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Abstract. Blind source separation (BSS) has become one of the major
signal and image processing area in many applications. Principal com-
ponent analysis (PCA) and Independent component analysis (ICA) have
become two main classical approaches for this problem. However, these
two approaches have their limits which are mainly, the assumptions that
the data are temporally iid and that the model is exact (no noise). In this
paper, we first show that the Bayesian inference framework gives the pos-
sibility to go beyond these limits while obtaining PCA and ICA algorithms
as particular cases. Then, we propose different a priori models for sources
which progressively account for different properties of the sources. Finally,
we illustrate the application of these different models in spectrometry, in
astrophysical imaging, in satellite imaging and in hyperspectral imaging.

1 Introduction

Even if PCA and ICA have their origin in data analysis [1], they have become
two main classical approaches for blind source separation problem which can be
presented as :

x(t) = As(t) + €(t), (1)
where x(t) = [21(t), -+ ,zm(t)]" is the observed vector of data, A the mixing
matrix, s(t) = [s1(¢), -+, s, (t)]" the sources and €(t) = [e1(t), -, €m(t)]’ Tep-

resents all the uncertainties (modeling uncertainty and measurement noise). ¢
represents either time, frequency, pixel position or index number of a coefficient
in a transform domain such as Fourier, spline or wavelet domain. The main
problem is the estimation of the mixing matrix A and the sources s(t).

1.1 PCA and ICA

One of the main hypothesis in PCA and ICA approaches is that the data are
temporally iid, in such a way that, the time index ¢ can be omitted. The second
main hypothesis is that the observation model is exact (no noise). With these
two hypotheses, we have

x = As. (2)

All probabilistic methods are based on trying to assign or to model the probabil-
ity law of the sources p(s) and consequently p(x). PCA based methods use only
the second order statistics. The main hypothesis is Ry = cov [s] is diagonal.
Then, assuming * = As, we have R, = cov[z] = AR;A". Thus, the PCA



algorithm, starts by estimating cov [x] from the data and then using the SVD,
the mixing matrix A can be determined up to a rotation. It is also easy to see
that the PCA solution is the maximum likelihood solution :

~

A = argmax {p(x|A)} = argmin {~ I p(x] 4)} (3)
assuming the sources are uncorrelated Gaussian :
p(s) =N(0,R,) — p(x) = N(0, AR, A").

This can easily be seen if we note that
n L 4 ty—1
—Inp(x|A) = 5(1n(271') +1n|A|) + 3 (AR;A") 'z

In ICA, the main idea is to form an auxiliary vector y = Bz and then
determine the vector y which has the most independent components, for example
by

B = argmax {KL(p(y) 31 (yi))} (4)

where KL(p, q) is the Kullback-Leibler distance or the mutual information be-
tween two probability laws p and gq. R

The main point is then to choose y = Bz as an estimate of s. It is not
too difficult to show that, if A is invertible and if B = A7! then y = Bz =
BAs = s. But, can we say anything about the relation between s and y if the
matrix is singular or if we now that the data are noisy 7

It is also interesting to note that, when A is invertible, the solution obtained
by the relation (4) is, mathematically, the same as the ML solution (3) when
replacing A by B7!, i.e.

B = argmax {p(z|B)} = argmin { ~ np(x| B)}

This interpretation gives also the interesting point which is that ICA extends
the PCA to the case of non Gaussian signals.

One more remark is that to obtain an explicit expression for the mutual
information criterion, we need to make more assumptions about p(y) and con-
sequently about p(«) and thus about p(s). For example, if we limit our analysis
to the second order statistics, we obtain PCA and if we go farther, we obtain all
the HOS algorithms, and if we do any approximation for the expression of p(s)
by troncation of its development in Taylor’s series, we obtain the ICA algorithms
based on the contrast functions [2, 3, 4, 5, 6, 7].

2 Bayesian approach

In the Bayesian approach, we start by accounting explicitly for the errors in
modeling and the noise. The simplest model is then assuming the errors to be



additive = As + €. Then, we assign a probability law to € to translate our
prior knowledge about it. The simplest choice is to assume € ~ N (0, R.) with
R, = diag [Ji,i =1,--- ,M]. Then:

p(w| A, s) = N(As, R.) ()

The next step is to assign p(s) which gives the possibility to derive the joint pdf
p(x, s|A) = p(x|A, s) p(s) and the marginal pdf

p(x|A) = / p(z|A. 5) p(s) ds. (6)

We can then stop here and look for the Maximum likelihood (ML) solution

~

A = argmax {p(z|A)} = argmin {—Inp(z|A)} (7)

either directly when it is possible to obtain an analytical expression for p(x|A)
as is the case of Gaussian hypothesis for p(s), or using the EM algorithm to
obtain the solution.

