Chapter 2

Basic concepts of binary
hypothesis testing

Most signal detection problems can be cast in the framework of M-ary hypothesis testing,
where from some observations (data) we wish to decide among M possible situations.
For example, in a communication system, the receiver observes an electric waveform that
consists of one of the M possible signals corrupted by channel or receiver noise, and we wish
to decide which of the M possible signals is present during the observation. Obviously, for
any given decision problem, there are a number of possible decision strategies or rules that
can be applied, however we would like to choose a decision rule that is optimal in some
sense. There are several classical useful criteria of optimality for such problems. The main
object of this chapter is to give all the necessary basic definitions to define these criteria
and their practical signification. Before going to the general case of M-ary hypothesis
testing problem, let us start by a particular problem of binary (M=2) hypothesis testing
which allows us to introduce the main basis more easily.

2.1 Binary hypothesis testing

The primary problem that we consider as an introduction is the simple hypothesis testing
problem in which we assume that the observed data belong only on two possible processes
with well known probability distributions Py and P;:

{HO : X ~ P, 2.1)

H1 ZXNP1

where “X ~ P” denotes “X has distribution P” or “Data come from a stochastic process
whose distribution is P”. The hypotheses Hy and H; are respectively referred to as null
and alternative hypotheses. A decision rule ¢ for Hy versus H; is any partition of the
observation space I' into I'y and I'g = I'{ such that we choose H; when = € ' and H)
when & € I'g. The sets I'; and T’y are respectively called the rejection and acceptance
regions. So, we can think of the decision rule § as a function on T such that

i =1 ifzely
5(‘”)_{ §o=0 ifzely=r¢ (2:2)
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16 CHAPTER 2. BASIC CONCEPTS OF BINARY HYPOTHESIS TESTING

so that the value of § for a given x is the index of the hypothesis accepted by the decision
rule 4.

We can also think of the decision rule d(x) as a probability distribution {dy, d;} on the
space D of all the possible decisions where J; is the probability of deciding H; in the light
of the data x. In both cases dg + 61 = 1.

We would like to choose Hy or Hy in some optimal way and, with this in mind, we may
assign costs to our decisions. In particular we may assign costs ¢;; > 0 to pay if we make
the decision H; while the true decision to make was H;. With the partition I' = {I'p, "1 }
of the observation set, we can then define the conditional probabilities

P, =Pr{X =z € T\|H = H;} = P;(T;) :/F'pj(;c) dx (2.3)

and then the average or expected conditional risks R;(0) for each hypothesis as

ZCU ij = Clj (Pl) + C()]P'(P()), 7=0,1 (2'4)

2.2 Bayesian binary hypothesis testing

Now assume that we can assign prior probabilities mg and 71 = 1—mg to the hypotheses Hy
and H,, either to translate our preferences or to translate our prior knowledge about these
hypotheses. Note that 7; is the probability that H; is true unconditional (or independent)
of the observation data @ of X. This is why they are called prior or a priori probabilities.
For given priors {my, 71} we can define the posterior or a posteriori probabilities

mi(e) = Pr{H = H;|X = 2} = f% (2.5)

where

=Y Pi(@)m (2.6)

is the overall density of X.
We can also define an average or Bayes risk r(§) as the overall average cost incurred

by the decision rule §:
5) = 3 mj R;(6) (2.7)
J

We may now use this quantity to define an optimum decision rule as the one that minimizes,
over all decision rules, the Bayes risk. Such a decision rule is known as a Bayes decision
rule.

