priors of the natural exponential family is the following:
If
f(x6) = a(z) exp [6'z — b(0)]

Then a conjugate prior family is
7(0|ag, 7o) = g(ag, To) exp [ao 1'60 — aob('ro)]
The posterior is
(0|, To, &) = g(, T) exp [a 7o — ab('r)]
with _
T + T

a=qay+n and
’ (a0 +n)

and we have the following properties:
E[X|0) = E[X|0] = Vb(9)

E[Vb(®)|ag, To] = To

ne + apTo _ .
[Vb(0)|ag, T0, ] p——— &y + (1 — 7)1, with 7 P
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Conjugate priors

Observation law Prior law Posterior law
p(z]6) p(6l7) p(8lz, ) o p(6|T)p(z]0)
Discrete variables
Binomial Beta Beta
Bin(z|n,0) Bet(0|«, 8) Bet(fla+z,6+n — 1)
Negative Binomial Beta Beta
NegBin(z|n,0) Bet(0|w, 8) Bet(0la+n,8+ x)
Multinomial Dirichlet Dirichlet
My (z(61, - - -, Ok) Diy (0], - -+, ) Di 0]y + 21, -+, oy + )
Poisson Gamma Gamma,
Pn(z|0) Gam(0|a, B) Gam(f|la+ z,6+ 1)
Gamma, Gamma Gamma,
Gam(z|v,0) Gam(0|a, B) Gam(f|la+v,B + )
Beta Exponential Exponential
Bet(z|a, 6) Ex(6|)\) Ex(6|A —log(1 — z))
Normal Normal Normal
N(zl0,0?) N (01,7 N (e, 522)
Continuous variables
Normal Gamma Gamma,
N(z|u,1/6) Gam(f|a, ) Gam (9\0{ + 5,84 5(u— w)Q)
Normal Generalized inverse Normal Generalized inverse Normal
N(z|0,6?) INg(f|a, p, o) x INg(0|an, tin,on)
6]~ exp {—# (% - H)ﬂ

Table 8.1: Relation between the sampling distributions, their associated conjugate priors
and their corresponding posteriors
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8.3 Non informative priors based on Fisher information

Another notion of information related to the maximum likelihood estimation is the Fisher
information. In this section, first we give some definitions and results related to this notion
and we see how this is used to define non informative priors.

Proposition 5 [Information Inequality] Let 6 be an estimate of the parameter 6 in a
family {Py;0 € T} and assume that the following conditions hold:

1. The family {Py;0 € T} has a corresponding family of densities {py(z);0 € T}, all
with the same support.

2. py(z) is differentiable for all § € 7 and all z in its support.

3. The integral
9(6) = [ hia)po(a) p(do)

~

exists and is differentiable for 8 € T, for h(z) = 6(z) and for h(z) = 1 and

B0 [ o) 22 )

90 90
Then
P ~ 2
Varg[0(X)] > e {IZ(X)}] (8.10)
where
2
1, g, { [% lnpg(X)] } (8.11)

Furthermore, if %pg(.’ﬂ) exists for all @ € T and all z in the support of py(z), and if

ol () = o [ (o) ()

then Iy can be computed via

82
Iy = —Ey {W lnpg(X)} (8.12)

The quantity defined in (8.11) is known as Fisher’s information for estimating 6 from X,
and (8.10) is called the information inequality.

For the particular case in which 8 is unbiased Ey {é(X )} = 0, the information inequal-
ity becomes

Vary[0(X)] (8.13)

>
_1—0

Expression % is known as the Cramer-Rao lower bound (CRLB).
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Exemple 20 [The information Inequality for exponential families] Assume that 7 is open
and py is given by
po(z) = a(z) g(0) exp [g(0) h(z)]

Then it can be shown that

1, €, { [% lnpg(X)] } = |¢/(0)|* Varg(h(X)) (8.14)
and 9
55F0 {h(X)} = ¢'(0) Var(h(X)) (8.15)

~

and thus, if we choose 6(z) = h(z) we obtain the lower bound in the information inequality
(8.10)

i [%Ea {5()()}]2

Varg[0(X)] = I, (8.16)

Définition 10 [Non informative priors|] Assume X ~ f(z|f) = pg(z) and assume that

2

def 0 2 0
Iy = Eg { [% 1npe(X)] } = —Ey {602 1np0(X)} (8.17)
Then, a non informative prior (@) is defined as
(0) o I,/ (8.18)

Définition 11 [Non informative priors, case of vector parameters]
Assume X ~ f(z|@) = pg(z) and assume that

def A

Then, a non informative prior 7(@) is defined as
7(8) o [I(8)|/? (8.20)
where I(6) is the Fisher information matrix with the elements I;;(8).

Exemple 21 If
f(|6) = a(z) exp [6'z — b(6)]

then
I(6) = VV'b(0)

and
6, 1/2

W 5oy

(8) o |1(6)]'* =
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Exemple 22 If

then L 2K ) P
1(0) = Ey { ( o X—p) 3X=p)® 1 ) } = (% 2 )
o3 o2 52 a2
and



Chapter 9

Linear Estimation

In previous chapters we saw that the optimum estimation, in a MMSE sense, of an un-
known signal X}, given the observations Y,., = {Yg,...,Y,} of a related quantity, is given
by X, =E [X¢|Yqap)- This estimate is not, in general, a linear function of the data and its
computation needs the knowledge of the joint distribution of {X;,Y,;}. Only when this
joint distribution is Gaussian and when X; is a related to Y,.; by a linear relation, this
optimal estimate is a linear function of the data. Even in this case, its computation needs
the inversion of the covariance matrix of the data Xy whose dimensions increase with the
number of data.

One way to circumvent these drawbacks is, from the first step, to constraint the esti-
mate to be a linear function of the data. Doing so, as we will see below, we do not need
anymore the joint distribution of {X},Y,.} but only its second order statistics. Further-
more, we will see that, in this case, we can develop real time or on-line algorithms with
lower complexity and lower cost, if we assume data to be stationary.

9.1 Introduction

Assume that we want to obtain an estimate )Z't of a quantity X; which is a linear (or more
precisely an affine) function of the data Y., = {Y;,..., Y3}, i.e.

b
X =) hnYn+o (9.1)

n—=a

where, in general, a can be either —oo or finite and b can also be either finite or co. When
a and b are finite the meaning of the summation is clear. For the cases where a = —oo
or b = oo, these and all the following summations have to be understood in the MMSE
sense, for example for the case ¢ = —o¢

b 2
mgIIIOOE (Z ht,nYn + ¢ — Xt) =0 (92)
n=m
In these cases we need also to assume that

E[X2] <oco and E[V?| <.

129
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The following propositions resume all we need for developing linear estimation theory.

Proposition 1 Assume X, € HE where HE is the Hilbert space generated by the affine
transform (9.1). Then E [)?752] < oo and if Z is a random variable satisfying E[Z?] < oo,
then

b
E [Z f(t] =S hnE[ZY,) + ¢ E[Z]

n=a

Proposition 2 (Orthogonality principle) X; € #? solves

‘min E [()?t - Xt)2] (9.3)
XeeHE
if and only if
E [(Xt ~ X)) Z] =0 VZeH. (9.4)

In other words, X’t is a MMSE linear estimate of X; given Y., if and only if the
estimation error (X't — X) is orthogonal to every linear function of the observation Y.

Considering the particular cases of Z =1 and Z =Y, a <1 < b we can rewrite this
proposition in the following way

Proposition 3 X; € H?E solves (9.3) if and only if
E[X)] = E[X)] (9.5)

and R
E[(X,—X)Y)] =0 Va<i<b. (9.6)

Now replacing (9.1) in (9.6) we obtain

b
E [(Xt ~- X)) Yl] —E l(Xt =3 Y — ) Yl] —0 VYa<I<bh. (9.7)

To go further in details more easily and without any loss of generality, we assume
E[Y;] = 0,Va <1 < b. Then, since E[X;] = ¢, the previous equation becomes

b
Cov{X:, Y1} = > hinCov{Y,, Y} Va<i<b. (9.8)

n=a
which is known as the Wiener-Hopft equation.
Writing this in a matrix form we have

oxy(t) = Zyhy (9.9)
where
oxy(®) ¥ [covix,V.),...,Cov (X, V)]
Ser() € [Cov (¥, 11)]

def
hi = [htgy---rhep)
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So, theoretically we have

hy =2y oxy(t) (9.10)

The main difficulty is however the computation of 2{,1. Note that this matrix is symmetric
and positive definite. So, theoretically, it is not singular. However, its inversion cost
increases exponentially with the number of data. In the following we will see how the
stationary assumption will help to reduce this cost.

9.2 One step prediction

Consider the case where ¢ = 0, b = t and X; = Y;11 and assume that Y; is wide sense
stationary, i.e., E[Y;] =0 and Cov{Y},Y,,} = Cy(l — m). Then we have

Cov {X,,Y}} = Cov {Yi1,Y} = Cy(t+1—1) (9.11)

and the Wiener-Hopft equation becomes
Cy(t+1) Cy(0) Cv(1) Cy(?)