The interesting point is that, by this approach, we obtain the PCA and ICA
methods as particular case in the limiting case of no noise (e = 0) and invertible
mixing matrix A.

But, now, we can go farther. For example, if p(s) depends on a set of
unknown parameters @ and if p(x|A, s) depends on a set of unknown param-
eters (for example the R,), then we can write the joint pdf p(x,s|A,0,R,.) =
p(x|A, s, R.) p(s]0@) and the marginal pdf p(xz|A, 8, R.) and then estimate them
jointly by o

(A,0,R,) = arg Imax {p(x|A,0,R.)} (8)

But, we can still do better, by assigning appropriate priors to obtain an expres-
sion for the joint posterior of all the unknowns

p(s,A,0,Rc|x) < p(x|A, s, R.) p(s|0) p(A) p(8) p(R.) 9)

from which we can infer on all the unknowns at the same time. However, this
needs to assign the appropriate priors p(A), p(@) and p(R.). There are many
works on this subjects. Sometimes they can really represent our prior knowledge
based on the physics of the data measurement system [8, 9], but sometimes
they can only represent a mathematical tool to eliminate the degeneracy of the
likelihood based criteria [10, 11, 12, 13, 14, 15].

3 Proposed a priori sources models

3.1 Classical models

The main step in any classical Maximum likelihood (ML) or Bayesian approach
is the prior modeling of of the sources. Two main classes of prior models are the
Generalized Gaussians (GG) and Mixture of Gaussians (MoG). The GG model

p(s;) ox exp —Bj|s;|" (10)



has been used mainly to model the sparse sources. Many other non Gaussian
prior laws have also been used. All these simple and direct models can be
represented in the following scheme:

S O S O A D D D S S

t—1 ¢t t+1
Model 1: The iid model for the sources.

Another interesting model used frequently is the MoG:

K
p(s;) =3 a; N(mj,,07,) (11)
k=1

The interesting point in this model is in the fact that it can be described via a
hidden discrete valued variable z; in a hierarchical way

p(sjlz; =k) = ./\/(mjk,ojzk) with P(z; = k) = aj,, (12)

This interpretation of the MoG model can be illustrated by the following scheme:

i(t)]s(t)
55()]2; (1)
zi(t) e {l,--- | K
t—11t t+1 it € s
Model 2: A three level iid model for sources with an iid hidden variable z;(t).
This model is equivalent to Model 1 with a mixture of Gaussians (MoG) prior

law for sources.

3.2 Accounting for time evolution

We remember that, we omitted the time index ¢ from the equation (1), because,
in all the previous cases, we assumed the sources and thus the data to be tem-
porally iid. Now, we are going to relax this unrealistic hypothesis. Indeed, we
are going to explicitly account for this time evolution.

An easy and explicit way is to model directly the sources by using a Marko-
vian model which accounts for local dependency of the sources at time ¢ and

t—1.
SO R 0 0 0 U0 U0 S0 % 900 Qi Y
t—1t t+1 S
Model 3: A simple Markovian model for the sources.

In this case, if the expression of p(s;(t)|s;(t—1)) has the parameters 6; which
are independent of time, we will have a stationnary process. There are also
models in which these parameters are allowed to vary during the time allowing



to account for non stationarity of the sources. In particular, we may mention
the Gauss-Markov models where

p(s;(#)]s;(t = 1)) = N(s;(t = 1), 6,(t)) (13)

where 60;(¢) is linked to the power spectra of the sources [16, 17, 18, 19, 20, 21, 22].

Another easy and explicit way which also has the possibility to account for
non stationarity of the time evolution and in particular the discontinuities in the
sources is the following:

xi(t)[s(t)

pefebote fofefedeed stlenao

O 0 0 0 0 1 0 0 0 o u®=101}
t—11¢t t+1 t—11¢t t+1

Model 4: A composite Markovian model with hidden contours variables g;(t).

In this model the binary valued hidden variable g;(t) represents the discon-
tinuities (contours). The expression of p(s;(t)[s;(t — 1)) depends on g¢;(t), for
example:

[sj(t =1),4;(t) =0) = N(mj,v5,)
sj(t=1),q;(t) =1) = N(s;(t —1),v5;)

which results to p(s;(t)[s;(t — 1)) = (1 — X\))N(my,,v5,) + NN (s;(t —1),v5,)

Still another easy and explicit way which also has the possibility to account
for non stationarity of the time evolution and in particular the notion of piecewise
homogeneity in the sources is the following;:

SRIIRIN ST 0 O w )

111122333114
o 6 0o o 1T 0 1 0 0 1 0 gt

Model 5: A composite Markovian model with hidden classification variables
zj(t). Note that s;(t)|z;(t) are iid, but z;(¢) are markovian (Potts). Note also
that the contour variables ¢;(t) are obtained in a deterministic way from z;(t),
ie. gj(t) =1—46(z;(t) — z;(t —1)). These contours are closed by construction.

