Chapter 1

Introduction

Generally speaking, signal detection and estimation is the area of study that deals with
information processing: conversion, transmission, observation and information extraction.
The main area of applications of detection and estimation theory are radar, sonar, analog
or digital communications, but detection and estimation theory becomes also the main
tool in other area such as radioastronomy, geophysics, medical imaging, biological data
processing, etc.

In general, detection and estimation applications involve making inferences from ob-
servations that are distorted or corrupted in some unknown way or too complicated to
be modelled in a deterministic way. Moreover, sometimes even the information that one
wishes to extract from such observations is not well determined. Thus, it is very useful to
cast detection and estimation problems in a probabilistic framework and statistical infer-
ence. But using the probability theory and the statistical inference tools does not forcibly
means that the corresponding physical phenomena are necessarily random.

In statistical inference, the goal is not to make an immediate decision, but is instead to
provide a summary of the statistical evidence which the future users can easily incorporate
into their decision process. The task of decision making is then given to the decision theory.

Signal detection is inherently a decision making task. In signal estimation also we need
often to make decisions. So, for detection and estimation we need not only the probability
theory and statistical inference tools but also the decision and hypothesis testing tools.
The main common tool with which we have to start is then the probabilistic and stochastic
description of the observations and the unknown quantities.

Once again a probablistic or stochastic description models the effect of causes whose
origin and nature are either unknown or too complex to be described deterministically.

The simplest tool of a probabilistic model for a quantity is a scalar random wvariable
X which is fully described by its probability distribution F(z) = Pr{X < z}. The next
simplest model is a random vector X = [X1,---,X,]", where {X;} are random variables.
A random vector is fully described by its probability distribution F(x) = Pr{X < z}.
The next and the most general stochastic model for a quantity is a random function X (r),
where 7 is a finite dimensional independent variable and where for every fixed values
r = r;, the scalar quantity X; = X(r;) is a scalar random variable. For example, when
r = (x,y) represents the spatial coordinates in a plane, then X (x,y) is called a random
field and when r = ¢ represents the time variable, then X (¢) is called a stochastic process.
In the rest of these notes, we consider only this last model.
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A stochastic process X (t) is completely described by the probability distribution

for every n and every time instants {t;}. The stochastic process is discrete-time if it is
described only by its realizations on a countable set {¢;} of time instants. Then, time
is counted by the indices j, and the stochastic process is fully described by the random
vectors X ; = [Xj, Xjy1, ,Xj+n]t.

A stochastic process X () is said well known, if the distribution F(x1,- -, Zp;t1,- -, tn)
is precisely known for all n, every set {t;} and every vector value . The process is
instead said parametrically known, if there exists a finite dimensional parameter vector 8 =
[61,--+,0m]t such that the conditional distribution F(z1,---,Zn;t1, - ,1,|0) is precisely
known for all n, every set {t;}, every vector value & and a fixed given value of 6. A
stochastic process X (t) is non parametrically described, if there is no vector parameter 8
of finite dimensionality such that the distribution F'(x, t|@) is completely described for all
values of the vector @ and for all n,t and . As an example, a stationary, discrete time
process {X;} where the random variables X; have finite variances is a nonparametrically
described process. In fact, this description represents a whole class of stochastic processes.
If we assume now that this process is also Gaussian, then it becomes parametrically known,
since only its mean and spectral density functions are needed for its full description. When
these two quantities are also provided, the process becomes well known.

From now, we have the main necessary ingredients to give a general scope of the
detection and estimation theory. Let consider a case where the observed quantity is
modelled by a stochastic process X (¢) and the observed signal z(t) is considered as a
realization of the process, i.e., an observed waveform generated by X ().
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1.1 Basic definitions

e Probability spaces:
The probability theory starts by defining an observation set I' and a class of subsets
G of it, called observation events, to which we wish to assign probabilities. The pair
(T, G) is termed the observation space.

For analytical reasons we will always assume that the collection G is a o-algebra; that
is, G contains all complements relative to I' and denumerable unions of its members,
i.€.;

ifAeg — A°€eg

and (1.1)

if A1, A9,...€G — UA; €G

Two special cases are of interest:

— Discrete case: I' = {vy1,7y2,---}
In this case G is the set of all subsets of I" which is usually denoted by 2! and
is called the power set of T'.
For this case, probabilities can be assigned to subsets of I' in terms of a proba-
bility mass function, p: T' — [0, 1], by

P(A) =Y p(n), Ae?'. (1.2)
VEA

Any function mapping I" to [0, 1] can be a probability mass function provided
that it satisfies the condition of normality

S plw) = 1. (L3)

2

— Continuous case: I' = R", the set of n-dimensional vectors with real compo-
nents.
In this case we want to assign the probabilities to the sets

{z = (21, ,20) ER"ay <1 < by, ,0n < xp < by} (1.4)

where the a;’s and b;’s are arbitrary real numbers. So, in this case, G is the
smallest o-algebra containing all of these sets with the a;’s and b;’s ranging
throughout the reals. This o-algebra is usually denoted B™ and is called the
class of Borel sets in R™.