Cr(t) cy(l) . Zif
' = ; (9.12)
: Cy (1) oy

Cy (1) Cy () Cy(1) Cy(0) ’

called Yule- Walker equation.

Note that the w.s.s. hypothesis of the data Y,, leads to a covariance matrix which is
Toeplitz. Unlike the general case, the cost of the inversion of this matrix is only O(n?)
against O(n3) for the general case, where n is the number of data. Thus, in any lin-
ear MMSE estimation problem, the w.s.s. assumption can reduce the complexity of the
computation of the coefficients by a factor equal to the number of the data.

In the following, we will see that, we can still go further and use the specific structure
of the Yule-Walker equation to keep on reducing this cost.

9.3 Levinson algorithm

Levinson algorithm uses the special structure of the Yule-Walker equation for the one step
prediction problem where the left hand side vector of this equation is equal to the last
column of the covariance matrix shifted by one time unit.

Rewriting this equation

t t
Vi1 =) hnYon=—) arit11-nYn (9.13)
n=0 n=0
the coefficients ay 1, ... ,as ¢ can be updated recursively in ¢ through the Levinson algorithm
r1e = Opk—kiagip1-k, k=1,...,1

1041 = —ky
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. . . . d_ef T\ 2 .
where k; itself, is generated recursively with ¢, = E [(Y} -Y:) ] via

1 t
ki = G—[Cy(t +1)+ > a1 Oy (t+1— k)]
t

k=1
1 = (1-k)e
. e e oy (1) _
with the initialization ko = 5755 and € = Cy(0).
The coefficients ay are calleé reflection coefficients or still partial correlation coefficients

(PARCOR).

9.4 Vector observation case

The linear estimation can be extended to the case where both the observation sequence
and the quantity to be estimated are vectors. This extension is straight forward and we
have:

b
X,=) HinY,+o (9.14)

n=a

where H,, is a sequence of matrices. When a or b are infinite, the summations have the

MSE sense. For example when a = —oo, we have
b 2
lim [ S H Y, +¢—X, ] =0 (9.15)
n=m
where ||z || dlef z'z.

The orthogonality principle becomes:

Proposition 4 (Orthogonality principle) X, € H? solves

min E [HL - LHZ] (9.16)
X, eHy
if and only if
E [(Xt - X, g] =0 VZeH. (9.17)

Writing this last equation for Z =1 and for Z = Xf we obtain

E[X] = E[X,]
E[(X,-X)Y] = 0, Va<i<b.

Using these relations we obtain

E [(Xt - Xt)xﬂ =E [(Xt - zb: H:,Y, - Qt) Kf] =10}, Va<i<b. (9.18)
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where [0] means a matrix whose all elements are equal to zero. The Wiener-Hopft equation
becomes:

Cxy(t,1) ZthCy(’n ), Va<I<b

n=a

where CXy (t 0) def Cov {X;,Y,} is the cross-covariance of {X, }o2 _  and {Y;};°__ and

Cy(n, ) C ov{Y,,Y,} is the auto-covariance of {Y ,}°2 _ . Note that Cxy(¢,!) and
Cy(n,l) are (m x k) and (k x k) matrices respectively, where k and m are respectively
the dimensions of the vectors Y,, and X.

—0o0

9.5 Wiener-Kolmogorov filtering

We assume here that Y,, is wide sense stationarity (w.s.s.) and that there is an infinite
number of observations.

Two cases are of interest: Non causal where (¢ = —o0,b = t) and Causal where
(a = —00,b = 00).

9.5.1 Non causal Wiener-Kolmogorov

Without losing any generality, we assume E[Y,,] = E[X,,] = 0. Then we have

> hiaYy (9.19)
n=-—00
The Wiener-Hopft equation becomes
Cxy(t—1) Z bt Cy (n —1) (9.20)
n=—00
Changing variable 7 =t — [ we obtain
CXY Z htnCy(’n—I-T —t) (9.21)
n=—oo

Changing now the summation variable n = ¢t — a we obtain

Cxy (T Z htt—aCy (T — @) (9.22)

a=—0o0

In this summation ¢ appears only in h;; . This means that we can choose it to be

independent of %, i.e. if this equation has a solution, it can be chosen to be time-invariant

with coefficients h; ;o = ho,0—a d_ef ho- Then we have

CXY Z h Cy T —04) (9.23)

a=—00
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which is a convolution equation. Using then the following DFT's

d:ef

o
H(w) Z hpexp[—jwn], —-T<w<m

n=—oo

Sxy(w) def Y Cxy(n)exp[—jwn] —m<w<m

n=—oo

Sy (w) def Z Cy(n)exp[—jwn] —nm<w<w

n=-—00
we have
S)(y(w) = H(w) Sy(w)
and finally
Sxy (w)
H(w) = 9.24
W) =S (9.24)
The coefficients h, can then be obtained by inverse FT
1o Sxy (w) .
hy, = %/W 5y (@) exp [jwn] dw, n € Z (9.25)
It is interesting to see that we have
- 1 (™ Sxy(w )
E(X: X =
[ ¢ t] o iy SY de
B[x] - / Sx (w) dw
N 1 Sxy (w)
a2l _ OXY
E[(Xt X,) ] = /_ Sx(w) - 22 ® dw
This last equation can be written
o 1o [Sxy (w)[?
MMSE =E X—X2:—/ 1— 2
S (X=X =5 [ l s | S¥@)de (9.26)

Noting that we have |Sxy (w)|? < Sx(w) Sy (w), with equality if {X;}$°_ . and {Y;,}32 _
are perfectly correlated, we can conclude that the MMSE ranges from E [X?] to zero as
the relationship between {X;}°_ and {V,}5°
correlation.

_ o Tanges from independence to perfect

Example 1 (Noise filtering) Consider the model
Y,=5,+N, nezZ

where Sy, and Ny are assumed uncorrelated, zero mean and w.s.s. Suppose that we want
to estimate Xy = Sy for some integer A\. The problem represents filtering, prediction
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and smoothing respectively when A = 0, A > 0 and when A < 0. To obtain the necessary
equations, it is straightforward to show

Sy(w) = Sx(w)+ Sny(w)
Sxv (w) exp [jwA] Sx (w)
Sx(w) = Ss(w)

So, the transfer function of the optimum non causal filter is

_exp [jwA] Ss(w)
Ss(w) + SN(w)

H(w)

Example 2 (Deconvolution) Consider the model

p
Yo = Z hgSpn—k + Np, n€Z
k=0

where Sy, and N, are assumed uncorrelated, zero mean and w.s.s. Suppose that we want
to estimate X; = Sy n for some integer \. Again here, it is straightforward to show

Sy(w) = [Hw)]’Sx(w)+ Sn(w)
Sxy(w) = expljwl] H(w)Sx(w)
Sx(w) = Ss(w)

where

P
H(w) = Zhnexp[—jnw],—w <w<T

n=0

So, the transfer function of the optimum non causal filter is

exp [jwA] H(w)*Ss(w)

) = T w)P5s(@) + Sw(w)
For A =0 we have
Hw) = — H@Ssw) 1 |[Hw)P
|H(w)|255(w) + SN(w) H(w) |H(w)|2 + Sy (w)

Ss(w)

9.6 Causal Wiener-Kolmogorov

To develop the causal Wiener-Kolmogorov filtering, let note by X, the non causal Wiener-
Kolmogorov solution and by X; the causal one, i.e.

N 00

Xt = Z ht—nYn
n=-—o00

~ ©° ~

Xt = Z ht—nYn

n=—oo
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Note also that H! . is a subset of H> . So, if the solution to the noncausal Wiener-

Kolmogorov problem happens to be causal, it also solves the causal Wiener-Kolmogorov
problem. But unfortunately, this is not the case excepted very special cases. However,
there is surely a relation between these two solutions.

To obtain this relation we start by writing

(X — X)) = (X — X0) + (X; — X))
So, for any Z € H! . we have
E [(Xt - Xt)Z] =E [(Xt - Xt)Z] +E [(Xt - )th)Z]

The left hand term E [(Xt — )Z't)Z] is zero due to the orthogonality principle applied to
X;. The second right hand term E [(Xt — )?t)Z] is zero due to the orthogonality principle
applied to )Z't. So we have

E[(X, - X)Z] =0, VZeH

which means that Xt is the MMSE estimate of X; among all estimates in 4% ... In other
words, X, which is the projection of X; on H!  can be obtained by first projecting X;
on HX_ to get X, and then projecting X, onto HE -

Now, let define

t
_ d f ~
Xt :e Z ht—nYn

n=-—oo

and consider the error

" _ oo t B oo
Xt_Xt: Z ht—nYn_ Z ht—nYn: Z ht—nYn

n=—o00 n=—0o n=t+1

If this error could be orthogonal to Y, for all m < ¢, we could consider X, as the projection
of X; on H! . But this is not the case in general. This could be the case if {Y,,}5°
was a sequence of uncorrelated random variables, because in that case we would have

—oQ

E [(55,5 —)_(t)Ym] = E [( i Bt_nyn> Yo

n=t+1

w ~
= Z ht—nE [Yna Ym]
n=t+1

o0
= 0 ) hnbpm=0, Vm<t
n=t+1

where 6, , is the Kronecker delta (8, = 1 if n = m and 6, = 0 if n # m and where
o’ =E V7]
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From the above discussion we see that, if we transform first the data {Y,}52 _
into an equivalent w.s.s. and uncorrelated sequence {Z,}32 _ ., then the causal Wiener-
Kolmogorov filter coefficients can be obtained by simple truncation on the non causal
Wiener-Kolmogorov filter, i.e.

t
Z htfnZn
n=-—00

where

>

1 i .
o= L [ st exp el do = Cuzla), 020

where Sxz(w) and Cxz(n) are, respectively, the cross spectrum and the cross covariance
of the sequences { X, }22_ and {Z,}5%
Now the aim is to obtain {Z,}32_ from {¥,}52 . The analyse of the one step
predlctlon problem in previous section in this chapter glves us the solution. If we note by
n=—00 and by at =E I:(}/t Yt\t 1)]

—0o0*

Yt‘t | the one step prediction of Y; from the data {¥},}!
then define

On

we can verify that E[Z,] = 0, E[Z2] = 1 and Cov{Z,,Z,} = 0. So, Z, has all the
necessary properties that we need. Now, still we have to show that {Z,}52 _ is equivalent
to {Yn}o2 _ for the purpose of MMSE. To do this we need the result of the following
theorem.

