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ABSTRACT
So as to detect and characterize potential defects in pipes,
inspections are carried out with the help of non-destructive
examination techniques (NDE) including X-or radiography.
Should a defect be detected, one can be asked to prove the
component still stands the mechanical constraints. In these
cases of expertise, the use of a 3-D reconstruction process-
ing technique can be very useful. One characteristic of such
applications is that, in general the number and angles of pro-
jections are very limited and the data are very noisy, so the
problem is severely ill posed. Hopefully, in these applica-
tions we know a priori the number and the types of materi-
als in the object under the study and this is a great piece of
prior information. In this work, we first propose a particular
hierarchical Markov-Potts a priori model which takes into
account for the specificity of the Non Destructive Technique
(NDT) Computed Tomography (CT). Then, we give details
of a Bayesian estimation computation based on MCMC and
EM techniques. Finally, we show the performances of the
proposed 3D CT reconstruction method with a very limited
number and angles of projections and very low signal to
noise ratio simulating from simulating data. These data have
been obtained from very simple defects (cubic form) with ac-
quisition conditions that are supposed to be representatives of
real inspection in power plants.

1. INTRODUCTION

So as to detect and characterize potential defects in pipes,
inspections are carried out with the help of non-destructive
examination techniques (NDE) including X-or radiography.
Should a defect be detected, one can be asked to prove the
component still stands the mechanical constraints. In these
cases of expertise, the use of a 3-D reconstruction process-
ing technique can be very useful. In order to process the
radiograms numerically, the films must be sampled and digi-
tized. Before dealing with the reconstruction process, previ-
ous steps are required :
• a pre-processing phase for correction of potential mis-

alignments between films,
• a calibration stage that converts the gray level (which

convey non physical meaning) into crossed thickness.
For more details the reader is referred to [13]. The simplest
forward model in CT is the line integration model:

g(si) =

∫

Li

f (r) dli (1)

where r = (x,y,z) is a voxel position, si is a detector posi-
tion, Li is a line connecting the X ray source position to the
detector position si and dli is a unit element on this line.
When discretized this equation becomes

g = Hf + ε (2)

where, f = { f (r),r ∈ R} is a vector containing the dis-
cretized voxel values of the object, g = {g(si), i = 1, · · · ,M}
is a vector containing the values of the projection data, ε is
a vector representing the modeling and measurement errors
and H is a huge dimensional matrix representing the dis-
cretized line integral operator.

One of the characteristics of such applications is that, in
general the number and angles of projections are very limited
and data are noisy. The problem is then severely ill posed and
prior knowledge is needed to obtain satisfactory reconstruc-
tion results. There has been many works dealing with this
inverse problem. The main tool has been the regularization
approach where the solution is defined as the minimizer of a
compound criterion

J(f) = Q(g−Hf)+λΩ(f)

where λ is the regularization parameter and Q and Ω has
to be chosen appropriately to reflect the prior knowledge
on the noise and on the image. This criteria have also
been interpreted as the maximum a posteriori (MAP) in the
Bayesian estimation framework where exp [−Q(f)] repre-
sents the likelihood term and exp [−λΩ(f)] the prior proba-
bility law. This approach has been used with success in many
applications (e.g. [1, 2, 3, 4, 5, 6, 7]). The main contribu-
tions of those works are in choosing appropriate regulariza-
tion functional or equivalently appropriate prior probability
laws for f to enforce some particular properties of the ob-
ject such as smoothness, positivity or piecewise smoothness
[4, 5, 8, 9].

The main specificity of NDT applications of CT is that,
in these applications, we know a priori the number and the
types of materials in the object under the test, for example
mainly metal and air or metal, air and a composite material.
So, we know a priori that the reconstructed object must be
piecewise homogeneous, i.e., the object must be composed
of a limited number of compact homogeneous regions with
a limited known type of materials. This prior information
has not always been used optimally. The main originality
and contribution of this paper is to propose a method which
accounts for this specificity in an optimal way.



2. PROPOSED METHOD

In this work, we first propose a particular hierarchical
Markov-Potts a priori model which takes into account this
specificity of the NDT application of CT. Then, we show that
many classical regularization techniques are particular cases
of the proposed method. Indeed, in the proposed method, we
obtain directly and simultaneously the reconstructed object
and a segmentation results thanks to the mixture of Gaus-
sian marginal prior law of the voxels. Then, we give de-
tails of a Bayesian estimation algorithm based on MCMC
and EM techniques. Finally, we show the performances of
the proposed 3D CT reconstruction method with a very lim-
ited number and angles of projections and very low signal to
noise ratio simulating from simulating data. These data have
been obtained from very simple defects (cubic form) with ac-
quisition conditions that are supposed to be representatives of
real inspection in power plants.

