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Abstract. In this contribution, we study the problem of prior selection arising in Bayesian infer-
ence. There is an extensive literature on the construction of non informative priors and the subject
seems far from a definite solution [1]. Here we revisit this subject with differential geometry tools
and propose to construct the prior in a Bayesian decision theoretic framework. We show how the
construction of a prior by projection is the best way to take into account the restriction to a partic-
ular family of parametric models. For instance, we apply this procedure to the curved parametric
families where the ignorance is directly expressed by the relative geometry of the restricted model
in the wider model containing it.

INTRODUCTION

Experimental science can be modeled as a learning machine mapping the inputs � to
the outputs � (see figure � ). The complexity of the physical mechanism underlying the
mapping inputs/outputs or the lack of information make the prediction of the outputs
given the inputs (forward model) or the estimation of the inputs given the outputs (in-
verse problem) a difficult task. When a parametric forward model �����
	 ����
�� is assumed
to be available from the knowledge of the system, one can use the classical ML or
when a prior model ��� ����
���� ��� � 	 
�� ��� 
�� is assumed to be available too, the classical
Bayesian methods can be used to obtain the joint a posteriori ��� ����
 	�� � and then both��� � 	�� � and ��� 
 	�� � from which we can make any inference about � and 
 . But in many
practical situations the question of modeling �����
	 ��� and ��� ��� is still open and to vali-
date a model, one uses what is called the training data � � � ����� � ���������� ! " . Then the role of
statistical learning become trying to find a joint distribution ���#� � belonging in general to
the whole set of probability distributions and to exploit the maximum of relevant infor-
mation to provide some desired predictions. In this paper, we suppose that we are given
some training data �$�� ! " and � �� ! " and some information about the mapping which con-
sists in a model % �'&)( �#� �+* of probability distributions, parametric ( % �,&)( �#�-	 
��+* )
or non parametric. Our objective is to construct a learning rule . mapping the set / of
training data � � � �$�� ! "�� � �� ! "0� to a probability distribution �213% or to a probability
distribution in the whole set of probabilities �4165 :
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Figure � . Learning machine model of experimental science

The Bayesian statistical learning leads to a solution depending on the prior distribution
of the unknown distribution � . In the parametric case, this is equivalent to the prior AB� 
��
on the parameter 
 . Finding a general expression for AB� 
�� and how this expression
reflects the relationship between a restricted model and the closer set of ignorance
containing it are the main objectives of this paper. We show the prior expression depends
on the chosen geometry (subjective choice) of the set of probability measures. We show
that the entropic prior [Rodriguez �DCECF� , [2]] and the conjugate prior of exponential
families are special cases related to special geometries.

In section I, we review briefly some concepts of Bayesian geometrical statistical learn-
ing and the role of differential geometry. In section II, we develop the basics of prior
selection in a Bayesian decision perspective and we discuss the effect of model restric-
tion both from non parametric to parametric modelization and from parametric family
to a curved family. In section III, we study the particular case of G -flat families where
previous results have explicit formula. In section IV, we come across the case of G -flat
families mixture. In section V, we apply these results to a couple of learning examples,
the mixture of multivariate Gaussian classification and blind source separation. We end
with a conclusion and indicate some future scopes.

I. STATISTICAL GEOMETRIC LEARNING

I.1 H Mass and Geometry

The statistical learning consists in constructing a learning rule . which maps the
training measured data � to a probability distribution < � .���� � 1I%KJL5 �M& �6	ON�� � � *
(the predictive distribution). The subset % is in general a parametric model and it is
called the computational model. Therefore, our target space is the space of distributions
and it is fundamental to provide this space with, at least in this work, two attributes
which are the mass (a scalar field) and a geometry. The mass is defined by an a priori
distribution A-�P� � on the space 5 before collecting the data � and modified according to
Bayesian rule after observing the data to give the a posteriori distribution (see figure Q ):( �P�R	+� ��SM( �#�T	�� � A-�P� �
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Figure Q . a posteriori mass proportional to the product
of the a priori mass and the likelihood function.

The geometry can be defined by the G -divergence d
e :
dfeD�P� � < �=� N���g9hGji Nk<G 9 N$� e < ��l eGm�n�o9hG �

which is an invariant measure under reparametrization of the restricted parametric model% . It is shown [Amari 1985, [3]] that, in the parametric manifold % , the G -divergence
induces a dualistic structure ��p ��q e ��q ��l e � , where p is the Fisher metric, q e the G
connection with Christoffel symbols r e�Xsnt u and q4vg�Kq ��l e its dual connection:wxXy p �!s � z�{}|X~E��� � 
=��~)s�� � 
����r e�Xsnt u � z�{}| � ~E��~)s�� � 
=� i G ~E��� � 
���~�s�� � 
�����~\u�� � 
����
The parametric manifold % is G -flat if and only if there exists a parameterization |��)��� such
that the Christoffel symbols vanish: r e�Xs�t u � 
������ . The coordinates |��D��� are called the affine
coordinates. If for a different coordinate system |X�E�� � , the connection coefficients are null
then the two coordinate systems |X����� and |X�)�� � are related by an affine transformation, i.e
there exists a ���
��� � matrix � and a vector � such that 
 � � � 
 i � .All the above definitions can be extended to non parametric families by replacing the
partial derivatives with the Fréchet derivatives. Embedding the model % in the whole
space of finite measures �5 [Zhu et al. 1995, [4, 5]] not only the space of probability
distributions 5 , many results can be proven easily for the main reason that �5 is G -flat
and G -convex ��G in |X��� � � . However, 5 is G -flat for only G �8&)�m� � * and G -convex forG � � . For notation convenience, we use the G -coordinates

e � of a point �41��5 defined as:e � �P� �=� � e�� G
A curve linking Q points � and � is a function ��7 |X��� � � 9�: �5 , such that ��� �\��� �
and �g��� ��� � . A curve is a G -geodesic in the G -geometry if it is a straight line in theG -coordinates.