—0o0

Theorem 1 (Spectral Factorization) Assume Y, has a power spectral density satisfy-
ing the Paley- Wiener condition

1 s
%/_WIDSY((U) dw > —oo.

Then

Sy(w) = Sy (w) S§ (w), —T<w<m (9.27)
where

1O (2 — Q)2
Sy (w) = |Sy (W)[” = |5y (w)] (9.28)

and

1 /7 .

—/ Sy(w)expjnw] dw = 0 n<0

2w J_x

1/” L expljnw]dw = 0 n<0

— Xp [jnw = n

21 Jon Sy (w) Pl

1 ™

—/ Sy (w)expjnw] dw = 0 n>0

21 J_ g

! /ﬂ ! ljnw]dw = 0 n>0

— exp [jnw = n

o7 ) 5 w) P



138 CHAPTER 9. LINEAR ESTIMATION

Now consider the time invariant filter with H(w) = S+1(w). This filter, by definition, is
Y

causal. The output of this filter with the wide sense stationnary input sequence Y,, will
be another wide sense stationnary sequence Z, with

2
Sy(w)=1, —nm<w<m (9.29)

Since Sz(w) = 1 corresponds to a white sequence, the filter is called a whitenning filter.
Note also that the input sequence Y,, can also be obtained causally from the output
Zn by

o
Yi= Y finZn t€Z (9.30)
n=—oo

where 1 g
fn= —/ S (w) exp [jnw] dw, n >0
2 J_n

Now consider the A-step prediction of Y,, from Z,:

t+A
Yien = Y frer-nZn
n=—o0o
t t
= Z Jtea—nZn + Z ft+r-nZn
n=-—00 n=t+1
But Z, is white, s0 Z,11,-..,Zsy are orthogonal to {Z,}!,__.. So the best estimate

?t+>\ of Yyyy from {Y,}t_ s

—oQ

t
Y;H—)\: Z ft—|—/\—nZn

n=-—oo

Combining the whitening filter and this prediction we obtain

Y0, Y, Y — — Zn — | [exp [jwN] SF ()] | — i

Sy ()

where the operator [H(w)]+ is defined as

H@) = 3 hnexp ]

n=0

where 1 g
hp, = —/ H(w)exp [jnw] dw
2 J_n

Now we obtain a procedure for causally prewhitenning a stationary sequence of ob-
servations. Thus the solution of the general causal Wiener-Kolmogorov problem follows
immediately. Assuming that {Y,,}32_ satisfies the Paley-Winner condition, it can be
transformed equivalently into {Z,}!,___ by passing it through the causal filter 1/S; (w)

1
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Then we need to find the cross spectrum Sx z(w) and pass {Z, }!__ through the causal
filter [Sxz(w)]+ to obtain the required result.

Zn —| S5, ()| — Y,

Knowing that

we obtain

Sxy(w)
Sy (w)

Y, — | o | — Z, — [

+

It is interesting to compare this filter with the non causal Wiener-Kolmogorov filter

Sxy(w) _ 1 [Sxy(w)]
Sy(w) S (w) | Sy(w)

The following diagrams summarize this comparison:

1 Sxy (w) Y, Y, 1 Sxvy (w) Y,

Causal Non Causal

9.7 Rational spectra

Definition 1 (Rational spectra) Sy(w) is said rational if it can be written as the ratio
of two real trigonometric polynomials

p
70 +2an cos kw
Sy(w) = k=1 , ng,dp € R (9.31)

m
do+2 dj coskw
k=1

Using the relation cos kw = exp [jkw] + exp [—jkw] we deduce

_ NV (exp[jko])
)= D (exp ikl

Noting z = exp [jkw]| we have

N(z) = anz_k

k=—p

D(Z) = Z d|k|z_k

k=—p
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zP N(z) is a (2p)-th order polynomial. So we can write

2p

N(z) =npz7P H (z — 2zp)
k=1

Since N(z) = N(1/z) the roots zj are reciprocal pairs. If we order them in such a way
that |z1]| > |22 > -+ > |22p| we have

ol = s Jempetl = s bl =

Z e — Z9m_ — ... z _

2p ‘Zl|’ 2p 1 |22‘? ? p—|—1 |Zp|

We deduce that all the roots are outside or over the unit circle. Due to the reciprocity of
the roots we can write

N(z) = B(z) B(1/Z) (9.32)
where
B(z) = J (—VPnp/ [] 2z [ (=" — ) (9.33)
k=1 k=1

So B(z) is a polynomial of degree p and can be extended as
P
B(z) =) byz " (9.34)
k=0

Similarly, we can do exactly the same analysis for the denominator D(z):

D(z) = A(z) A(1/2) (9.35)

where o
A(z) =) a 27k (9.36)

k=0

Putting these together we have

Sy(w) = B (exp [jkw]) B (exp [—jkw]) _B (exp [jkw]) B (exp [—jkw])
! A (exp [jkw]) A (exp [-jkw])  A(exp[jkw]) A (exp[—jkw])

Assuming that none of the roots of B or A is on the unit circle |z| = 1 we have

_ B(expljkuw])
5= e h)
_ _ B(exp[—jkw])
S @) = L (exp i)

Now consider the whitenning filter of the last section and assume that the power
spectrum of the data Sy (w) is a rational fraction.

1

Alz) _ Dpegne®
Sy (w)

B(2) P hpat

Y, — — Zy,

— Z, — Y, —
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Then, we can see easily that we have

m p
S Yok =Y by Zny (9.37)
k=0 k=0

We can rewrite this equation in two other equivalent forms
P m

bozn = — Y bpZn g+ Y, arYn g
k=1 k=0

m p
aoYy = = apYnk+ D> bk Zni
k=1 k=0

Autoregressive, moving Average (ARMA) sequence of order (m,p). For p = 0, we have
an Autoregressive (AR) and for m = 0 we have a moving average (MA) sequence.

Example 3 (Wide-Sense Markov sequences) A simple and useful model for the cor-
relation structure of a stationary random sequence is the so-called wide-sense Markov
model:

Cy(n) =", neZz (9.38)
where |r| < 1. The power spectrum of such a sequence is
o?(1 —1r?)

T 1-2r cos(w) + r?

Sy (w)

which is a rational fraction, and we can see easily that we can write it

Sy(w) = o?(1—r?) _ 1 _ 1
T = rexp[—jw]) (1 - rexp[+jw])  Alexp[—jw]) Alexp [+jw])  A(Z) A(z)
where
A(z) = ag +arz™!
with ag = /o?(1 —12), a1 = —7 ay.

We can conclude here that a wide-sense Markov sequence with the covariance structure
(9.38) is an AR(1) sequence.

Example 4 (Prediction of a Wide-Sense Markov sequences) Consider now the pre-
diction problem where we wish to predict Y,y from the sequence Yij__ . Using the rela-
tions we obtained in the last section, this can be done through a causal filter whose transfer
function is

Yn — H(LU) = S}'l(w) [75%)/(((:;)]—1_ — ?H_)\

Here we have
exp [jw)]

H(w) = A(exp [jw]) [A(eT[jw])

+
Using the following geometric series relations

k k
> ok = , and Y zF= , |zl <1
par 1-z Pt 1-2z
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we obtain easily

and
[ exp [jwA]
(exp [jw])
Finally, we obtain
H(w)

which is a pure pure gain

CHAPTER 9. LINEAR ESTIMATION

[i > " expl—juln — A)

0

n=0 +
1 o
= a_z_: exp [—jw(n — A)]
1 (o]
= Z A exp [—jlw]
=0
A(exp [jw])
T | P
Alexp [jw])
Vi =Y,

It is also easy to show that, in this case we have

MSE = E[(Vir — Yia)?] = 02(1 =12

which means that the prediction error increases monotonically from o?(1 — r?*) to o

A increases from 1 to oo.