To go a little further in details, let combine (2.4) and (2.7) to give

7‘((5) = Z?TjRj((S):ZﬂjZCijP](FZ

J
= ZTF]CQ] F() +7T]CUP'(P1)

= Z?TJCOJ (1 = Pj(T1)) + mje1;P5(T1)
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= Z?T]C()J + Zﬂ'] c1j — coj) Pj(T1)
= Z?UCO;‘ +/ > (e1j — coj) pj(x) dm (2.8)
i T
Thus, we see that r(6) is a minimum over all I'; if we choose
Iy = {:c S F|Z €15 — Coj ﬂ'Jp]( ) < O} (29)

= {:B € F|(611 — 601)7'('1 p1 (:B) < (COO — 010)7'(0 po(iB)} (2.10)

In general, the costs ¢j; < ¢;; which means that the cost of correctly deciding H; is less
than the cost of incorrectly deciding it. Then, (2.10) can be written

T, = {a:er|7”p1( ) 5, M} (2.11)
7o po(T) Co1 — €11

{a:er\ pi(2) ZTQZEM} (2.12)
po(x) 1 Co1 — €11

= {m € F|0107T0($) + c11m (w) < Cooﬁo(w) + 0017r1(a:)} (2.13)

This decision rule is known as a likelihood-ratio test or posterior probability ratio test due
to the fact that L(x) = Z;Eg is the ratio of the likelihoods and 2(1) z;ggg is the ratio of the
posterior probabilities.

Note also that the quantity c;omo(x)+ ¢;171 () is the average cost incurred by choosing
the hypothesis H; given that X = . This quantity is called the posterior cost of choosing
H; given the observation X = x. Thus, the Bayes rule makes its decision by choosing the
hypothesis that yields the minimum posterior cost.

This test plays a central role in the theory of hypothesis testing. It computes the
likelihood ratio L(x) for a given observed value X = x and then makes its decision by
comparing this ratio to a threshold 7, i.e.;

o -{ ) o

A commonly cost assignment is the uniform costs given by

0 ifi=y
cij :{ | ifi#; (2.15)
The Bayes risk § then becomes
r(6) = moPo(T'1) + m1P1(To) = moPo1 + m1.Pio (2.16)

Noting that P;(I';) is the probability of choosing H; when H; is true, r(d) in this case
becomes the average probability of error incurred by the rule §. This decision rule is then
a minimum probability of error decision scheme.
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Note also that with the uniform cost coefficients (2.15) the decision rule can be rewrit-
ten as

) ={ ) ez @17

This test is called the mazimum a posteriori (MAP) decision scheme.

Example : Detection of a constant signal in a Gaussian noise
Let consider

{ Hy X =e (2.18)

H1 X:,U,+€

where € is a Gaussian random variable with zero mean and a known variance o2 and where
@ > 0 is a known constant. In terms of distributions we can rewrite these hypotheses as

Hy X ~N (0,02
{ Hy X =N (409 (2.19)
where N (i1, 0?) means
2) _ 2\—1 1 2
N(u,o ) = (2m0°) "2 exp [—F(aﬂ — ) ] (2.20)
It is then easy to calculate the likelihood ratio L(x)
p1(z) [M ]
L(z) = =exp |5z —p/2 2.21
(@) =25 = exp | Lo — u/2) (221)
Thus, the Bayes test for these hypotheses becomes
1 ifL(z)>7
o) = { 0 ifL(z) <7 (222)

where 7 is an appropriate threshold. We can remark that L(x) is a striclty increasing
function of z, so comparing L(z) to a threshold 7 is equivalent to comparing z itself to
another threshold 7/ = L™1(7) = %2 log(7) + p/2:

1 ifz>1
o) = { 0 ifz<7 (2:23)

where L~ is the inverse function of L.
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po(z) Pi(z)

Figure 2.1: Location testing with Gaussian errors, uniform costs and equal priors.
In the special case of uniform costs and equal priors, we have 7 = 1 and so 7/ = p/2.
Then, it is not difficult to show that the conditional probabilities are

o 1-9 (£ for 5 =

and the minimum Bayes risk r(¢) is

r(d)=1— (%) . (2.25)

This is a decreasing function of £, a quantity which is a simple version of the signal to
noise ratio.
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Summary of notations for binary hypothesis testing