I.2 H Bayesian learning

The loss quantity of a decision rule . with a fixed G -geometry can be measured by
the G -divergence dfeD�P� � .��#� � � between the true probability � and the decision .=�#� � . This
divergence is first averaged with respect to all possible measured data � and then with
respect to the unknown true probability � which gives the generalization error z ��. � :z eD��. ���K¡�¢�( �P� �E¡m£�( �#�-	¤� � d�e¥�P� � .��#� � �
Therefore, the optimal rule .De is the minimizer of the generalization error:.¦e �K§�¨ ©�ª
«�¬­ &)z e���. �+*
The coherence of Bayesian learning is shown in [Zhu et al. 1995, [4, 5]] and means that
the optimal estimator .¥e can be computed pointwise as a function of � and we don’t need
a general expression of the optimal estimator .�e :®����� �=� .¦e���� ���K§�¨�©�ª4«�¬¯ ¡ ¢�( �P�°	�� � d�e¥�P� � < � (1)

By variational calculation, the solution of (1) is straightforward and gives:®� e � ¡ � e ( �P�°	�± �
The above solution is exactly the gravity center of the set �5 with mass ( �P�°	�� � , the a
posteriori distribution of � and the G -geometry induced by the G -divergence d6e . Here we
have the analogy with the static mechanics and the importance of the geometry defined
on the space of distributions. The whole space of finite measures �5 is G -convex and
thus, independently on the a posteriori distribution ( ���°	�� � the solution

®� belongs to �5�6G²1 |X��� � � .
I.3 H Restricted Model

In practical situations, we restrict the space of decisions to a subset %³1´�5 . % is in
general a parametric manifold that we suppose to be a differentiable manifold. Thus % is
parametrized with a coordinate system |������¶µ�P��� where � is the dimension of the manifold.% is also called the computational model and we prefer this appellation because the main
reason of the restriction is to design and manipulate the points � with their coordinates
which belong to an open subset of · µ . However, the computational model % is not
disconnected from non parametric manipulations and we will show that both a priori
and final decisions can be located outside the model % .

Let’s compare now the non parametric learning with the parametric learning when we
are constrained to a parametric model % :

1. Non parametric modeling: The optimal estimate is the minimizer of the gener-
alization error where the true unknown point � is allowed to belong to the whole



space �5 and the minimizer < is constrained to % :®<F�#� ��� .¥eD�#� �=�¸§�¨ ©�ª4«�¬¯n¹Eº ¡�¢ ¹g»¼ ( ���°	�� � d�e¥�P� � < � (2)

Thus the solution is the G -projection of the barycentre
®� of ���5 ��( �P�°	�� ��� d�e � onto

the model % (see figure ½ ).
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Figure ½ . Projection of the non parametric solution
onto the computational model

2. Parametric modeling: The optimal estimate is the minimizer of the same cost
function as in the non parametric case but the true unknown point � is also con-
strained to be in % :®<O��� ��� .¦e���� �=�K§�¨�©�ª
«�¬¯�¹�º ¡�¢ ¹Eº ( ���°	�� � d�e¥�P� � < �=�¸§�¨ ©�ª4«�¬¯�¹Eº ¡ { ( � 
 	�� � d�e��P� @ � < ��Âo


(3)
The solution is the G -projection of the barycentre

®� of �]% �D( � 
 	�� ��� d
e � onto the
model % (see figure Ã ).
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Figure Ã . Projection of the barycentre solution

onto the parametric model



The interpretation of the parametric modeling as a non parametric one and the effect
of such restriction can be done in two ways:

1. The cost function to be minimized in equation (3) is the same as the cost function
in (2) when � is allowed to belong to the whole set �5 and the a posteriori ( ���°	�� � is
zero outside the model % . This is the case when the prior ( ��� � has % as its support.
However this interpretation implies that the best solution

®� which is the barycentre
of % can be located outside the model % and thus has a priori a zero probability !

2. The second interpretation is to say that the cost function to be minimized in
equation (3) is the same as the cost function in (2) when the a posteriori ( � 
 	�� �
is the projected mass of the a posteriori ( �P�°	�� � onto the model % . We note here
the role of the geometry defined on the space 5 and the relative geometric shape of
the manifold. For instance, the ignorance is directly related to the geometry of the
model % . The projected a posteriori or a priori can be computed by:Ä�Å ��< ��S ¡ ¢ ¹¦Æ ` Ä �P� �
where

Ä ��� � designs the a priori or the a posteriori distribution and Ç ¯ �È& �I1�5É	�� Å � < * the set of points � whose the G -projection is the < in % .
The manipulation of these concepts in the general case is very abstract. However, in
section IV, we present the explicit computations in the case of restricted autoparallel
parametric submanifold % � 1�% of G -flat families.

II. PRIOR SELECTION

The present section is the main contribution of this paper. We address here the problem
of prior selection in a Bayesian decision framework. By prior selection, we mean how
to construct a prior ( �P� � respecting the following rule: Exploit the prior knowledge
without adding irrelevant information. We note that this represents a trade off between
some desirable behaviour and uniformity of the prior. We want to insist here, that the
prior selection must be performed before collecting the data � , otherwise the coherence
of the Bayesian rule is broken down.

In a decision framework, the desirable behaviour can be stated as follows: Before
collecting the training data, provide a reference distribution ��Ê as a decision. The refer-
ence distribution can be provided by an expert or by our previous experience. Now, we
have the inverse problem of the statistical learning. Before, the a posteriori distribution
(mass) is fixed and we have to find the optimal decision (barycentre). Now, the opti-
mal decision �ËÊ (barycentre) is fixed and we have to find the optimal repartition AB�P� �
according to the uniformity constraint. In order to have the usual notions of integration
and derivation, we assume that our objective is to find the prior on the parametric model% �Ì& < @ 	 
 1ÎÍÏJÐ· µ * .