2&8
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A.1 Summary of Bayesian inference

Observation model:

Xi ~ f(x]0)

z:{a"la"'awn}a Zn :{wla"'axn}a Zn+1 :{l‘la"'aznamn—kl}a

Likelihood and sufﬁc1ent statistics:
1(0|z) = f(x|0) = H f(z:|0)

1(0|z) = 1(0]t(= 1)39
p(t(=)|0) = UE)
/Z(0|t(z))d0

Inference with any prior law:

f( /f 2]0)7(6)d0 and f(z /f z|0) =

p(t(z)) = [ p(t(2)|0) =(0) 40

p(z,0 =p(2|0)7f(0)

p(z) = /p(z|0)7r(0) de, prior predictive
_ p(2[0) m(0) _

w(olz) = "2 E[0|z]—/07r(0|z)d0

flz|z) = p(z,7) = p(zn+1), posterior predictive
p(2) p(2zn)

E[z|z] = /:I:f(:v|z) dz

Inference with conjugate priors:

w(Om) = —2E=T0) 2 g
/p(t — 0/6)d6

w(0|z,T) € Fr(0), with 7 =g(7o,n,z2)

ANNEXES
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Inference with conjugate priors and generalized exponential family:

if f(zi|0) = a(z;) g(0) exp lz ck ¢k (0) hk(wi)]
k=1
then

n
:th(:ﬂj)’ k:]-aaK
=1

K
7(01m0) = [9(O)™ (r) exp | 5 746x(6 ]

k=1

K
(8lz,T) =[g(0)]""™ a(x) Z(7) exp lz ckdr(9) (1 + tk(w))] -

k=1

Inference with conjugate priors and natural exponential family:
if f(zi|0) = a(x;)exp[0z; — b(0)]
then
n
x) = Z x;

(6]r0) = e(6) exp [rf (7o)
m(0|x, 79) = c( )exp [0 —d(1,)] with 7, =70+ %

where z = E zi,

Inference with conjugate priors and natural exponential family
Multivariable case:

if f(2i[0) = a(@:) exp [0'a; — b(9)]
then
Z Ly = a s aK
(0|1'0) = c(0) exp [T00 — d(19)]
w(0|lx,70) = c(0) exp [0 — d(T,)] with T, =7T¢+ @
where & = %Zmz,
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Bernouilli model:

z={z1,---,zn}, = €{0,1}, rszi:numberofl, n — r : number of 0

F(z:]0) = Ber(z:]0), 0<6<1

Likelihood and sufficient statistics:

1(0]z) = H Ber(z;]0) = 0227 (1 — )"~ 2% = ¢"(1 — 6)""

=1
n

_’)"—ZIEZ, 1)) =6"(1 — )~
p(r|0) = B1n(r|0 n)

Inference with conjugate priors:
(0) = Bet (0], §)

f(z) = BinBet(z|a, 5,1)

p(r) = BinBet(r|a, 8, n)

W(elz) Bet(9|a+7‘,’8—|—’n,—'r), E[0|Z] - 6j.lé—;lb_i7'
f(z|z) = BinBet(z|a+ 1,8+ n —1,1), E[J;'z]:ﬂj—:iT

Inference with reference priors:

n(6) = Bet (0] L 1)

1
f

(z) = BmBet

m(r) = BinBet(r \2 ,n)
(

(

T\T

N’"“wl»—t
—_

n§+n—ﬂ

1 1
m(z|z) = BinBet(w|§ +r, 5 +n—-r1)

™

1
0lz) = Bet(0]; +
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SUMMARY OF BAYESIAN INFERENCE

Binomial model:
z:{mla'..amn}a $i:0,1,2,"',m

f(z;|0,m) = Bin(z;|0,m), 0<6<1, m=0,1,2,---

Likelihood and sufficient statistics:

1(0|z) = HBln z;|6, m)
i= 1

H=r=3n

p(r|0) = Bm( |6, nm)

Inference with conjugate priors:

(0) = Bet(0|a, )

f(z) = BinBet(z|a, 5,m)

p(r) = BinBet(r|a, 5,nm)

0|z) = Bet(@la+71,8+n—r1), E0|z] =

z|z) = BinBet(z|a + 7,8+ n — r,m)

a+r
B+n—r

s

(
i

Inference with reference priors:

(0) = Bet(e\l, 1)

n(z) = BinBet(z|-, -, 1)
¢t
7(r) = BinBet(r |§ )5 , )
7(6]2) = Bet (0] 5 Ly ; tn—r)
m(z|z) = BmBet(z\ % +n—r,m)

147
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Poisson:
z={x1,---,$n}, iEi:O,].,Z,"'
f(zi|A) =Pn(z;|A), A>0

Likelihood and sufficient statistics:

I(\z) = ﬁPn(wiP\)

t(z) :r:ixi

p(r|A) = Pr(rin))

Inference with conjugate priors:
p(A) = Gam(|e, f)

f(z) = PnGam(z|a, 8, 1)

p(r) = PnGam(r|a, ,n)

p(

f(z|z) = PnGam(z|a+ 7,5 +n,1)

Az) = Gam(\|a + 7,8+ n), E[\z] =

a+r

B+mn

Inference with reference priors:
1
r(A) oc ATH2 = Gam(}|3,0)
1
7(z) = PnGam(z|-,0,1)

2

1
Az) = Gam()\|§ +7,mn)

(
7(r) = PnGam(r|=,0,n)
m(

(

1
m(z|z) = PnGam(a:|§ +rmn,l)
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Negative Binomial model:
z:{mla"'amn}a mi:07132a"'
f(z;|0,7) = NegBin(z;|0,7), 0<6<0,r=1,2,---

Likelihood and sufficient statistics:

n
1(6|z) = || NegBin(z;|0,r)
=1

t(z)=s :ixi

=
p(s]0) = NegBin(s|0, nr)

Inference with conjugate priors:
7(0) = Bet(0|w, B)

f(z) = NegBinBet(z|«, 3,7)

(s) = NegBinBet(s|a, 8, nr)

7(6]2) = Bet(8la +nr, B + 5), Ewup:%if
(z|z

i

~

= NegBinBet(z|a + nr, 5 + s,n7)

Inference with reference priors:
1
ﬂ@«e*ﬂ-@*ﬂ:Bawmi)
1
n(z) = NegBinBet(z|0, =, )

s

(
7(s) = NegBinBet(s|0, E,nr)
1
(0|z) = Bet(f|nr, s + 5)
(

1
7(z|z) = NegBinBet(z|nr, s + §,nr)
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Exponential model:
z={z1, -z}, 0<z; <00
fmi|A) = Ex(z;]A), A>0

Likelihood and sufficient statistics:

I(Az) = HEX z;|A)

—t—Zx,

p(H2) = Gam(tn, \)

Inference with conjugate priors:
p(A) = Gam()[, )

f(z) = GamGam(z|«, 3, 1)

p(t) = GamGam(t|a, 5,n)

p(Az) = Gam(A|a +n, B + t) E[\z] =

f(z|z) = GamGam(z|a +n, [+ t,1)

a+n

B+

t

Inference with reference priors:
7(A) o< A™' = Gam(A[0, 0)
m(z) = GamGam(z|0,0,1)
7(t) = GamGam(t|0,0,n)
(Az) = Gam(A|n, )
(

(A
z|z) = GamGam(z|n,t,1)

™
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Uniform model:
z={z1, -z}, 0<z;<6
f(5:/6) = Uni(z;10,8), 6> 0

Likelihood and sufficient statistics:

1(0]z) = ﬁ Uni(z;]0, 6)
i=1

t(z) =t = max{z1,---,zp}

p(t|0) = TPar(t|n,0~")

Inference with conjugate priors:
r(6) = Par (], B)
-4 Uni(z)0,6), if z <8,

T = s Par(z|a,B), if z>p
(t) = 2-TPar(tln, 71), if t <8,
! N ai—nPaI’(ﬂa, /8)7 if > B

(0|z) = Par(0la +n,B,), P = max{p,t}
ot _Uni(z|0,B,), if t < B,

z) = a+n+1 .
f(alz) { ﬁPar(aﬂa,ﬁn), if >0,

Inference with reference priors:
7(0) < 8! = Par(|0,0)
7(0|z) = Par(0|n, 1)
747 Uni(z]0, 2), if z<t,
m(alz) = Par(z|n,t), if x>t

+1
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Normal with known precision \ = # >0

(Estimation of u):

z:{xla"'axn}a Zg ER, $Z:M+b21 bZNN(bZ‘OaA)
f(xl|ua >‘) = N($1|N> )‘)7 peR

Likelihood and sufficient statistics:

Inference with conjugate priors:
p(k) = N(g|po, o)

AN
£() =N (alpo, 75
-1
f(@) = f(z1,---,zn) =Ny, (m\uol, GI + %01.175) )

p(@) = N (o, B22), Ay = Ao +nA
Aopo + nAT
p(u|z) = N (plpn, \n),  pn = —F——

_ AA
ol2) = N (zlpn, 225-)
Inference with reference priors:

n

~

(1) = constant
m(ulz) = N(ulz,n])
n(z]z) = N (2|7, n”+ -

Inference with other prior laws:
m(p) = St(ul0,7%, o) = m1 (u|p)m2(pl )
with

w1 (plp) = N(|0,7%p),

mo(ple) = IGam(p|a/2, a/2),

(ulz,p) = N | pl 7,
K2, Pp) = © 1_|_7_2p'7“a1+7_2p

14 72)~1/2 [ - t ]
m(p|z) o (1 + 77p) exp 20 +7'2p)m x| ma(p)
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Normal with known variance o2 > 0
(Estimation of u):

z={z1,-,zn}, T ER, z=p+b, b~
f(x) = f(zilp, 0%) = N(zi|u,0%), peR

N(b;]0,0%)

Likelihood and sufficient statistics:

I(ulz) = HN i, o

1
p(i‘|y,’o'2) =N il/”" —0 )

Inference with conjugate priors:

p(r) = N(plmo, 05)
)=N (:c|,u0,00 +o )

flz
flzr,---,zp) = (:1:|u01 021+o§1.1t)
(@) = (mm,ao +o?).,

p(/},‘z) =N (/1'|/1'n70n) y  Mn =
/(o}2) =N (alpsn, o® + o7

p

2 2
oo ( 1
no + o2

N n
o3 o?