Hypotheses H Hy H,
Processes Py P
Conditional densities
or po(x) pi(x)
likelihood functions
Observation space I'
L. Ty Iy
partition
Decisions 6(x) do () 01 ()
Con;;t lzn}i I;j?i?zli;tles Pyo, Py Py, Py
Costs ¢;; €00, €01 €10, C11

Conditional risks
R; =%, cijbij

Ry = cooPoo + c10P1o

Ry = co1Py1 + c11 P11

Prior probabilities m; o ™
Posterior probabilities (@) ()
(@) 7; mo(x 7 (e
mj(®) = pijng(:%?
Joint probabilities
Qi = m;P; Qoo, Qo1 Q10, Q11

Posterior costs
ci(x) =3 ciymj(x)

co(@) = coomo(x) + cor1m1(x)

51(.’12) = 0107'('0(.’13) + 6117T1(:13)

Bayes risk r(d)

7“((5) = Zj WjRj(.’B)

Likelihoods ratio L(x)

L(z)

1(T)

— po(T)
Posteriors ratio Zég% = ;ﬁﬁégg

Posterior costs ratio

ci () _ ciomo(®)Fenim (T)

co(®) — coomo(®)+cor1mi(T)

The following equivalent tests minimize the Bayes risk r(4)

Likelihoods ratio test L(z) = z;g% > 7 o= o=
Posteriors ratio test :(l)gg > 1o = flozf0
Posterior costs ratio test al@) - 4
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Special case of uniform costs binary hypothesis testing

0 ifi=3j
Costs Cij:{ 1 ifz';é;' co=0, co1=1]co=1, c11=0
Conditional risks
Rj =Y, ci; Py 0 00 1 11
Prior probabilities m; 0 T
Posterior probabilities () ()
i (&)m; T\ T\
mj(x) = an(:g)T
Joint probabilities
Qi; = m;P;; Qoo, Qo1 Qu, Qu
Posterior costs _ _
_ co(x) = m(x ci(x) = mo(x
¢j(@) =3, cijmj(e) o(@) =m(@) (@) = mo(@)

Bayes risk 7(d)

r(6) = Ej 7TjRj(m) = Zj ;i Pjj

Likelihoods ratio L(z) L(x) = 212
Posteriors ratio i;gg ;:)Z:)Eg
Posterior costs ratio gj)g% iégg

Likelihoods ratio test L(z) = Z;gg >7 =10
Posteriors ratio test z;gg >T1=1
Posterior costs ratio test g(l)gg = Z;Eg > 1
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2.3 Minimax binary hypothesis testing

In the previous section, we saw how the Bayesian hypothesis testing gives us a complete
procedure to the hypothesis testing problems. However, in some applications, we may
not be able to assign the prior probabilities {mp, 71}. Then, one approache is to choose
arbitrarily mp = 71 = 1/2 and continue all the Bayesian procedure as in the last section.
An alternative approach is to choose another design criterion than the expected penalty
r(8). For example, we may use the conditional risks Ry(d) and R;(d) and design a decision
rule that minimizes, over all §, the following criterion

max{Ry(d), R1(d)} (2.26)

The decision rule based on this criterion is known as the minimax rule.
To design this decision rule, it is useful to consider the function r(m, d), defined for a
given prior my € [0, 1] and a given decision rule § as the average risk

’I"(7T(),(5) = 7TOR0((5) + (1 — 7T0)R1 ((5) (2.27)

Noting that r(mg,d) is a linear function of my, then for fixed §, its maximum occurs at
either mp = 0 or mp = 1 with the maximum value respectively either R;(d) or Ry(9).
So, the optimization problem of minimizing the criterion (2.26) over ¢ is equivalent to
minimizing the quantity

rérelﬁ))fl] r(mo, ) (2.28)
over 4.

Now, for each prior 7, let d,, denote a Bayes rule corresponding to that prior and
let V(mp) = r(mo,0x,); that is V(mp) is the minimum Bayes risk for the prior mp. Then,
it is not difficult to show that V(mg) is a concave function of 7y with V(0) = ¢;; and
V(l) = Cp0-

Now consider the function (g, d,+ ) which is a straight line tangent to V(m) at mo = =,
and parallel to r(mg, ) (see figure 2.3(3.