The cost function can be constructed as a weighted sum of the generalization error of
the reference prior and the divergence of the prior from the Jeffreys prior (The square
root of the determinant of the Fisher information [6]) representing the uniformity. It is



worth noting that we are considering two different spaces: the space �5 of finite measures
and the space of prior distributions on the finite measures. Since we have two distinct
spaces, we can choose two different geometries on each space. For example, if we
consider the G -geometry on the space �5 and the � -geometry on the space of priors,
we have the following cost function:Ñ �#A ��� �ÓÒ ¡ AB� 
�� d�eD�P� @ � ��Ê �nÂg
 i �ÓÔ ¡ A-� 
���Õ�ÖE© AB� 
=� �Ë× p�� 
��nÂg
 (4)

where �mÒ is the confidence degree in the reference distribution ��Ê and �ØÔ the uniformity
degree. Considered independently, these two coefficients are not significant. However,
their ratio is relevant in the following. The cost (4) can be rewritten as:wxXy Ñ ��A ��� �ÓÒ z ��.¥Ê � i �ØÔ�NÙAB� 
���Õ�ÖE© AB� 
�� � × p�� 
���Âo
Ú ­#ÛÚ £ �K�
where z ��.¥Ê � is the generalisation error of a fixed learning rule .�Ê . By variational calcu-
lation, we obtain the solution of the minimization of the function (4):A-� 
��=SMÜ l�ÝßÞÝ#àÓá Á â ¢�ã t ¢ Û�ä × p�� 
�� (5)

We note that if G � � then the cost function (4) is the kullback-Leibler divergence
between the joint distributions of data and parameters as considered in [Rodriguez 1991,
[2]] and if G �¸� we obtain the conjugate prior for exponential families (see examples in
section VI). When the value of the ratio �FÒ � �ØÔ goes to � , we obtain the Jeffreys prior and
when this ratio goes to å we obtain the Dirac concentrated on ��Ê .

The model restriction to the parametric manifold % is essentially for computational
reasons. However, the reference distribution is a prior decision and does not depend on a
post processing after collecting the data. Therefore, the reference distribution ��Ê can be
located in the whole space of probability measures. We can also have either a discrete set
of æ reference distributions �P� � Ê � "�P��� weighted by ��� �Ò � "�P��� or a continuous set of reference
distributions (a region or the whole set of probability distributions) with a probability
measure ( ���ËÊ � corresponding to the weights ��� �Ò � "����� in the discrete case. We show in the
following that the prior solution A has the same form as (5).

1. ��Ê �1ç% : When the reference distribution �èÊ is located outside the model % , the G -
divergence dfeD�P� @ � �OÊ � in the expression (4) can be decomposed according to the
generalized Pythagore relation [Amari et al. 2000 [7]]:d�e���� @ � ��Ê �=� d�eD��� @ � � ÅÊ � i d�eD��� ÅÊ � ��Ê �
where � ÅÊ is the �g9hG -projection of �ËÊ onto % (see figure é ).
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Figure é . The equivalent of the non parametric reference distribution
is its �g9hG projection onto the parametric model % .

Giving the prior solution: A-� 
��=SMÜ l Ý ÞÝ#àÓá Á â ¢�ã t ¢¦êÛ ä × p�� 
��
2. When we have æ reference distributions & �P� �+� � ���+� ë¶ë�ë¶� ��� "ì� � "í��* , the cost function

(4) becomes:Ñ " ��A �=� "î �P��� � � ¡ AB� 
�� d�e���� @ � � ����Âo
 i �ØÔ ¡ AB� 
���Õ�ÖE© AB� 
�� �Ë× p�� 
���Âo
 (6)

If we define the �g9hG -barycentre �èï of the system & �P� �+� � ���+� ë¶ë�ë¶� ��� "ì� � "0�+* as��l e� �P�Ëï �=� "î �P��� � � ��l e� �P� ��� � "î �P��� � �
and the � Åï the ��9RG projection of �èï onto % , the solution A of the minimization of
(6) is: A-� 
��=SKÜ loð Ý#ñÝ à-á Á â ¢ ã t ¢ êò ä × p�� 
��
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Figure ø . The equivalent reference distribution is the �g9hG projection
of the �g9hG barycentre of the æ references distributions.

3. When we have a continuous set 5�ùûú �5 of reference distributions with a mass
distribution ( ù��P��Ê � , the cost function is transformed to:Ñ\ü ��A �=� ¡ ¢ Û ¹ ¼\ý ( ù��P��Ê � ¡ AB� 
�� d�e���� @ � �OÊ ��Âo
 i �ØÔ ¡ AB� 
���Õ�Ö�© AB� 
=� �Ë× p�� 
���Âo


(7)
In the same way, we define the �o92G barycentre ��ï of ��5$ù ��( ù � as:��l e� ���Ëï �=� ¡ ¼ ý ( ù�����Ê � ��l e� �P��Ê � � ¡ ¼ ý ( ù��P��Ê �
and the � Åï the ��9RG projection of �èï onto % , the solution A of the minimization of
(7) is: AB� 
��=SMÜ loþ U\V Z Û [Ý à á Á â ¢�ã t ¢ êò ä × p�� 
��

ÿ â ¢ Û�ä ¢ ò��l e projection ¢ êò
º¯

��� is the mass centre

of ��� �����

Figure 	 . The equivalent reference distribution of a continum reference region
is the �o92G projection of the �o9hG expectation reference.



The above results show that whatever the choice of the reference distribution is, the
resulting prior has the same form with a certain (non arbitrary) reference prior belonging
to the model % . The existence of many reference distributions (or even a continuous set)
indicates implicitly the existence of hyperparameter and the resulting solution shows that
this hyperparameter is integrated and at the same time optimized if the a priori average
(the barycentre) is considered as an optimization operation.