= 2 ‘7(%‘72
z), opn=—7>=

Inference with reference priors:
7(u) = constant

r(ulz) = N(slz, -o”)
r(zlz) = N (m|§:, W)

Inference with other prior laws:
(1) = St(p[0, 7%, @) = ™ (u|p)ma(pla)
with

™1 (ulp) = N(ul0, 7%p),

ms(pla) = IGam(pla/2, a/2),

1 T
1+ 7'2 "1+ 72

m(ulz,p) = N | yf

m”] m2(p)

m(plz) o (14 72p) /2 exp
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Normal with known mean y € R
(Estimation of \):

z:{xla"'axn}a iEiE]R, :I"Z:,U/-I'bu bZNN(bzloaA)
f(CEZ'Ha >‘) = N($z|N> )‘)7 A>0

Likelihood and sufficient statistics:

132) = [ NG

ey =t = Y (o )
=1
p(tlu.)) = Gam(t|3,)/2),  p(Mlu, ) = Chi®(Min)

Inference with conjugate priors:
p(A) = Gam()|e, §)

f(z) = St (z|p, /B, 20)

p(t) = GamGam (t|a, 203, g)

t
pO\2) = Gam (Na+ 3.5+ 3 )
f(alz) = ¢ (alp, 5,20+ n)

3
Inference with reference priors:
7(A) o« A1 = Gam()|0,0)

n t
m(A|z) = Gam()‘|§a 5)

r(z)z) = St (wm, g,n)
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Normal with known mean ; € R
(Estimation of ¢2):

z={z1,--,zn}, T ER, z=p+b, b~ N(bi|0,02)
f(@ilp, 0%) = N(zi|u,0), o >0

Likelihood and sufficient statistics:

l(0*[2) = [] N(zilu, %)
=1

t(z) =t =2 (2 — )’
i=1
0.2

o n o° LA N Y 2
p(t|u,0”) = Gam <t|2, 2 )7 p(azluaa)—Chl <02|n)

Inference with conjugate priors:
p(c?) = IGam(c?|a, B)
f(z) = St (z|u, o/ B, 201)
p(t) = GamGam (t\a, 28, g)
t
p(c?|z) = IGam (02|a + g,b’ + 5)
f(alz) = St (olp, 53,20+ n)
B+3
Inference with reference priors:
1
m(0?) == IGam(c?(0,0)

7(0%|z) = IGam (02|ﬁ E)

279
r(z|z) = St (xm, %n)
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Normal with both unknown parameters
Estimation of mean and precision (g, \):

z:{xla"'axn}a iEiE]R, $Z:M+b21 bZNN(bZ‘OaA)
f(xl|ua>‘) = N(xz|ua>‘)7 peER,A>0

Likelihood and sufficient statistics:
1 M]z) = H N(zilu, )
t(z) = (z,8), z=

p(lp, A) = (wlu,nz\)

p(ns?|u,3) = Gam(ns?(n — 1)/2,3/2), p(Ans?|u, ) = Chi®(Ans?n — 1)

Inference with conjugate priors:

p(:u’ A) = NGam(M’ )‘|u0’ no, &, IB) = N(H|Hoa ’n’O)‘) Gam(/\\a, IB)

p(p) = St (uluo,no%ﬂa
p(A) = Gam(\|e, B)
(

7e) =6 (sl ;205 %20)

ngn «
= St —,2

p(l‘) xllu’()a —}—nﬁ’ « ,

p(ns?) = GamGam (ns2|a,2ﬁ, n; )

p(ulz) = St (ulin, (m + mo)(@n) ;" 20,

o =a+ 2 o
— Topot+nI
Hn = no+n ?

B =B+ ns*[2 + 5108 (o — )
p(>\|z) Gam (>‘|ana:6n)

f(@l2) = St (lpn, 5520552, 20,

Inference with reference priors:
N =1 p) A n>1

(s,

w(p |z) = St(u|Z, (n —1)s%,n — 1)
m(A|z) = Gam()\|(n —1)/2,ns?/2)
r(z]z) = g 1

|.T,n—_l_13 ,n—l
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Normal with both unknown parameters mean and variance
Estimation of (u,o?):

z={z1,,zn}, T, €R, z=p+b, b ~N(0,0%)
f(CCi',U,,O'Q) = N(xi|:u’0'2)a v € R, o’ >0

Likelihood and sufficient statistics:

2|Z HN xl|/1‘7 )
n

n
sz’, s* = > (i — z)?
i=1

Hp,

o~
~~
X
I
—
Rl
&
Hl

3 | —

p(E|p, 0%) = <w|u, a®),
plns?lu, %) — Gam(ns?|(n — 1)/2,%),  plo*nslu,0?) = Chi¥(®ns?ln - 1)

Inference with conjugate priors:
p(u,0%) = NIGam(u, 0% |10, no, @, B) = N(pluo, noo”) IGam(o?|av, )

p(p) = St (M|M0,n0%,201
p(02) = IGam(02|a, B)

(@) = St (alpo, -0 5 20)
(67

nonn 5 2 )

p(ns?) = GamGam (n32|a,2ﬂ, e ; 1)

p(plz) = St (plan, (n + no) (@) By, 20m) ,
anp =a+ %7

— Nopo+nT
/1% no+n b

B = B +ns>/2 + 51908 (1o — )
p(02|z) =IGam (02|an,ﬂn)

f(z|z) = St (w|un, —ntng_an 2an)

p(z) = St (cv\uo,

n+no+1 Bn’

Inference with reference priors:
1
(/’La 2):7T( 27/"‘) ;’ n>1
m(p|z) = St(ulz, (n — 1)s*,n — 1)
m(0?|z) = IGam(c?|(n — 1)/2,ns?/2)
(

w(z|z) = St a:|:i,n_ s72n—1
n+1
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Multinomial:

k
Z:{rla"'arkan}a ri207172a"'a Z’r’igna
=1

p(r;|0;,n) = Bin(r;|0;,n),
p(z|0,n) = Mug(2]0,n), 0<6;<1, >F 0,<1

Likelihood and sufficient statistics:
[(0|z) = Mug(z|6,n)

t(Z) = (Tvn)v T:{Tl,---,?“k}

p(r|@) = Mug(r|6,n)

Inference with conjugate priors:
m(0) = Dig(0la), a={ou, -, ap1}
p(r) = Mug(r|a,n)

k
m(0|z) = Diy (9|Oél + 71, o g Qg1 0 — Z?%)
i=1

k
f(z|z) = Dij <0|Oz1 + 7,0 g, 01 N — ZT}C)
=1

Inference with reference priors:
(0) x??

w(0|z) =77

m(xz|z) =77

ANNEXES
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Multi-variable Normal with known precision matrix A
(Estimation of the mean p):

Z:{$1,"',$n}, L ERka z; = p+ bi, szNk(bl|01A)
f(xs|p, A) = Ny (x|, A), p € RF, A matrix d.p. of dimensions k x k

Likelihood and sufficient statistics:

(plz) = ] Ni(eil s, A)

i=1
n
D@

t(z) =

8

; T=

S|

=1
p(i“"’aA) = Nk(:_c|“anA)

Inference with conjugate priors:
p(p) = Ni(p|po, Ao)
(@) = Ni (lpo, (AoA)AT'), A1 =Ag+A
p(p|z) = Ni (1| p, Ay)
An = A() + nA,
Ba = AL (Aopg + nAZ)
f(z|z) = Ny (z[pn, An)

Inference with reference priors:
m(p) =77

m(p|z) =77

m(xz|z) =77

159
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Multi-variable Normal with known covariance matrix X
(Estimation of the mean p):

z={x1, -z}, @ ERF, @ =p+b, b ~Ngb0,X)
flzi|p, X)) = Ng(z|p, B), p€ R*, ¥ p.d. matrix of dimensions k x k

Likelihood and sufficient statistics:

plz) = ] Ni(ails, =)

i=1

Inference with conjugate priors:
p(p) = Ni(plpo, Zo)

J(z) = Ny (x| pg, X1) , 31=3+X
p(p|z) = N (pfp,, Zn)
2, =%+ 3%,

o = 5 (Zopo + nZa)
f(=]z) = Ni (z|py,, Zn)
Inference with reference priors:
m(p) =77
w(p|z) =77
w(x|z) =77
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Multi-variable Normal with known mean pu
(Estimation of precision matrix A):

Z:{$1,"',$n}, L ERka x; = p+ bi, szNk(bl|01A)
fzi|p, A) = Ng(zi|p, A), p€ R*, X matrix d.p. of dimensions k x k

Likelihood and sufficient statistics:

I(Alz) = [] Nk(@ilpe, M)

=1

tz) =8, §= Z - )
p(S|A) = Wlk(s|(”_ 1)/2,A/2),

Inference with conjugate priors:

p(A) = Wig(Ale, B)

f(x) = St (a:mo, "0 (-

-1,
20—k + 1
o 187", 2a +)

2

p(Alz) = Wi (A|an, B,,)

— n —
anp =a+3 - "5
_ noMg+n®

Hn = no+n ?