Finally, the following model combines both Model 3: and Model 5: which
gives the possibility to have a local dependency inside a region.

()IS(t)
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Model 6: A doubly Markovian model with hiddeh Potts variables.




4 Bayesian estimation computation

In all these models, we have to assign the prior laws:

— p(x(t)|s(t), A, Re): For this, we use the observation model (1) and assume
that the noises €;(t) are centered, white, Gaussians and mutually independent.
This then leads to:

p(x(t)|s(t), A, Rc) = N(As(t), Re)

with R, = diag [06%, e ,aefn}.

— p(s(t)) or p(s(t)|z(t)): For this, first, in general, we assume that the sources
are a priori independents, i.e., p(s(t)) = [[, p(s;(t)) or only conditionally inde-
pendent, ie. p(s(t)[z(t)) = [;p(s;(t)|z;(t)). Then, we have either to choose
expressions for p(s;(t)) such as GG or for p(s;(t)|z;(t)), for example in the case
of MoG.

— For the Markovian models, in general, we choose a first order Markov chain
in 1D case and a Markov field with first order neighborhood in 2D case (images).
For example, in 1D signals

p(si(0) = N(0,0%), p(s;(t)]s;(t = 1)) = N(s;(t — 1),07)

and for images where t € 7 represents a pixel position and ¢ € V(t) the neigh-
boring pixels positions

plsi()]s5(t'),t € Top) ocexp [ =y Y ls;(t), (1)

t'eV(t)

where ¢ is the potential associated to the cliques of the Markov field neighbor-
hood system.

— For the Markovian models for the discrete valued hidden variables ¢;(t) and
zj(t), we use the Ising and Potts models respectively. For example

p(z;(0) = k) =7k, plz;(t) =klz;(t —1)=1) = 7mjw

and for images

p(z (]2 (#), 1 € Ty) oxexp | —ay Y 8(z(t) = 2(t))
t'eV(t)

where §(t) = 1 for t =0 and 6(¢t) = 0 for ¢ # 0.

— Finally, we also have to assign prior laws to the elements of the matrix A

and to the hyperparameters © such as the noise covariance R, or only the noise

variances 0. = {0.?}, the parameters of the source distributions such as 6, =

{(my,, sz k)} In general, we choose conjugate priors for the hyperparameters.
When all these priors are appropriately assigned, we can obtain an expression

for the posterior law

p(S,Z,A,0|X) xp(X|S,A,0.)p(S|Z,05)p(O) (14)



where S = {s(t),t € T}, Z = {z(t),t € T}, X = {x(t),t € T} and © =
{A,0.,0,}. We can then use this posterior law to define an estimator such as
Joint Maximum A Posteriori (JMAP) or the Posterior Means (PM). The first
needs optimization algorithms and the second integration methods. Both are
computationally demanding. Alternate optimization is generally used for the
first while the MCMC techniques are used for the second. We present here three
such algorithms:

Algorithm A: Algorithm B: Algorithm C:

S ~p(S|Z,A,0,X) §~p(5|22@ X) S~p(S|Z, A,0,X)
Z~p(Z|S,A,0,X) Z~p(Z|A,0,X) Z~p(Z|A O, X)
A~p(AlZ,5,0,X) A~p(AlZ,©,X) A~p(Al®O, X)

O ~p(® |A§2X) O ~p(® |22X) O ~ p(0|A, X)

In these algorithms, ~ represents either argmax or generate sample using. The
first is used for alternate optimization and the second for MCMC Gibbs sam-
pling. Implementing the Algorithm A: is easy, because, in general we have all
the expressions of all the conditional laws used. The Algorithm B: needs inte-
gration with respect to the sources and Algorithm C: integration with respect
to the sources and the hidden variables.

5 Examples of applications

To illustrate the application of these different models we give here a few examples
of results obtained with the proposed prior models.

5.1 Spectrometry

The following is an example of simulation result in near infra red spectroscopy
where 10 mixtures of 3 sources (A, B and C) have been observed. It is assumed
that there is no interaction between these 3 components. Thus the hypothesis
of a linear mixture is valid. Here, we have to account for the positivity of the
spectra as well as the positivity of the mixing matrice elements. The model used
here is Model 1 with a priori Gamma prior laws for both the sources and the
mixing matrice elements. The estimator is the joint MAP and the implemented
algorithm is alternate maximization with respect to sources, the mixing matrice
elements and the hyperparameters (S. Moussaoui et al. [23, 24, 25]).
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Fig. 1: Source separation in spectrometry: a) The three sources, the mixing
matrice elements and the ten mixture data, b) Estimated sources and concen-
trations.