III. 
 -FLAT FAMILIES

In this section we study the particular case of G -flat families. % is a G flat manifold if and
only if there exists a coordinate system |X����� such that the connection coefficients roeD� 
��
are null. We call |X�D��� an affine coordinate system. It is known that G -flatness is equivalent
to ��96G flatness. Therefore, there exist dual affine coordinates |��\��� such that r ��l e���
 �è� � .
One of the many properties of G -flat families is that we can express, in a simple way, theG -divergence dfe as a function of the coordinates 
 and 
 and thus any decision can be
computed while manipulating the real coordinates. It is shown in [Amari 1985, [3]] that
the dual affine coordinates |��D��� and |������ are related by Legendre transformations and the
canonical divergence is: d�eD��� � < �=��� �P� � i � ��< � 9 �¥� ��� ���)� ��< �
where � and

�
are the dual potentials such that:wxXy Ú����Ú+@ ñ � p �Xs Ú+@ ñÚ���� � p l���Xs~E�������)� ~E� � �K�¥�

For example, the exponential families are � -flat with the canonical parameters as � -
affine coordinates, the mixture family is � -flat with the mixture coefficients as � -affine
coordinates, �5 �Ì& � � N ���çå * is G flat for all Gì1 |���� � � .


 optimal estimates in 
 flat families

As indicated in section II, the G optimal estimate is the G projection of N @ � e ( � 
 	�� �
which is the minimizer of the functional N @ ( � 
 	�� � d�e���� @ � < � . We see that, in general,
the divergence as a function of the parameters |������ has not a simple expression. However,
with G -flat manifolds, we obtain an explicit solution. Noting that:~\� dfeD�P� @ � < �=� d�e���� @ � � ~E��� ¯ �=�K�¥� ��< � 9 �¥� ��� �
the solution is: ®< � <F� ®
���� ®

� ¡ 
�( � 
 	�� �nÂg
f�Kz @�� £ |õ
è�



This means that the G optimal estimate is the a posteriori expectation of the G affine
coordinates. Since the only degree of freedom of the affine coordinates is the affine
transformation, this estimate is invariant under affine reparameterization.

Noting also that: ~E� d ��l eD�P� � < �=� d ��l eD�P� � � ~E��� ¯ �=���)� ��< � 9 ��� ��� �
Then the a posteriori expectation of the ��9�G affine coordinates is the ��9�G optimal
estimate.

Prior selection with 
 flat families

The G prior A has the following general expression:A-� 
��=SMÜ l Ý ÞÝ#àÓá Á â ¢�ã t ¢ Û�ä × p�� 
��
where ��Êk1Ì% is the equivalent reference distribution in the manifold % . When we
assume that % is G flat with affine coordinates |X����� and dual affine coordinates |������ , the
expression of the prior becomes:A-� 
=�=S3Ü l}Ý#ÞÝ#à ��� â { ä l @ ñ � Ûñ � × p�� �E�
where |�� Ê� � and |�� Ê� � are the affine coordinates of �ËÊ .

Therefore, we have an explicit analytic expression of the prior.
In the Euclidean case, that is when the connection q is equal to its dual connection q v ,

which is equivalent to equality of the affine coordinates |X�������M|������ , the G prior distribution
is Gaussian with mean 
 Ê and precision Q ô Þô à :AB� �E�=SMÜ l Ý ÞÝ#à�� {�lØ{ Û � ó

We detail here the notion of prior projection in the particular case of q v -autoparallel
submanifolds % ��J³% . % � is ���g9hG � -autoparallel in % if and only if, at every point �61%!� , the covariant derivative q vÚ#" ~%$ remains in the tangent space & ¢ of the submanifold%!� at the point � . A simple characterization in flat manifolds is that the �n�}9 G � -affine
coordinates |�'Ë��� of % � form an affine subspace of the coordinates |��E��� . We can show that
by a suitable affine reparametrization of % , the submanifold %(� is defined as:wx y %!� �Ì& � � 1L%L	�
*) � 
 Ê) is fixed *+ J & � ë¶ë � *
where ��9M	 + 	 is the dimension of %,� . If we consider the space % ü� such the comple-
mentary dual affine coordinates 
 )#) �M
 Ê)�) are fixed (

+%+ �,& � ë¶ë � * 9 + ), then the tangent
spaces & ¢ and & ü¢ at the point ����
 Ê) ��
 Ê)#) � are orthogonal. Consequently, the projected
prior from % onto % � is simply:A Å ��� �=� ¡ ¯�¹�º.-" AB��< �=� ¡ @0/ AB� 
 ) ��
 )#) ��Âo
 )



Hence, we see that the projected prior onto a q v -autoparallel manifold is the marginal-
ization in the G affine coordinates and not in with respect to the 
1) coordinates as it
seems intuitive at a first look. This is essential due to the dual affine structure of the
space �5 .

IV. MIXTURE OF 
 -FLAT FAMILIES AND SINGULARITIES

The mixture of distributions has attracted a great attention in that it gives a wider
exploration of the probability distributions space based on a simple parametric manifold.
For instance, by the mixture of Gaussians (which belongs to a � -flat family) we can
approach any probability distribution in total variation norm. In this section, we study
the general case of the mixture of G flat families. The space can be defined as:wxXy % � & � @ 	¤� @ �32 us ���54 s � s � ë76�
 s �+*� s 1L% s�� % s is G flat

where the manifolds % s are either distinct or not.
The mixture distribution can be viewed as an incomplete model where the weighted

sum is considered as a marginalization over the hidden variable ± representing the label
of the mixture. Thus � @ �82:9 ����± � ���<;k	�± ��
 9 � and the weights ����± � are the parameters of
a mixture family. We consider now the statistical learning problem within the mixture
family. A mixture of G flat families is not, in general, G flat. Therefore the G optimal
estimates have no more a simple expression. However, with data augmentation proce-
dure we can construct iterative algorithms computing the solution. Here, we focus on
the computation of the G prior of the mixture density.