B,=B+35+ énﬁ(fn(ﬂo —z)(po — @)’
f(z|z) = Sty (mmn, L0 0, B, 200

Inference with reference priors:
m(A) =77

w(A|z) =77

m(x|z) =77

161



162 APPENDIX A. ANNEXES

Multi-variable Normal with known mean p
(Estimation of covariance matrix X):

z={z1, -z}, @ €RF, @ =p+b, b ~Ngb0,X)
flzi|p, X)) = Ng(zi|p, B), p€ R*, ¥ matrix d.p. of dimensions k x k

Likelihood and sufficient statistics:
n

1(2z) = [ Ni(zilp, =)
i=1

Hz) =8, 8= (e )i~

p(SIS) = Win(S](n — 1)/2,5/2),

Inference with conjugate priors:
p(2) = IWix(Z|e, B)

nQ _
f(x) = Sty (-’B|N0, m(a — T)'B 1,20[ —k+ 1)
p(B|z) = IWig (Z|ag, £,)

k-1

— n —
on =a+ 3 -5
_ noMy+n®

Hn = no+n ?

B.=B+3S+ %n%(fn(ﬂo —z)(po — )’
f(@lz) = Sty (@lpr, 7257 0087 20 )
Inference with reference priors:

(%) =77
m(X|z) =77
m(x|z) =77
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Multi-variable Normal with both unknown parameters
Estimation of mean and precision matrix (u,A):

z={x, -, &}, x € R”,
x; = p+b;, b ~Ng(bi]0,A) p~ Ni(ppy,noA) A~ Wig(Ala,B)
f(xi|p, A) = Ny (z5|p, A), p € RF, A matrix d.p. of dimensions k x k

Likelihood and sufficient statistics:

=1

t(z) =(z,S), z=

n n

Z S =Y (z; - &)(z; - z)*

= i=1

p(z|p, A) = Nk(wlu,nA)
p(S|A) = Wig(S|(n —1)/2,A/2),

3|'—‘

Inference with conjugate priors:
p(p’a A) = NWik(“‘a A‘”’Oa no, @, :B) = Nk(“‘“"‘Oa nOA)Wlk(A|aa ﬂ)
p(p) = Sty (plug, o, 20) 77
PN = WikAlasg) 77T
L) - -1
- 2a0 — 1
( =T 2a - k1)

p(ulz) = Sty (umn, (n+no)anBy" 20 )
k—1

f(z) = St (me,

B~ mofn, 1 - —\t
Brn=B+355+ 550 (ko — &) (1o — Z)
p(Al|z) = Wiy (Alan,ﬁ )

f(@lz) = Sti (@l 70 anBy " 20n)

Inference with reference priors:

m(p, A) =77
m(p|z) =77
w(Alz) =77
w(x|z) =77
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Mult-variable Normal with both unknown parameters
Estimation of mean and covariance matrix (u,X):

z={z1, -, xn}, @ €RF, @ =p+b, b ~Ngb0,X)
flzi|p, X)) = Ng(z|p, B), p€ R*, ¥ matrix d.p. of dimensions k x k

Likelihood and sufficient statistics:

=1

t(z) = (z,8), &=-— Zmz, §=3 (zi—z)(z; — @)

p(Slﬁ) Wlk(Sl(n—l)/ZE/?),

Inference with conjugate priors:

p([.t, 2) = NWik(IJ” 2“"’0’ no, O‘a:B) = Nk(”|“07n02)Wik(2|ahB)
p(p) = Sty (u|u0,n0a,8_1, 2a) 77

p(2) = IWig(Z|e, B) 77

£(@) =St (alug, - (0~ T3 )8 20— k4 1)

p(p|z) = Sty (il (n+ no)anBy?, 20,

— n k-1
on =0+ 35— 55,
_ ToMotni
l’l’n - no+n ?

Bn =B+ 355+ 5% (1o — &)(po — 2)'
(2|Z) Wlk (z‘anaﬂn)
f(@lz) = Sty (@|py, 75 00, 200

Inference with reference priors:
m(p, X) =77

m(plz) =77

m(X|z) =77

(zz) =

3
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Linear regression:

z=(y,X), y=A{y1,---,ya} € R,

xT; = {:Bil, .- ,.'Dik} = {l‘ﬂ, .- ,-Tilc} € ]Rk, X = (.1‘1'7]')
0=1{61,---,0;} € R, y; = !0 = 0"

p(y|X,0,)) =N, (y| X0, I,), 6cR X>0

Likelihood and sufficient statistics:
l(0|z) = Nn(y|X0a /\In)
t(z) = (X'X,X"y)

Inference with conjugate priors:

7‘-(01 )‘) = NGamy (0’ A|005 Ao, a, ﬁ) = Nk(0|00a AIXO)G"aIn(Ak)‘a /8)

w(0]2) = N (0160, MAo), E[f|A] =8y, Var[f]A] = (AAg)~"

r(Ala, ) = Gam(A|a, B)
(

9) = St, <0|00, %A0,2a> , E[6] =60, Var[o]=—

p(yi|e;) = St (%‘kﬂfeo,

@ a1
_2A0

™
hd
B
(0, \|2) = NGamy (8, 05, An, an, ) = Ni (6|00, A\An) Gam(Man, )
(6]2) = St (ewn, (Ao+ XtX)%,mn)

n

fl@)2a), with flz) =1-ol(ho+zial) 'z

an =a+ 3,

0, = (Ag+ X'X) Y(Aoby + X'ty) = (I — A,)0) + A0,

IBTL = ;8 + %(y - Xton)ty + %(00 - en)tAOOO = ﬂ + %yt’y + %OSAOOO - %anAnan
0=(X'X)"'X'y, A,=(A¢+X'X)"IX'X

E[0|z] =0,, Var[8|z]= (Aq+ X'X)!
T(Az) = Gam (Aan, Bn)
P(yil@i, 2) = St (4wl f(@:) §=, 207 )
fn(.’llz) =1- .’Ef(.XtX + Ay + wiazg)*lwi,

Inference with reference priors:
7(8,)) = (), ) oc \~FF/2

7(8]z) = Sty <o|6n, ”21 i

X'X,n— k:)
Bn = (y - Xtan)t(y - Xtéﬂ)

~ n—k

n
fol®s)) =1— a:f(XtX + wiazf)_lmi,
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Inverse problems:

z=Hz+b,z={z,,2} €R", hy = {hi, -, hi,} € RF, H = (h;)
= {x, -z} € RF,

p(z|H,z,\) = N, (z| Hz,\I,,), R, A>0

Likelihood and sufficient statistics:
l(z|z) = Np(z|Hz, A1 ,,)
t(z) = (H'z, H'z'zH)

Inference with conjugate priors:
m(z, ) = NGamy(z, A|[zo, Ao, @, 8) = Ny (z|zo, AMo) Gam(A|e, B)
m(x|\) = Ny (z|zo, \Ag), E[z|\] =z, Var[z|A\] = (AAg)!