2.1 Forward model and likelihood
Using the forward model (2) and assuming the noise to be
centered, white and Gaussian with the covariance matrix
Σε = σε

2I, we have

p(g|f) = N (Hf ,Σε ) ∝ exp
[ −1

2σε 2 ‖g−Hf‖2
]

(3)

2.2 Prior models for the objects in NDT applications
In the following, we propose two prior models which try to
account for the specificity of the NDT applications. The first
one is based on a mixture of Gaussian (MoG) model:

p( f (r)) = ∑
k

πkN (mk,vk) (4)

which translates the fact that all the voxels of the images in
NDT applications represent a finite number K of materials
characterized by the parameters (mk,vk) and proportions πk
with ∑k πk = 1. However, we propose here to introduce a
hidden variable z(r) with P(z(r) = k) = πk which gives us
the possibility to write

p( f (r)|z(r) = k) = N (mk,vk), k = 1, · · · ,K (5)

which becomes equivalent to the MoG model if we assume
that the hidden variables z(r) for different positions r are
independent. But, we want to account for another specificity
of the NDT images which is the distribution of the voxels
in compact homogeneous regions. This can be achieved by
putting a Markovian model on the hidden variables z(r):

p(z(r)|z(r′),r′ ∈ V (r)) ∝ exp

[
α ∑

r′∈V (r)

δ (z(r)− z(r′))

]

(6)
where the parameter α controls the mean size of those re-
gions and V (r) represents the set of voxel positions in the
neighborhood of r. In this work, we consider the six nearest
neighbor voxels for V (r).

If we note by z = {z(r),r ∈ R}, then we can also write

p(z) ∝ exp

[
α ∑

r
∑

r′∈V (r)

δ (z(r)− z(r′))

]
(7)

where z represents a segmentation image for f .
If now, we assume that all the voxels f (r) conditionally

to z(r) are independents, then we can write

p(f |z) ∝ ∏
k

∏
r∈Rk

exp
[−1

2vk
| f (r)−mk|2

]

∝ ∏
k

exp
[−1

2vk
|fk −mk1|2

]

∝ ∏
r∈R

exp
[ −1

2v(r)
| f (r)−m(r)|2

]

where we used the notations Rk = {r : z(r) = k} and fk =
{ f (r),r ∈ Rk}, m(r) = {mk,r ∈ Rk}, v(r) = {vk,r ∈ Rk}
and where ∪kRk = R.

These relations of the forward modeling and prior model
is illustrated in the Figure 1.

• • • • • • • • • • • g(r)|f(r)| | | | | | | | | | |• • • • • • • • • • • f (r)|z(r)| | | | | | | | | | |•↔•↔•↔•↔•↔•↔•↔•↔•↔•↔• z(r)|z(r′),r′ ∈ V (r)
1 1 1 1 2 2 3 3 3 1 1 z(r) = {1, · · · ,K}

Figure 1: Proposed hierarchical model 1: f (r) is a hidden
variable for the data g(r) and z(r) is a hidden variable for
the image f (r).

However, in this model, we assumed that all the voxels
f (r) conditionally to z(r) are independents. But, even if this
hypothesis is valid for those voxels in different regions, this
is not a valid one for the voxels inside a given region. To ac-
count for the Markov property of the voxels in a given region,
we need to introduce a contour hidden variable q(r) which
is related to the classification hidden variable z(r) by a de-
terministic relation q(r,r′) = δ (z(r)− z(r′)) where r′ rep-
resents a position in the neighborhood V (r) of r. With this
new hidden variable, we can propose the following model:

p( f̄ (r)|q(r,r′), f̄ (r′),r′ ∈ V (r)) = N

(
¯̄f (r),σ 2

f

)
(8)

where, again V (r) represents the six nearest neighbors of r,
f̄ (r) = f (r)−m(r)√

v(r)
, ¯̄f (r) = β (r) ∑

r′∈V (r)

(1−q(r,r′)) f̄ (r)

and β (r) = 1
∑r′∈V (r)(1−q(r,r′)) .

This second model is illustrated in Figure 2.

• • • • • • • • • • • g(r)|f(r)| | | | | | | | | | |• • • • • • • • • • • f (r)|z(r),q(r,r′), f (r′)| | | | | | | | | | |•↔•↔•↔•↔•↔•↔•↔•↔•↔•↔• z(r)|z(r′),r′ ∈ V (r)| | | | | | | | | | |• • • • • • • • • • • q(r,r′) = δ (z(r)− z(r′))
1 1 1 1 2 2 3 3 3 1 1 z(r) = {1, · · · ,K}
0 0 0 0 1 0 1 0 0 1 0 q(r,r′) = {0,1}
Figure 2: Proposed hierarchical model 2: f (r) is a hidden
variable for the data g(r) and z(r) and q(r,r′) are hidden
variables for the image f (r). Note that q(r,r′) is obtained
from z(r) in a deterministic way. Thus, we need only to
estimate z(r) from which we can deduce q(r,r′).