The G prior has the following expression:A-� 
��=SMÜ l Ý ÞÝ#àÓá Á â ¢�ã t ¢ Û�ä × p�� 
�� (8)

The mixture (marginalization) form of the distribution � @ leads to a complex expression
of the G divergence and the determinant of the Fisher information. However, the com-
putation of these expressions in the complete data distribution space [Rodriguez 2001,
[8]] is feasible and gives explicit formula. By complete data � , we mean the union of
the observed data � and the hidden data � . Therefore, the divergence will be considered
between complete data distributions:

d�e���� ü � � üÊ ��� N�� ü�o92G i N$� üÊG 9 N4�P� ü � e �P� üÊ � ��l eGF���g9hG �
where � ü is the complete likelihood ����; � ±$	 
�� and 
 includes the parameters of the
conditionals ���<;k	�± �ß� 9 � and the discrete probabilities ����± � .



The additivity property of the G -divergence is not conserved unless G is equal to � or� [Amari1985, [3]]: d�e��P� � �>= � < � <?= �=� d�e��P� �+� < � � i d�e����>= � <?= � 9G��n�o9hG � dfeD�P� ��� < � � d�e��P�@= � <A= �
Consequently, in the special case of G²1 &)�m� � * , we have the following simple formula:wBBx BBy d�Ê���� � ��Ê ���82 us ���C4 ÊsED d�Ê)��� s�� � Ês � i Õ�ÖE©GF Û�F ��Hd � ��� � ��Ê ���82 us ���C4 s D d � ��� s�� � Ês � i Õ�Ö�© F �F Û� H

Singularities with mixture families

It is known that in learning the parameters of Gaussian mixture densities [Snoussi
2001] the maximum likelihood fails because of the degeneracy of the likelihood function
to infinity when certain variances go to zero or certain covariance matrices approach the
boundary of singularity. In [Snoussi 2001, [9]], there is an analysis of the occurrence
of this situation in the multivariate Gaussian mixture case. In this section, we give a
general condition leading to this problem of degeneracy occurring in the learning within
the mixture of G flat families.

Let % a G flat manifold and |��D��� the natural affine coordinates and |��E��� the dual affine
coordinates. The two coordinate systems are related by Legendre transformation [Amari
1985, [3]]: wxXy Ú����Ú+@ ñ � p �Xs Ú+@ ñÚ���� � p l���Xs~E�������)� ~E� � �K�¥�
where ��p �!s¦� s ���� ! µ�P���� ! µ is the Fisher matrix and � and

�
are the dual potentials.

It is clear from the expression of the variable transformation between the two affine
coordinates that a singularity of the Fisher information matrix p leads to non differ-
entiability in the transformation between 
 and 
 . A singularity of p means that the
determinant of this matrix is zero. Therefore, it is interesting to study the behaviour of
the dual divergence at the boundary of singularity and we will show in an example that
the dual divergences may have different behaviour as the distribution � approaches the
boundary of singularity.

To illustrate such behaviour, we take a Gaussian family &�I ��J �AK = � 	LJ21R· �MK 1R·�N *
which is a Q -dimensional statistical manifold � -flat. The � -affine coordinates are 
 and
the � -affine coordinates are 
 given by the following expressions:wx y �����POQ ó �8� = � l��= Q ó�Ó�=� J � � = � J = i K = (9)



The corresponding Fisher information are:	 p�� �E� 	 S8KSR�� 	 p�� �F� 	 S � � KSR (10)

The canonical divergence has the following expression:d�e¥�P� ��� �>= �=� d ��l eD�P�>= � � ���=�T� ��� � � i � �P�>= � 9 �¥� ��� �����)� �P�@= � (11)

where � and
�

are the potentials given by:��� O ó= Q ó i Õ�ÖE©VU Q5W Kg� � � l��= 9 Õ�Ö�©XU Q5W K (12)

We see that the degeneracy occurs when the variance K goes to zero. A detailed study
of how this degeneracy occurs in the Gaussian mixture case is in [Snoussi 2001, [9]]
and is reviewed in the example of the next section. Here we focus on the difference of
behaviour of the two canonical divergences d4Ê and d � .

The expression of the G prior is:Aje SMÜ l á Á â ¢�ã t ¢ Û�ä × p�� �E�
Following the complete data procedure:Y AjÊ SMÜ l Ý ÞÝßà[Z F ñ Û�\ á Û â ¢ ñã t ¢ ñÛ ä N^]�_a`�b ñ Ûb ñ^c × p�� 
��ed2�A ��SMÜ l}Ý ÞÝßà Z F ñ \ á ö â ¢ ñã t ¢ ñÛ ä N b ñb ñ Û c × p�� 
��0d2�
The resulting prior is factorized and separated into independent priors on the components
of the Gaussian mixture. Combining expressions of (9), (10), (11) and ( 12) we note the
following comparison of the � and � priors through their dependences on the varianceKØs : G �K� G � �f f�49�: ~ % �49�: ~ %AìÊ is g6� KShs Ü lÓu ÛaijQ ó� � A � is g � K = F � Ý �Ý#às �f f

Exponential Polynomial

where k , lEÊ are constant.
We note that:

• For G �3� , the prior decreases to � when � approaches the boundary of singularity~ % with an exponential term leading to an inverse Gamma prior for the variance.
• For G � � , the prior decreases to � when � approaches the boundary of singularity~ % with a polynomial term leading to a Gamma prior for the variance. We note

the presence of the parameter 4 � in the power term.