(

f(.’l:) = Stk (.’12|.’120, IBA0,2a>
(M, B) = Gam(A|o, §)
(
(

3

!
a—2"0

=)

z) = Sty <m|m0,ﬂA0,2a), Elz] = 2, Var|a] =
(A e, 8) = Gam(\|a, f)
p(ulz) = St (zz|w 20, 5 (). 20)

fl)=1-2' (A +z'z) 'z
m(x, A|z) = NGamyg(xz, A|zby, Ap, an, Bn) = Ng(x|zn, AA,)Gam(A|ay, 5r)
F(x|z) = Sty (m|:1:n, (Ao + Htﬂ)%
n

Ap — + g, _

x, = (Ao + H'H) ' (Agzo + H'z) = (I — Ay)zo + A 0

Brn=p+ %(Z - Htwn)tz +3 ("BO - wn) Aozo =B+ QZ z+ Qw b Aoxo — %w%Anen

z=(H'H) 'H'y, A,= (AO +H'H)'H'H

y 20,

E[z|z] = x,, Var[z|z]= (Aq+ H'H)™!
m(Az) = Gam (Alan, )

p(zlhi, 2) = St (zilhizy, fu(hi)S2, 20 )
fn(hi) =1 — hY(H'H + Ag + h;hl) ' h;,

Inference with reference priors:
m(x, A) = (A, ) oc A~ R/
r(@|z) = Sty (:cm, nzTngtH,n - k)
Z, = (HtH)—Ith,n
Bn==(z— Ht%n)tz

r(\z) = Gam ()\| , ﬁn>

p(zlhi, z) = St (z,|h2zn,fn<hi)%:,2an)
fu(hi) =1 = hi{(H'H + Ao + h;hi)"'h

N | =
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A.2 Summary of probability distributions

Probability laws for discrete random variables

Bernoulli Ber (z]0) = 6° (1 — 6)'~7,
0<o<1,
z ={0,1}
Binomial Bin (z|0,n) =c0* (1 —0)"77,
n
o= (1)
x
0<f<1l,n=1,2,---,
z=0,1,---,n
Hypergeometric HypGeo (z|N,M,n) =¢ (N> < M >,

T n—=

n
NM=1,2--,n=1,---,N+ M,
r=a,a+1,---,b, avec a = max{0,n — M}, b = min{N,n}

(N+M)_1
c= ,

Negative-Binomial

NegBin (z]0,7) = ¢ (rj:fz 1) (1-6)",
c=0",

0<O<1,r=12-"-,

z=0,1,2, -

Poisson

)\z
Pn (z|)) = =,
¢ = exp[-],
A>0,
z=0,1,2,---

Binomial-Beta

BinBet (z|o, 8,n) = ¢ (Z) MNa+z)I'(B+n—x),
_ I(a+ B)
L)' (B)(a+B+mn)
oa,f>0,n=12,---,
z=0,---,n
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Probability laws for discrete random variables (cont.)

Negative Binomial-Beta

NegBinBet (z|a, 8,7) = ¢ (
_ MNa+ BT (a+r)

L(@T(B) 7
a,B>0,r=1,2,---,
£=0,1,2,-

r+a:—1) T'(B+ )
r—1 Na+B+z+a)

Poisson-Gamma

I'a+z) n®
z!  (B+n)ets’

PnGam (z|a, 8,n) = ¢

ﬁa
" T(a)’
a,B>0,n=0,1,2,---,
z=0,1,2,-

Cc

Composite Poisson

>, (nu)®exp[—n N
Pnc (2A, 1) = exp[-A] 3 %) m!p[ / An—,

n=0

Apu>0 =01,2---

Geometric Geo (z]0) = c(1 —0)* 1,
c=20,
0>0, z=0,1,2---
Pascal Pas (z|m,0) = C™'6™(1 — 6)"™,

m>0,0<0<1 z=0,1,2-..
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Probability laws for real random variables

Beta

Bet (z]a, 8) = cz® (1 — z)P 1,
_ Ia+p)
L(a)T(B)’
aaﬁ > 03
<zl

Gamma

Gam (s]a, B) = ca® Lexp [~ fa],
o

“= Ty

a,B >0,

z>0

Inverse Gamma

IGam (z|a, 8) = cx @t exp {—gJ ,
B

I(e)’

a,B >0,

z>0

CcC =

Gamma—Gamma

n—1

GamGam (z|a, 3,n) = C(ﬂf_W’
_ P Tlatn)

- I(a) T(n) ’
a,f>0,n=0,1,2,-",

z=0,1,2,-

Pareto

Par (z|a, ) = cz— @),
c= aﬁa7

o, >0,

z>p

Normal

N@WM)=cwp%éMx—Mﬂ,

Normal
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Probability laws for real random variables (cont.)

ANNEXES

Logistic

exp [-8 Yz — a)]

Lol ) =T (B e — )

Student (t)

peER, Aa>0,
z€R
ma/Z—l
Fisher-Snedecor | FS (z|a, 8) = ¢

B+ az)@+h)2’
_ T(a+B8)/2) o248/

= T P

aaﬁ > 03

x>0

Uniform

Uni (z]61,02) = ¢
1

‘T —0
02 > 01;

01 <z <l

Exponential

Ex (z|\) = c exp[—Az],
c= A,
A>0, z>0

Inverse Gamma

IGam /2 (z|a, B) = cz~(?HD exp [—ﬁ] )
x
_ 28
~ T(a)’
o, >0,
z>0

Inverse Pareto

IPar (z|o, B) = cz® 7,
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Probability laws for real random variables (cont.)

1/(mA)
Cauchy Cau(z|\) = m’
AMeR, z€eR
2
Raylelght Ray ({L‘|0) = cZT exp \‘_%| ,
2
=5
0>0, >0
(no — )
Log-Normal LogN (z|u,A) = c exp —— |
1
c= ——,
A 27z

Generalized Normal

Ngen (z|a, ) = cz® L exp [—,Bx2J ,
2/8a/2

I(a/2)’
Weibull Wei (z]a) = cz® L exp [—x’B/aJ )
_B
c= —,
a
a,Bf>0, >0
Double Exponential Exd (z|\) = c exp [—|A|z],
A
C = 5,
A>0, zeR

Truncated Exponential

Ext (z|A) = exp [—(z — )],
A>0, >\
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Probability laws for real random variables (cont.)

Khi
1n/2
_ 2
‘T Ty
n>0, >0

Chi (z|n) = cz™? exp {—gJ ,

Khi-squared

1n/2
2

" T(n/2)’

n>0 x>0

Chi? (z|n) = cz™? T exp {—gJ ,

Non centered Khi-squared

Chi? (z|v, \) ZPn (x\ > X2 (z|v + 26) ,

v, A > 0,
z>0
1
Inverse Khi IChi (z|v) = cz~ /2D exp {_2_2J ,
x
1v/2
_ 2
T(v/2’
v>0, >0

Probability laws for real random variables (cont.)

Generalized Exponential
with one parameters

Exf (z|a, g, ¢, h,0) = a(z) g(0) exp [h(0) p(z)],

Generalized Exponential
with K parameters

Extk (z/a, g, ¢, h, 0) =

oo [ oo,

k=1

Probability laws for two real random variables

Normal-Gamma, NGam (z,y|u, A\, o, 8) =
peER, N a,B >0,

reER,y>0

N(z|p, \y) Gam(y|a, B),

Pareto bi-variable

c=ala+1)(B1 - Bo)%,

(x,y) €R27 T < /807y > /81

Par, ('Tay'aaﬁOaﬁl) = (y -

(50,51) € R27 ﬁo < ﬁlaa > Oa

) t2),
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Probability laws with n discrete variables

k+1
n!
Multinomial Muy, (2|6,n) = ——— || 0"
1 1
IT=5 =t =1
k k
Tkl =N — Zwl, Ok+1=1— Z@l,
0<O <1, > 6<1l, n=12,--,
z=0,1,2,---, Zﬂflﬁn
k+1
Dirichlet Dij, (z|a) =c¢ [] M
I=1
D)
;C2+11 N7y
a>00=1,---k+1
k
0<z <Ll=1--k+1 zp=1-)Y =z
=1
k1 a[zz]
Multinomial-Dirichlet | MuDiy (z|a, n) = ¢ L B
P
n! =
c= ———
k+1 [n]’
oy

S

k
Oz[s]:H(a—i-l—l), $k+1:n_2$l7
=1 =1

a>0n=1,2---,

k
z;=0,1,2,---, le<n
=1
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Probability laws for n real variables

Canonical Exponential | (z|b, ¢, h,0)
Generalized
Exponential Ext, (2]a,g, ¢, h, 0)
1
Normal N (e, A) = c exp |~ 5o — ) Ale - )|
¢ = A2 (2m) %,
peRF A >0,
xz ¢ RF
1
Normal Ny (z|p,X) = c exp {—E(m — )iz - M)J )
e = %712 2m) 3,
peRF, >0,
z € RF
1 —(a+k)/2
Student Sty (:1:|u, Aa)=c [1 a(:c — u)A(z — u)] ,
T((atk)/2) (é) 1/2
a/2 T(a/2)(an)k? \«a
peRFA>0a>0,
z € RF
Wishart Wi, (X |, A) = ¢ | X|* FHD/2 exp [—tr(A X)),
_|Af
- Tp(@)’
A une matrice de dimensions k X k,
X une matrice symétrique d.p. de dimensions k X k,
Xi,j:Xj,ia i,j=1,--+,k,
2> k-1

Probability laws for n 4+ 1 real variables

Normal-Gamma | NGamy (z,y|p, A, o, B) = Ni(z|p, yA) Gam(y|a, B),
peRFA>0a,8>0,
zeRF.y>0

Normal-Wishart | NWiy (z,Y |p, A\, @, B) = Ng(z|p, \Y) Wi (Y |a, B),
peRFA>0,2a>k—-1,B >0,
TE Rkayi,j = Y},iaiaj =1,---,k
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Link between different distributions

Bin(z|6,1) Ber(z|0)
NegBin(z|6,1) Geo(z|0) = Pas(z|0)
BinBet(z|1,1,n) Unid(z|n) = HLH, z=0,1,---,n
Bet(z[1,1) Uni(z]0,1)
Gam(x|0,ﬂ) Ex(xLB)
Gam(z|a,1) Erl(z|a)
Gam(z|5,1/2) Chi?(z|v)
IGam(z|s,1/2) IChi?(z|v)