3. BAYESIAN ESTIMATION FRAMEWORK AND
PROPOSED ALGORITHMS

Using the prior data model (3), the prior image models (5) or
(8) and the prior Potts-Markov model (6) and also assigning
appropriate prior probability laws p(θ) to the hyperparame-
ters θ = {θ ε ,θ f } where θ ε = σε

2 and θ f = {(mk,vk)}, we
obtain an expression for the posterior law

p(f ,z,θ |g) ∝ p(g|f ,θ ε) p(f |z,θ f ) p(z) p(θ ) (9)

In this paper, we used conjugate priors for all of them, i.e.,
Gaussian for the means mk and inverse Gamma for the vari-
ances vk as well as for the noise variance σε

2.
When given the expression of the posterior law, we can

then use it to define an estimator such as Joint Maximum A
Posteriori (JMAP) or the Posterior Means (PM) for all the
unknowns. The first needs optimization algorithms and the
second integration methods. Both are computationally de-
manding. Alternate optimization is generally used for the
first while the MCMC techniques are used for the second.

3.1 Proposed algorithm
In this work, we propose to use the following iterative algo-
rithm:
• Estimate f using p(f |ẑ, θ̂ ,g) where

p(f |z,θ ,g) ∝ p(g|f ,z,θ ) p(f |z,θ )

We may note that this conditional posterior law is Gaus-
sian p(f |z,θ ,g) = N (f̂ , Σ̂). Then, we can write the
expressions of the posterior mean f̂ and covariance Σ̂.
However, due to the operator H , obtaining Σ̂ needs huge
dimensional matrix inversion. For this reason, in this
step, we obtain f̂ by maximizing p(f |ẑ, θ̂ ,g) or equiva-
lently by minimizing − ln p(f |ẑ, θ̂ ,g):

f̂ = argmin
f

{
J(f |ẑ, θ̂ ,g) = − ln p(f |ẑ, θ̂ ,g)

}

where

J(f |z,θ ,g) = ‖g−Hf‖2 +λ ∑
k

∑
rRk

∣∣∣∣
f (r)−mk√

vk

∣∣∣∣
2

= ‖g−Hf‖2 +λ ∑
rR

∣∣ f̄ (r)
∣∣2 (10)

with f̄ =

{
f (r)−m(r)√

v(r)
,r ∈ R

}
in the first model, and

J(f) = ‖g−Hf‖2 +λ ∑
rR

∣∣∣ f̄ (r)− ¯̄f (r)
∣∣∣
2

(11)

with ¯̄f (r) = β (r) ∑
r′∈V (r)

(1−q(r,r′)) f̄ (r),

q(r,r′) = δ (z(r)− z(r′)) and β (r) = 1
∑r′∈V (r)(1−q(r,r′))

in the second model. In both cases, λ = σε
2/σ 2

f can be
assimilated to a regularization parameter.

• Estimate z using p(z|f̂ , θ̂ ,g) ∝ p(g|f̂ ,z,θ ) p(z) where

p(g|f ,z, θ̂ ) = N (Hf̄ ,HΣ̄H ′ + σ̂ε 2I)

with

f̄ =

{
f̂ (r)− m̂(r)√

v̂(r)
,r ∈ R

}
and Σ̄ = diag [v̂(r),r ∈ R] .

• Estimate θ using p(θ |f̂ , ẑ,g) where

p(θ |f ,z,g) ∝ p(g|f ,σε
2I) p(f |z,(mk ,vk)) p(θ )

where θ = {σε
2,(mk,vk)}. For the hyperparameters we

choose conjugate priors, i.e., the Gaussian for the means
mk and inverse Gamma for the variances σε

2 and vk. In
this way, the corresponding posteriors are also Gaussian
and Inverse Gamma. Their detailed expressions can be
found in [10, 11, 12].

In this algorithm, by estimate using we mean either use the
MAP or the posterior mean. For the first, we use an appropri-
ate optimization algorithm and for the second an appropriate
MCMC sampling technique.