This kind of behaviour pushes us to use the � prior in that it is able to eliminate the
degeneracy of the likelihood function.



V. EXAMPLES

In this section we develop the G prior in Q learning problems: Multivariate Gaussian
mixture and blind source separation and segmentation.

V.1 H Multivariate Gaussian mixture

The multivariate Gaussian mixture distribution of � 1 · µ is:

��� �}����� mî u���� 4 u5I � �}�?6Mn³u��aoÎu�� (13)

where 4 u , n³u and oÎu are the weight, mean and covariance of the cluster l . This can be
interpreted as an incomplete data problem where the missing data are the labels �#± ���������� ! p
of the clusters. Therefore, the mixture (13) is considered as a marginalization over ± :��� �����=� î 9 ñ ���#± ���qI � ��� 	�± ����
��
where 
 is the set of the unknown means and covariances. Our objective is the prediction
of the future observations given the trained data �����?r�� � ë�ë�s . The whole parameter
characterizing the statistical model is 
 � � 
o�0d2� . We consider now the derivation of
the G prior for G²1 &)��� � * and compare the two resulting priors.

The G prior has the following form:AìeD��
 �=SMÜ l Ý ÞÝ#àÓá Á â ¢ut t ¢ Û�ä × p���
 �
Therefore, we have to compute the d
e divergence and the Fisher information matrix. As
noted in the previous section and following [Rodriguez 2001, [8]], the computation is
considered in the complete data space �evÉ�
/ � p of observations �}� and labels ± � , s is
the number of observations. In fact, we mean the number of virtual observations as the
construction of the prior precedes the real observations. We have:wBBBBBBBBx BBBBBBBBy

d�Ê)��
I7?
 Ê �=� zw ö�x x y t £ ö�x x y �{z Û D Õ�ÖE© ¢ â w ö�x x y t £ ö�x x y �|z Û ä¢ â w ö�x x y t £ ö�x x y �{z ä Hd � ��
I7?
 Ê �=� zw ö�x x y t £ ö�x x y �{z D Õ�ÖE© ¢ â w ö�x x y t £ ö�x x y �{z ä¢ â w ö�x x y t £ ö�x x y �|z Û ä Hp �Xs ��
 �=� 9 zw ö�x x y t £ ö�x x y �{z D Ú óÚ ñ Ú0� Õ�Ö�© ��� �í�� ! p�� � �� ! p 	�
 � H



By classifying the labels � �� ! p and using the sequential Bayes rule between ���� ! p and� �� ! p , the G divergences become:wBBx BBy d�Ê)��
I7M
 Ê �=�Ts 2 u�P��� 4 Ê�~} d�Ê)� Ih� 7 I Ê� � i Õ�ÖE© F ÛñF ñq�d � ��
I7M
 Ê �=�Ts�2 u�P����4 � } d � � Ih� 7 I Ê� � i Õ�ÖE© F ñF Ûñ �
where dfÊ�� I2� 7 I Ê� ��� d � � I Ê� 7 Ih��� is the � divergence between two multivariate Gaus-
sians:wxXy d�Ê�� Ih���CI Ê� �=� �=G� Õ�ÖE© 	 oÎ��o l��� Ê 	 i Tr � oÎ� Ê o l���T� 9R� i �0� � 9�� � Ê � v o l��� �0� � 9�� � Ê � �d � � Ih���CI Ê� �=� d�Ê)� I Ê� �CI2���

The Fisher matrix is block diagonal with � diagonal blocks corresponding to the
components of the mixture. Each block p � with size ��� i � = i � � has also a diagonal
form ( � is the dimension of the vector ��� ):

p � �� | p ��� . . . | p m �1�� � p �m���� 4 � pA�
� nÏ���Co ��� |����|õ��� � � 4 � ��
where p?� is the Fisher matrix of the multivariate Gaussian and has the following
expression: pA�
� n �aoh������ o l�� |õ�)�|X��� 9 �= Úq��� öÚA� ��
whose determinant is: 	 p?�
� n �aoh� 	 � 	 o 	 l â µ N@= ä
Thus, the determinant of the block p � is:

	 p � � 4 �ß�en,�ß�ao ��� 	 ��� �Q�� µ
ó 4 â µ ó N µ l�� ä� 	 o � 	 l â µ N@= ä (14)

The additional form of the &)��� � * divergences (implying the multiplicative form of
their exponentials) and the multiplicative form of the determinant of the Fisher matrix
(due to its block diagonal form) lead to an independent priors of the components
 � � � 4 ���0n,���joÎ��� : AB�<
 ����� mu���� A-��
 � � . The two values of G ��&)��� � * lead to two
different priors Aìe :

• G �¸� : AìÊ��<
 � � S �q�.� D 9 ô Þô à } 4 Ê� d�Ê�� I2� 7 I Ê� � i 4 Ê� Õ�ÖE© F ÛñF ñ � H × 	 p � �<
 � � 	
S I } n,��6Mn Ê � � ñh F Ûñ ��� µ � o l��� 6C� Ê �ao l��Ê � 4¡  Û� (15)



with, k � ô Þô à �¢� Ê � k 4 Ê� �¤£ Ê � k 4 Ê� i µ ó N µ l��=� µ is the wishart distribution of an �6��� matrix:� µ � o¥65�m��¦B�=S 	 o 	L§ � V�¨�© ö [ó �u�.� D 9 � Q Tr � oª¦ l�� � H
The � -prior is Normal Inverse Wishart for the mean and covariance � n �ß�ao ��� and
Dirichlet for the weight 4 � , that is the conjugate prior.