St(z|p, A1) Cau(z|y, \)

Mu; (z]0,n) Bin(z|0,n)

Di; (z|oq, ag) Bet(z|ai, az)

Wi (z]a, B) Gam(z|a, 5)
St1(z|u, A, a) St (z|u, \, a)

N (z|p, A) N (z|p, \)

BinBet(z|a, 8,n)
NegBinBet(z|a, 5,7)

PnGam(z|a, 8,n)

T
/ Bin(z(0, n) Beta(6]a, 8) df
0
1
/ NegBin(z|0, ) Beta(6]a, 8) d0
o0

Pn(z|n)) Gam()|a, 5) dA
0

Par(z|a, 8)
St(z|u, A, )

ChiZ, (], )

/ " Ex(z — B|\) Gam(\a, 8) dX
" N(alu, \y) Gam(yl/2, 5/2) dy

i Pn(i|\/2) Chi?(z|v + 2i)

Jim St(z|u, A, a)

St(z|0,1, o)

N(z|p, A)

Standard StudentSt(z|a)

if z ~ Gam(z|a,f)

if z; ~ Gam(z;|w, )

if £ ~ N(z]0,1) and y ~= Chi?(z|v)
if 2 ~ Chi?(x|v;) and y ~ Chi?(y|v)

then y = 3 ~ IGam(y|a, §)
n

then y = Zmz ~ Gam (y| >0 ;,0)
i=1

then z = ﬁ‘;/y ~ St(z|0,1,v)

then z = % ~ FS(z|v1,vs)
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Family of invariant position-scale distribution
p(z|u, B) = %f(t) with ¢ = £55 H Var [z] = v ‘ — [p(z)Inp(z)dz =log B+ h
Family f(@) v h
Normal (2%)_% exp [—%J 1 % log(2me)
Gumbel exp [—t] exp [— exp [-1]] | 72/6 1+
Laplace Texp [—[t[] 2 1+1log2
Logistic % n2/3 2
Exponential | exp[—t], z >0 1 1
Uniform 1, p-S<z<p+8|1/12 0

Family of invariant shape-scale distributions

_ . . oz Var [z] = B?v(a)
plale, ) = 5f(t;0) with t = {— J p(x) np(x) dz = log B + h(a)

Family f(@) {Z
a—2T2(2th)
Generalized Gaussian F(Qg)t“*1 exp [—t%] r2(5) .
a = 2 : Rayleigh, ’ log[I'(3)/2] + 5*¢(3) + 5
a = 3 : Maxwell-Boltzmann,
= v : khi
a=v i e
Inverse Generalized Gaussian %g)t_a_l exp [—t7?] {a2 . F2(%)_a o
a =v,3 =+/2: khi inverse : log['(3)/2] + 5*¥(5) + §

Gamma T N @
a =1 : Exponential He p[~) {log[F(a)] + (1 -a)p(a) +a

a = 3, = 2: khi-squared,
a =v: Erlang

T
gy, & > 2
Inverse Gamma At exp [-t71] {(al) @2 %

(@) _
a =%, B =1:khi-squared inverse ¢ log[[(e)] = (1 + a)p(e) +
T
PSRy Y owmr > 2
Pareto at™ L x>p Sa—l)Z(a—2)’ @
5 —loga+1

Weibull at®exp [—1]*

T(1+ 2)r2(1+2)
—7(0;_1) —loga+1
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A.1 Exercise 1: Signal detection and parameter estimation

Assume z; = s;+e; where s; = a cos(wt;+¢) is the transmitted signal, e; is the noise and z;
is the received signal. Assume that we have received n independent samples z;,1 = 1,...,n.
Assume also that > 7 ; z; = 0.

1.

Assume that e; ~ N (0,0) and that s; is perfectly known. Design a Bayesian optimal
detector with the uniform prior and the uniform cost coefficients.

Repeat (1) with the assumption that e; ~ % exp [—|ei|/0],0 > 0.

Repeat (1) but assume now that 6 is unknown and distributed as 6 ~ m(0) o 6.

. Assume that e; ~ N (0,6), but now a is not known.

e Give the expression of the ML estimate apsr,(z) of a.

e Give the expressions of the MAP estimate apr4p(z) and the Bayes optimal
estimate ap(z) if we assume that a ~ N (0, 1).

e Give the expressions of the MAP estimate ap 4p(z) and the Bayes optimal
estimate dp(z) if we assume that o~ exp [—|a|/a],a > 0.

Repeat (4) but assume now that € is unknown and distributed as 6 ~ 7(8) x 6*.

. Assume that e; ~ N (0, 8) with known € and that a is known, but now w is unknown.

e Give the expression of the ML estimate @Wsr,(2) of w.

e Give the expressions of the MAP estimate Warap(z) and the Bayes optimal
estimate Wp(z), if we assume that w ~ Uni(0, 1).

. Assume that e; ~ N (0,6) with known # and that @ and w are known, but now ¢ is

unknown.

e Give the expression of the ML estimate @y1,(z) of ¢.
e Give the gxpressions of the MAP estimate $MAp(z) and the Bayes optimal
estimate ¢p(z), if we assume that ¢ ~ Uni(0, 27).

Assume that e; ~ N (0,60) with known 6, but now both a and w are unknown.

e Give the expressions of the ML estimates anrr.(z) of a and @y (z) of w.

e Give the expressions of the Bayes optimal estimates ag(z) of a and @Wg(z) of w
if we assume that a ~ N (0,1) and w ~ Uni(0, 1).

e Give the expressions of the MAP estimates ayrap(2z) of a and Waprap(z) of w if
we assume that a ~ N (0,1) and w ~ Uni(0, 1).

. Assume now that w is known and we know that a can only take the values {—1,0,+1}.

Design an optimal detector for a.
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10. Assume now that

K

S; = Z ag, cos(wkt + ¢k), Wi 7& wy, Yk 75 l
k=1

Give the expression of the ML estimates a(z) assuming wy and ¢y known.

Give the expressions of the ML estimates &y (z) assuming ay and ¢ known.

Give the expressions of the ML estimates ak(z) assuming a; and wy known.

Give the expressions of the joint ML estimates ax(z) and Wi(z) assuming ¢
unknown.

Discuss the pssibilty of the joint estimation of ax(z), Wx(z) and ay.
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A.2 Exercise 2: Discrete deconvolution

Assume z; = s; + e; where

p
si= Y hpz(i—k)
k=0

and where
e h =[ho,h1,...,hp]" represents the finite impulse response of a chanel,
e = = [z(0),...,z(n)] the finite input sequence,

e z=[2(p),-..,2z(p+n)]’ the received signal, and

e e =[e(p),---,e(p+n)]t the chanel noise.

1.
2.

Construct the matrixes H and X in such a way that z = Hx+e and z = Xh + e.

Assume that e; ~ N (0,0) and that we know perfectly h and the input sequence
. Design a Bayesian optimal detector with the uniform prior and the uniform cost
coefficients.

. Repeat (2) with the assumption that e; ~ 55 exp [—|e;|/6],60 > 0.
. Repeat (2) but assume now that 6 is unknown and distributed as 6 ~ 7 (6) o 0.

. Assume that e; ~ N (0,6), but now & is unknown.

e Give the expression of the ML estimate Zs1(2z) of x.

e Give the expressions of the MAP Z,;4p(2) and the Bayes optimal estimate
Zp(z) if we assume that ¢ ~ N (0, I).

. Repeat (5) but assume now that 6 is unknown and distributed as 6 ~ 7 (6) o 0.

. Assume that e; ~ N (0,0) with known 6, and that  is known but h is unknown.

e Give the expression of the ML estimate fAlML(Z) of h.

e Give the expression of the MAP estimate EMAP(Z) and the Bayes optimal
estimate hp(z) if we assume that h ~ N (0, I).

. Repeat (7) but assume now that 6 is unknown and distributed as 6 ~ 7(6) o 0*.

Assume that e; ~ N (0,60) with known 6, but now both h and z are unknown.

e Give the expressions of the ML estimates kL (z) of b and @1 (2) of @.

e Give the expressions of the MAP and the Bayes optimal estimates Zasap(2)
and Zp(z) of z and hy4p(2) and hp(z) of h if we assume that @ ~ N (0, I)
and h ~ N (0,1).

e Give the expressions of the MAP and the Bayes optimal estimates Z s 4p(z) and
Zp(z) of & and hys4p(2) and hp(z) of h if we assume that  ~ N (0,02D% D,)
and h ~ N (0,02 D} Dy,).
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10. Assume now that h is known and we know that z(k) can only take the values {0, 1}.

e First assume that z(k) are independent and my = P(z(k) = 0) and m =
P(z(k) =1) =1 — m, with known 7. Design an optimal detector for z(k).

e Now assume z(k) can be modelled as a first order Markov chaine and that we

know the probabilites

oo = P(x(k) =0,2(k+1) =0) 71 = P(z(k) =0,z(k+1)=1)=1—mg
w1 =Pz(k) =1L, z(k+1)=1) mo=P(z(k)=12z(k+1)=0)=1—m

Design an optimal detector for z(k).

o Repeat these two last items, assuming now that h is unknown and h ~ N (0,02 D}, Dp,).
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