To implement effectively this algorithm, we have to give
details of its initialization which is an important task for its
success. � Initialization:

• Initialize z(r) = 1 and q(r) = 0, ∀r ∈R, σε
2 = 1, m1 = 0

and σ 2
1 = 1 and compute f̂ by

f̂ = argmax
f

{p(f |z,θ ,g)} = argmin
f

{J(f)}

where

J(f) = ‖g−Hf‖2 +λ ∑
rR

| f (r)|2 (12)

in the first model and

J(f) = ‖g−Hf‖2 +λ ∑
rR

∣∣∣∣∣ f (r)− ∑
r′∈V (r)

f (r′)

∣∣∣∣∣

2

(13)

in the second model.
This step can be recognized as a classical minimum norm
least squares (MNLS) or as a quadratic regularization
(QR), or equivalently, as an i.i.d. Gaussian or a classi-
cal Gauss-Markov modeling solution which assume the
whole image as one homogeneous region:
(K = 1, z(r) = 1, q(r) = 0, ∀r ∈ R).

• Then, fix K to a maximum number of possible materials
in the object under the test, often K = 2 or K = 3, repre-
senting safe (metal), default (air) and intermediate (com-
posite) and find a first estimate ẑ for z using p(z|θ̂ , f̂ ,g)
which becomes

p(z|θ̂ , f̂ ,g) ∝ N (Hf̄ ,HH ′+I) p(z)

with f̄ = f̂ . We note that p(z|f̂ , θ̂ ,g) has the same
Markov structure than p(z) and getting a sample z from
that can be obtained through a Gibbs sampling algorithm.

• Finally, given f̂ and a first sample ẑ, obtain a first esti-
mate for the hyperparameters σε

2 and (mk,vk) by maxi-
mizing p(θ |f̂ , ẑ,g). The analytical expressions of these
estimates can be obtained easily and are given in [11].



4. DISCUSSIONS

As we could see the initialization step of the proposed algo-
rithm is equivalent to obtaining a first solution to the recon-
struction problem via a quadratic regularization, or equiv-
alently, via a Gauss-Markov prior modeling of the image.
This step is crucial to the success of the method. In this ini-
tialization step, obtaining a first estimate for z and then for
the hyperparameters is also crucial. In fact, here, we use
effectively our prior knowledge about K the number of ma-
terials, and their means and variances. We can also use an
EM algorithm in this step to obtain a better estimates of the
MoG model by trying to fit this model to the histogram of the
estimated voxels f̂ of the image.

5. SIMULATION RESULTS

In the following we show a few results obtained by simulat-
ing an experimental measurement system for a NDT appli-
cation of metallic objects in a nuclear power plant. The in-
troduced defects are for this study very simple defects (cubic
form). Because of the great thickness of the pipe, the useful
beams are contained within a very narrow angle (otherwise,
the thickness to be crossed is too high); moreover, because
of the limited room in the plant, it is impossible to revolve
the pipe. In such conditions, we use seven positions for the
source placed in the center of a circle and along the given
circle. The radiographies angles are limited to about ±15 de-
grees. Figure 3 shows such an experimental simulation data
and result obtained with the classical backprojection method.

Figure 3: Simulated data and reconstruction result obtained
with the classical backprojection method.

Figure 4 shows the reconstruction results which are ob-
tained with the classical quadratic regularization method
without and with positivity constraint and Figure 5 shows the
reconstruction results obtained by the proposed methods.

6. CONCLUSIONS

A new method for tomographic image reconstruction from a
small number of its limited angles projections is proposed.
The originality of the proposed method is mainly using the
Bayesian estimation approach with an appropriate hierar-
chical Markov model with a Potts Markov hidden variable
which accounts for the specificity of the NDT applications.
This work has been developed under a collaborative research
work between CNRS and EDF. We plan now to study the sen-
sitivity of the method to the acquisition parameters (source
and films positions, blur, ...) and to apply it to real data in
order to evaluate the full processing (digitization, calibration
and reconstruction). This part of the work is under investiga-
tion in EDF research center in France.

REFERENCES

[1] Gabor T. Herman, H. K. Tuy, K. J. Langenberg, and
P. C. Sabatier, Basic Methods of Tomography and In-
verse Problems, Adam Hilger, Bristol, UK, 1987.

[2] Avinash C. Kak and Malcolm Slaney, Principles of
Computerized Tomographic Imaging, IEEE Press, New
York, NY, 1987.

[3] Stuart Geman and D. McClure, “Statistical methods for
tomographic image reconstruction,” in Proceedings of
the 46th Session of the ICI, Bulletin of the ICI, 1987,
vol. 52, pp. 5–21.

[4] Charles A. Bouman and Ken D. Sauer, “A generalized
Gaussian image model for edge-preserving MAP esti-
mation,” IEEE Trans. Image Processing, vol. 2, no. 3,
pp. 296–310, July 1993.

[5] L. Bedini, I. Gerace, and A. Tonazzini, “A determinis-
tic algorithm for reconstructing images with interacting
discontinuities,” Comput. Vision Graphics Image Pro-
cess., vol. 56, no. 2, pp. 109–123, Mar. 1994.
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