From this figure, we can see that only Bayes rules can possibly be minimax rules.
Indeed, we see that the minimax rule, in this case, is a Bayes rule for the prior value 7y = 7y,
that maximizes V', and for this prior r(mg,d,,) is constant over my and so Ry(0r,)) =
R1(d7,)). This decision rule (with equal conditional risks) is called an equalizer rule.
Because 7, maximizes the minimum Bayes risk, it is called the least-favorable prior. Thus,
in this case, a minimax decision rule is the Bayes rule for the least-favorable prior 7.

Even if we arrived at this conclusion through an example, it can be prouved that this
fact is true in all practical situations. This result is stated as the following proposition:

Suppose that 77, is a solution to V(7)) = mazyr e,V (70). Assume further that
either Ry(0r,) = R1(d,,) or mr, = {0,1}. Then ¢,, is a minimax rule. (see V. Poor for
the proof). We will be back more in details on the minimax rule in chapter x.
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T(ﬂ'Oa 5#6)

7‘(7‘-0’ 571'6’)

7‘(7’(’0, 5)

R1(6x,) Ry(9)
Ry(9)
R (0x)
RO (57r6)
V(mo)
C11 €00
0 7T6 TL 7T6' 1

o

Figure 2.2: Tllustration of minimax rule.

2.4 Neyman-Pearson hypothesis testing

In previous sections, we examined first the the Bayes hypothesis testing where the opti-
mality was defined through the overall expected cost 7(§). Then, we considered the case
where the prior probabilities {7, 71} are not available and described the minimax decision
rule in terms of the maximum value of the conditional risks Ry(d) and Ry(J).

In both cases, we need to define the costs ¢;;. In some applications, imposing a special
cost structure on the decisions may not be available or not desirable. In such cases, an
alternative criterion, known as the Neyman-Pearson criterion, is designed which is based
on the probability of making a false decision. The main idea of this procedure is to choose
one of the hypotheses as to be the main hypothesis and test other hypotheses against it.
For example, in testing Hy against H;, two kinds of errors can be made:

e Falsely rejecting Hy (or in this case falsely detecting H7). This error is called either
a Type I error or a false alarm or still a false detection.

e Falsely rejecting Hy (or in this case falsely detecting Hy). This error is called either
a Type II error or a miss.

The terms “false alarm” and “miss” come from radar applications in which Hy and H;
usually represent the absence and presence of a target.

For a decision rule §, the probability of a Type I error is known as false alarm probability
and denoted by Pg(d). Similarly, the probability of a Type II error is called the miss
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probability and denoted by Pus(d). The quantity Pp(d) = 1 — Pys(6) is called as the
detection probability or still the power of 4.

The Neyman-Pearson decision rule criterion is based on these quantities. It tries to
place a bound on the false alarm probability and minimizes the miss probability within this

constraint, i.e.;
max Pp(§) subject to Pp(d) =1—-Pp(d) <« (2.29)

where « is known as the significance level of the test. Thus the Neyman-Pearson decision
rule criterion is to find the most powerful a-level test of Hy against Hj.

Note that, in the Neyman-Pearson test, as opposed to the Bayesian and minimax tests,
the two hypotheses are not considered symetrically.

The general form of the Neyman-Pearson decision rule takes the forme

1 if L(x) > T
dz)=< ~(x) ifL(x)=rT (2.30)
0 if L(x) <7

where 7 is a threshold.
The false alarm probability and the detection probability of a decision rule ¢ can be
calculated respectively by

Pr() = Eo{d@)} = [d@lp(e) do (2.31)
Pp) = Ei{(@)} = [b(@pi(@)de (2.32)

A parametric plot of Pp(d) as a function of Pr(¢) is called the receiver operation charac-
terization (ROCs).