• G � � : A � ��
 � � S �u�.� D 9 ô Þô à } 4 � d � � I2� 7 I Ê� � i 4 ��Õ�Ö�© F ñF Ûñ � H × 	 p � ��
 � � 	
S I } n,�C6?n Ê � � ñh F ñ��«� µ } o ��6 k 4 � 9�� � h F ñ l��h F ñ o Ê �4 ¨ ó ©C¨ � öó l â � N ¨ ó ä h F ñ� � 4 Ê� � h F ñ r µ � h F ñ l��= �

(16)

where r µ is the generalized Gamma function of dimension � ([6] page ÃØQ�	 ):
r µ ��� ���­¬ r�� �Q �a®

öó µ â µ l�� ä µ¯ �P��� r��#� i r 9h�Q ��� �G° � 9��Q
The � -prior A � (16) is the generalized entropic prior [Rodriguez 2001, [8]] to the

multivariate case. We see that the prior A � is a Wishart function of the covariance
matrices oÎ� and the prior AìÊ is an inverse Wishart function of the covariances. This
leads to a difference of the behaviour of these functions on the boundary of singularity
(the set of singular matrices).

V.2 H Source separation

The second example deals with the source separation problem. The observations �ì�� ! p
are s samples of ± -vectors. At each time ² , the vector data �1� is supposed to be a
noisy instantaneous mixture of an observed � -vector source ³ � with unknown mixing
coefficients forming the mixing matrix � . This is simply modeled by the following
equation: ���O� ��³ � iª´ ��� ² � � ë¶ë�s
where given the data ���� ! p , our objective is the recovering of the original sources ³ �� ! p
and the unknown matrix � . The Bayesian approach taken to solve this inverse problem
[Knuth 1998 [10], Djafari 1999 [11], Snoussi 2002, [12]] needs also the estimation of
the noise covariance matrix o µ and the learning of the statistical parameters of the
original sources ³ �� ! p . In the following, we suppose that the sources are statistically
independent and that each source is modeled by a mixture of univariate Gaussians, so



that we have to learn each set of source µ parameters 
 s which contains the weights,
means and variances composing the mixture µ :wxXy 
 s � � 
 s � � �P���� ! m �
 s � � � 4 s� � ± s � �eK s� �
The index µ indicates the source µ and r indicates the Gaussian component r of the
distribution of the source µ . Therefore we don’t have a multidimensional Gaussian
mixture but instead independent unidimensional Gaussian mixtures.

In the following, our parameter of interest is 
 � �ß� �ao µ � 
 � : the mixing matrix � ,
the noise covariance o µ and 
 contains all the parameters of the sources model. Our
objective is the computation of the G priors for Gû1 &)��� � * . We have an incomplete data
problem with two hierarchies of hidden variables, the sources ³ �� ! p and the labels � �� ! p
so that the complete data are � ���� ! p�� ³ �� ! p�� � �� ! p�� . We begin by the computation of the
Fisher information matrix which is common to the both geometries.

a � Fisher information matrix

The Fisher matrix ¶T� 
�� is defined as:¶ �Xs � 
��=� 9 zw ö�x x y t · ö�x x y t £ ö�x x y ¬ ~ =~E��~�s Õ�ÖE© ��� �í�� ! p�� ³ �� ! p�� � �� ! p 	 
�� ®
The factorization of the joint distribution ��� ���� ! p�� ³ �� ! p�� � �� ! p 	 
�� as:��� �í�� ! p�� ³ �� ! p�� � �� ! p 	 
��=� ��� �$�� ! p 	<³ �� ! p�� � �� ! p����E� ���e³ �� ! p 	�� �� ! p������ ���#� �� ! p 	 ���
and the corresponding expectations aszw ö�x x y t · ö�x x y t £ ö�x x y |PëX�m� z£ ö�x x y |�ë�� z· ö�x x y � £ ö�x x y |PëX� zw ö�x x y � · ö�x x y t £ ö�x x y |PëX�
and taking into account the conditional independencies ( � �j�� ! p 	�³ �� ! p�� � �� ! p���¸� �í�� ! p 	�³ �� ! p�� and �0³ �� ! p 	�� �� ! p��«¸ � ³ s �� ! p 	�� s �� ! p ), the Fisher information matrix will
have a block diagonal structure as follows:

p�� 
��=� �¹¹¹¹¹�
p��#� �jo µ � ë�ë ë |X���

... p���
 � �
. . .|X��� ë�ë ë p��<
 µ �

�»ººººº�
a. � � �ß� �ao µ � -block

The Fisher information matrix of �#� �jo µ � is:¶ �Xs �#� �jo µ �=� 9 z · zw � · ¬ ~ =~\��~)s Õ�ÖE© ��� �í�� ! p 	�³ �� ! p=� � �ao µ � ®



which is very similar to the Fisher information matrix of the mean and covariance of a
multivariate Gaussian distribution. The obtained expression is

p��ß� �ao µ �=� �¹¹� � z· ö�x x y o�¼0¼ �¾½ o l��µ |X���
|X��� 9 �= Úq� � ö¨Úq� ¨ �»ºº�

where o�¼e¼�� �p 2 ³ � ³ v� and ½ is the Kronecker product.
We note the block diagonality of the �ß� �ao µ � -Fisher matrix. The term corresponding

to the mixing matrix � is the signal to noise ratio as can be expected. Thus, the amount
of information about the mixing matrix is proportional to the signal to noise ratio. The
induced volume of �#� �jo µ � is then:

	 p��ß� �ao µ � 	 � i = Â � Â¿o µ � 	 z z o�¼0¼ 	 À i =	 o µ 	ÂÁ ©5¨�© öó Â � Â¿o µ
a. Q � ��
 s � -block

Each p���
 s � is the Fisher information of a one-dimensional Gaussian distribution.
Therefore, it is obtained by setting � � � in the expression (14) of the previous section:ÃÃ p��<
 s � ÃÃ � i = Â 
 s � wx y m �¯ �P��� 4 � i =�Ä%Å i =� Æ�ÇÈ Â 
 s
b � G -Divergence ( G �K�m� � )