5.2 Source separation in astrophysics

One of the problems in astrophysics imaging is to separate different cosmic ac-
tivities and in particular the Cosmological Microwave Background (CMB). The
observation model, when written in Fourier domain is exactly as in (1), but here
t represents the frequency. The example provided here is a simulation in the
case where there are 3 sources and 6 observations. The appropriate model here
Model 3 and the implemented algorithm is an EM like [26, 27, 28, 29].
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Fig. 2: Source separation in astrophysics : a) the 3 sources S, b) the 6 observa-
tions X, ¢) the estimated sources S.

5.3 Source separation in satelite imaging

Here, we give two results in an application related to eliminating clouds in satelite
imaging. In the first example, the model used is Model 4 where the pixels of
each source image are assumed to be in one of the two classes [28].

The second example concerns the same problem but in wavelet domain. In-
deed, if we apply an unitary transform such as the orthogonal wavelet transform
on both sides of the equation (1), we obtain exactly the same type of equation
but on the wavelet coefficients of sources and observations. Then, we can do
the separation in the wavelet domain. The main advantage being that simpler a
priort models such as Model 1 or Model 2 can be used more efficiently. The
following figure shows an example of results obtained using either a Generalized
Gaussian (GG) or a Mixture of two Gaussians (MoG) models [30, 31].



Fig. 3: Source separation in satelite imaging : a) sources S, b) observations X,
c¢) estimated sources S and d) estimated segmentations Z.
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Fig. 4: Source separation using Models 1 et 2: a) sources S, b) observations
X = AS + E, c) estimated sources using GG and d) estimated sources using
MoG.



5.4 Data reduction, classification and segmentation of hyper-spectral
images

Hyper-spectral images data are often represented as a set of images x,,(r). How-
ever, a specificity of these images is that the pixels at a position r along the
wavelength bands w form an spectral line [32, 33, 34, 35]. This is the reason for
considering also these data as a set of spectra x,(w). In both representations,
the data are dependent in both spatial positions and in spectral bands. One of
the image processing problems is then data reduction.

If we consider the data as a set of spectra, then we want to write:

K
Tp(w) = Z Ap psip(w) + € (w)
=1

where the si(w) are the K spectral sources and each column of the mixing
matrix A is in fact an images A (7). The ideal case here would be to obtain
an estimate for A such that each column A (r) represents an image where only
non-zero values for the pixels in the regions which are associated to the spectrum
sk (w).

If we consider the data as a set of images x,,(r), then we have:

N
Ty(r) = Z Ay jsi(r) + €w(r)

where the sources s;(r) are the N source images and each column of the mixing
matrix A in this case correspond to the spectrum A;(w). The ideal case here
would be to obtain an estimate for the sources such that each the pixels of each
image s,(r) be non-zero only for the pixels in the regions which are associated
to the spectrum A;(w).

A priori, one may consider these two problems independently, but we may
also account for these specificities. Indeed, in this last case, we may want to
assign an a priori law to the elements of the matrix A to insure their positivity.
We may also note that the columns A () of the mixing matrix in the first model
is related to the sources s;(r) in the second model and the columns A4;(w) of the
mixing matrix in the second model is related to the sources si(w) in the first
model. This becomes still more explicit if we choose K = N

In the following examples, we considered the first model where each source
represents an image which is composed of homogeneous regions. As the objective
here is data reduction, it is natural to assume that a prior: the sources s;(r) are
mutually independent and are all composed of a finite set of connected regions
and a finite set of K characteristic components. Then, we can easily see that
appropriate models to use are either Model 5 or Model 6.

In the following results, we used the Model 5 with additional assumption
that all sources share the same hidden variable z(r). More details on this method
can be obtained in [35] in the same proceeding.
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Fig. 5: Data reduction, classification and segmentation of hyper-spectral images:
a) 32 observed images z;(r), b) 8 estimated sources s,(r), c¢) estimated common
segmentation z(r), d) estimated means m;, and variances O'JQ» , associated to
each class. The means m;, represent the columns of A and o) their standard

deviation.
6 Conclusion

The Bayesian estimation approach pushes farther the limits of classical PCA and
ICA based methods for blind sources separation. In this work, we proposed six
different models for the prior laws of the sources which can be used in different
applications. The two first models are classical, the third accounts for temporal
evolution of stationnary sources. The fourth model which account for contours in
images is appropriate for piecewise stationnary sources, and finally, the fifth and
sixth models are particularly appropriate for piecewise homogeneous sources.
We then showed a few examples of simulation results which show different appli-
cation areas of such models in spectrometry, in astrophysical imaging, in satellite
and in hyperspectral imaging.
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