In this case the probabilities can be assigned in terms of a probability density
function, p: R® — R™, by

P(A) :/Ap(a:) dz, AcB". (1.5)

Any integrable function mapping R"” to R* can be a probability density func-
tion provided that it satisfies the condition

/R” p(x)dz = 1. (1.6)
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For compactness, we may use the term density for both probability density function
and probability mass function and use the following notation when necessary

P(4) = [ pla)u(da) (1.7)

for both the summation equation (1.2) and the integration equation (1.5).

Random variable:
X = X(w) is a function w +— R, where w represents elements on the probability
space.

Probability distribution:
F(z) is a function R + [0, 1] such that

F(z) =Pr{X <z} (1.8)

Probability density function:
f(z) is a function R — R™ such that

fw = 2
Fz) = Pr{X<a}= [  ft)at (1.9)

—infty

For a real function g of the random variable X, the expected value of g(X), denoted
E [g(X)], is defined by any of the followings:

Elg(X)] = > g(w)p(r) (1.10)
Bl(x) = [ o@)p(@)de (11)
Blg(x)] = [ g@p() a(dr) (112)

Random vector or a vector of random variables:
X = [X1,---,X,] where X; are scalar random varaibles.

Joint probability distribution:

F(xy,---,2,) = Pr{Xi; <z, -, X, <}
Fz) = Pr{X <z} (1.13)
Stochastic process

Stochastic process: X (t) = X (¢, w), where X (¢,w) is a scalar random variable for all
t.
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A stochastic process is completely defined by

F(.’L’l,-..,ajn;tl’-..,tn) = PI‘{XZ(tZ)S.TZ,Zzl”n}
F(z;t) = Pr{X(t) <z} (1.14)

A stochastic process is stationary if

F(J:la"',ﬁcn;tl,"',tn) — F(eTl,“‘,ﬁUn;(tl+T),"',(tn+7'))
F(xz;t) = F(z;t+71) (1.15)

A stochastic process is memoryless or white if

F(z1,-,Tnjt1, o t) = [[ F (zits) (1.16)
7

Discrete time stochastic process:

F(z) =Pr{X <z} (1.17)
Memoryless discrete time stochastic process:

Fle) = Pr{X <} = [[ Fila:) (118)
=1

Memoryless and stationary discrete time stochastic process:

F(z) =[] Fi(z:) and Fi(z) = Fj(z) = F(z),Vi,j (1.19)

=1

A memoryless and stationary discrete time stochastic process generates in time in-
dependent and identically distributed (i.i.d.) random variables.

Well known stochastic process:
A stochastic process is well known if the distribution F'(z,t) is known for all n,¢
and x.

Parametrically well known stochastic process:

A stochastic process is parametrically well known if there exists a finite dimentional
vector parameter @ = [0y, - -,0,,] such that the conditional distribution F(x,t|0) is
known for all n,t and «.

Non parametric description of a stochastic process:

A stochastic process X (t) is non parametrically described, if there is no vector pa-
rameter @ of finite dimensionality such that the distribution F'(x,¢|@) is completely
described for every given vector 8 and for all n, ¢ and .

Observed data:
samples of z(¢) a realization of X (¢) in some time interval [0, T7].
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1.2 Summary of notations

X A random variable

T A realization of a random variable

x ={r1,---,z,}  n samples (realizations) of a random variable

X(t) A random function or a stochastic process

z(t) A realization of a random function

X A random vector or a discrete-time stochastic process

T A realization of a random vector or a discrete-time stochastic process

@y, ={x1, -+, 2y} n samples (realizations) of a random vector or a discrete-time stochastic process
F(z) A probability distribution of a scalar random variable

f(z) A probability density function of a scalar random variable

Fy(z) A parametrical probability distribution

fo(x|0) A parametrical probability density function

F(z|0) A conditional probability distribution

f(z]0) A conditional probability density function

F(0|z) A posterior probability distribution of @ conditioned on the observations x
JACIED) A posterior probability density function of 8 conditioned on the observations x
© A random scalar parameters

0 A sample of ©

S} A random vector of parameters

6 A sample of ®

The space of possible values of x
The space of possible values of «
The space of possible values of 6
The space of possible values of 8

3+