The G -divergence between two parameters 
�� �ß� �ao µ � 
 � and 
 Ê � �ß� Ê �ao Êµ � 
 Ê � for
the complete data likelihood ��� ���� ! p=� ³ �� ! p�� � �� ! p 	 
�� is:wBBx BBy d�Ê)� 
 7 
 Ê �=� zÉ t ¼�t 9 � @ Û Õ�ÖE© ¢ â w ö�x x y t · ö�x x y t £ ö�x x y � { Û ä¢ â w ö�x x y t · ö�x x y t £ ö�x x y � { äd � � 
 7 
 Ê �=� zÉ t ¼�t 9 � @ Õ�ÖE© ¢ â w ö�x x y t · ö�x x y t £ ö�x x y � { ä¢ â w ö�x x y t · ö�x x y t £ ö�x x y � { Û ä
Similar developments of the above equation as in the computation of the Fisher matrix
based on the conditional independencies, lead to an affine form of the divergence, which
is a sum of the expected divergence between the �ß� �ao µ � parameters and the divergence
between the sources parameters 
 :wBBx BBy d�Ê�� 
 7 
 Ê �=� z¼ � � Û d�Ê� ¼ �ß� �ao µ 7�� Ê �ao Êµ � i d�Ê���
 7>
 Ê �

d � � 
 7 
 Ê �=�³z¼ � � d �� ¼ �ß� �ao µ 7è� Ê �ao Êµ � i d � ��
Ï7>
 Ê �



where d�e� ¼ means the divergence between the distributions ��� ���� ! p 	�� �ao µ � ³ �� ! p�� and��� �$�� ! p 	�� Ê �jo Êµ � ³ �� ! p�� keeping the sources ³ �� ! p fixed.
The G -divergence between 
 and 
 Ê is the sum of the G -divergences between each

source parameter 
 s and 
 s Ê due to the a priori independence between the sources. Then,
the divergence between 
 s and 
 s Ê is obtained as a particular case ( � � � ) of the general
expression derived in the multivariate case. Therefore we have the same form of the prior
as in equations (15) and (16).

The expressions of the averaged divergences between the �#� �jo µ � parameters are:wBBBBBBBBBBx BBBBBBBBBBy
z¼ � � Û d�Ê� ¼ �#� �jo µ 7è�ÎÊ �ao µ Ê �=� �=~� Õ�ÖE© ÃÃ o µ o l��µ Ê ÃÃ i Tr � o l��µ o µ Ê �

i Tr ��o l��µ �#� 92�ÎÊ ��z¼ � � Û |{oÊ¼e¼�� �ß�'92�RÊ � v � �z¼ � � d �� ¼ �#� �jo µ 7è�ÎÊ �ao µ Ê �=� �=~� Õ�ÖE© 	 o µ Ê o l��µ 	 i Tr � o l��µ Ê o µ �
i Tr � o l��µ Ê �#� 92�ÎÊ �¥z¼ � � |{oÊ¼e¼�� �#�'9 �ÎÊ � v � �

leading to the following G priors on �ß� �ao µ � :wBBBx BBBy AjÊ��ß� �ao l��µ � S I } � 6 �RÊ � �h o Ê ¼e¼ l�� ½ o µ � � � À } o l��µ 6 k �ao Êµ l�� � 	 z¼ � � ||o�¼0¼�� 	 Á ó
A � �ß� �ao µ � S I � � 6 �ÎÊ � �h z¼ � � ||o�¼0¼�� l�� ½ o Êµ � � � À � o µ 6 k�9R� � h l µh o Êµ �

Therefore, the � -prior is a normal inverse Wishart prior (conjugate prior). The mixing
matrix and the noise covariance are not a priori independent. In fact, the covariance
matrix of � is the noise to signal ratio

�h o Ê ¼e¼ l�� ½ o µ . We note a multiplicative term
which is a power of the determinant of the a priori expectation of the source covariancez¼ � � ||o�¼0¼�� . This term can be injected in the prior ����
 � and thus the �#� �jo µ � parameters and

the 
 parameters are a priori independent.
The � -prior (entropic prior) is normal Wishart. The mixing matrix and the noise

covariance are a priori independent since the noise to signal ratio
�h z¼ � � ||oÊ¼e¼�� l�� ½ o Êµ

depend on the reference parameter o Êµ . However, we have in counterpart the dependence
of � and 
 through the term z¼ � � |{oÊ¼e¼�� l�� present in the covariance matrix of � . In practice,

we prefer to replace the expected covariance z¼ � � |{oÊ¼e¼�� , in the two priors, by its reference

value o Ê ¼e¼ .
We note that the precision matrix for the mixing matrix � ( k o Ê ¼e¼ ½ o l��µ for AjÊ

and k z¼ � � ||o�¼0¼�� ½ o Êµ l�� for A � ) is the product of the confidence term k � ô Þô à in the

reference parameters and the signal to noise ratio. Therefore, the resulting precision



of the reference matrix �hÊ is not only our a priori coefficient �FÒ but the product of this
coefficient and the signal to noise ratio.

VI. CONCLUSION AND DISCUSSION

In this paper, we have shown the importance of providing a geometry (a measure of
distinguishibility) to the space of distributions. A different geometry will give a different
learning rule mapping the training data to the space of predictive distributions. The
prior selection procedure established in a statistical decision framework needs to be
taken in a specified geometry. We have tried to elucidate the interaction between the
parametric and non parametric modeling. The notion of "projected mass" gives to the
restricted parametric modelization a non parametric sense and shows the role of the
relative geometry of the parametric model in the whole space of distributions. The same
investigations are considered in the interaction between a curved family and the whole
parametric model containing it. Exact expressions are shown in a simple case of auto-
parallel families and we are working on the more abstract space of distributions.
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