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ABSTRACT

This paper considers the problem of source separation in the
particular case where both the sources and the mixing coef-
ficients are positive. The proposed method addresses the
problem in a Bayesian framework. We assume a Gamma
distribution for the spectra and the mixing coefficients. This
prior distribution enforces the non-negativity. This leads to
an original method for positive source separation. A simu-
lation example is presented to illustrate the effectiveness of
the method.

1. INTRODUCTION

In analytical chemistry, spectral data resulting from sample
analysis often present mixtures, i.e the measures are a lin-
ear combination of pure spectra. Pure spectra are needed to
identify the sample constituents (qualitative analysis) and
mixing coefficients are used to assess their concentrations
(quantitative analysis). The mixture analysis can be formal-
ized as a source separation problem on which many atten-
tion has been paid during the last two decades. See for ex-
ample the surveys of [1,2].

The linear instantaneous mixture model assumes that
the m observed signals are a linear combination ofn un-
known sources, at eacht (t can represent either time, fre-
quency, wavenumber, etc.):

xt = A st + nt, (1)

wherest denotes then×1 source vector,xt them×1 vec-
tor containing the measured data,nt a n × 1 vector of an
additive noise,A is am × n unknown mixing matrix. The
source separation aims are the estimation of the source sig-
nalss = {st}

N
t=1 and the mixing matrixA, from the mea-

sured datax = {xt}
N
t=1. This is an ill posed inverse prob-

lem since there are an infinity of solutions. To achieve sep-
aration, additional prior information and assumptions about
the mixing process and sources are necessary. A common
assumption firstly introduced is the statistical independence
of the sources leading toIndependent Component Analysis
(ICA) algorithms [3]. In the case of spectroscopic mixtures,

a very stronga priori knowledge is the non-negativity of
both sources and mixing coefficients. To incorporate this
information one can use an ICA method and optimize a con-
trast function under the source non-negativity constraint[4].
However, since ICA methods produce an unmixing matrix,
which is the inverse (pseudo inverse) of the mixing matrix,
the positivity of the mixing coefficients cannot be ensured
explicitly. This is the main shortcoming of this approach.
Other methods consist in optimizing the least squares error
under the non-negativity constraint, leading to algorithms
differing on the manner how non-negativity constraint is in-
troduced. In particular, the NMF algorithm (Non-negative
Matrix Factorization) of Lee and Seung [5] achieves the de-
composition by constructing a gradient descent algorithm
over the objective function and updates iteratively spectra
and concentration estimates under the non–negativity con-
straint. The procedure of Tauler etal. [6] performs anAl-
ternating Least Squares(ALS) estimation where the non–
negativity is hardly imposed between successive iterations.
However, we believe that Bayesian estimation methods are
more suitable in such an application because of the possibil-
ity to take into account explicitly the non-negativity infor-
mation. The main idea of the Bayesian approach for source
separation [2] is to use not only the likelihoodf(x|s,A)
but also any prior knowledge one may have on the sources
s and the matrixA through the assignment of prior distri-
butionsp (s) andp (A).

This paper is organized as follows: section 2 presents
the proposed method for positive signal separation using
Gamma priors for sources and mixing coefficients. Experi-
mental results are discussed in section 3.

2. POSITIVE SOURCE SEPARATION

2.1. Posterior Density

The noise is assumed to be zero mean, Gaussian, i.i.d (in-
dependent and identically distributed) and independent of
the source signals. The sourcessj are supposed statistically
i.i.d and distributed as Gamma distributions of parameters
{αj , βj}

n

j=1. These parameters are considered constant for



each source but may differ from one source to another. To
incorporate the mixing coefficient non-negativity, each col-
umnj of the mixing matrix is also assumed distributed as a
Gamma density of parameters{λj , γj}

n

j=1. These parame-
ters are considered equal for each columnj that corresponds
to the variation of the sourcej concentrations. The Gamma
density is expressed by:

G(z;α, β) =
βα

Γ(α)
zα−1 e−βz

I[0,+∞](z). (2)

whereΓ(α) is the Gamma function. This distribution allows
to encode non-negativity sincep(z < 0) = 0.

Using Bayes theorem and considering the vectorθ of
hyperparameters containing the noise varianceσ2 and the
gamma density parameters{αj , βj , γj , λj}

n

j=1, the poste-
rior law is expressed as:

π (s,A|x,θ) ∝

N
∏

t=1

N
(

xt − A st, σ
2
Im

)

×
N
∏

t=1

n
∏

j=1

G(sj(t);αj , βj) ×
m
∏

i=1

n
∏

j=1

G(aij ;λj , γj). (3)

2.2. Joint MAP Estimation

The problem now is the posterior law maximization or equiv-
alently the minimization of the resulting objective function
Φ(s,A|θ) = − log π (s,A|x,θ) , which takes the form:

Φ(s,A|θ) = ΦL(s,A|θ) + ΦP1(s|θ) + ΦP2(A|θ), (4)

where the termsΦL,ΦP1, andΦP2 are given by:

ΦL =
1

2σ2

N
∑

t=1

m
∑

i=1

[

xi(t) − [As]i(t)
]2

, (5)

ΦP1 =

N
∑

t=1

n
∑

j=1

[

(1 − αj) log sj(t) + βjsj(t)
]

, (6)

ΦP2 =

m
∑

i=1

n
∑

j=1

[

(1 − λj) log aij + γj aij

]

. (7)

The first termΦL can be seen as a data fitting measure,
while the two last terms are regularization terms that penal-
ize the negative values ofA ands. Note that this criterion is
similar to the one minimized in the PMF method (Positive
matrix factorization) [7]. But our approach can be seen as a
generalization of the PMF method since the regularization
parameters differ from one source to another.

The separation is achieved by solving the following op-
timization problem:

(

ŝ, Â
)

= arg min
s,A

Φ(s,A|θ) . (8)

Our strategy to perform this optimization is to use an alter-
nating iterative descent procedure, updating, at each itera-
tion r, the source estimatês(r+1) using the latest estimate
of A, then the mixing matrix estimatêA(r+1) using the lat-
est estimate ofs. The minimization at each step is carried
out using a relative gradient based algorithm [1]:

{

ŝ
(r+1) = ŝ

(r) − µ
(r+1)
s ∇sΦ

(

s
(r), Â(r)

)

¯ ŝ
(r),

Â
(r+1) = Â

(r) − µ
(r+1)
a ∇AΦ

(

ŝ
(r+1),A(r)

)

¯ Â
(r),

where¯ represents the point–wise multiplication,µ
(r+1)
s

andµ
(r+1)
a are positive learning parameters that control the

update rate. A golden section search method is used at each
iteration to find the optimal value of these learning param-
eters.∇sΦ and∇AΦ are the Gradient of the criterion with
respect tos andA expressed as:

∇sΦ
(

s,A
)

= −
1

σ2
A

T (x − As) + B + F ® s,

∇AΦ
(

s,A
)

= −
1

σ2
[x − As] s

T + L + G ® A.

The symbol® stands for point–wise division and the matri-
cesB,F,G,L are obtained by:

B = [β1; . . . ;βn]T ⊗ 11×N ,

F = [1 − α1; . . . ; 1 − αn]T ⊗ 11×N ,

G = [γ1; . . . ; γn]T ⊗ 11×m,

L = [1 − λ1; . . . ; 1 − λn]T ⊗ 11×m,

where⊗ represents the kronecker product and1p×q ap× q
ones matrix.

2.3. Hyperparameter Assessment

In practice, the hyperparameters are not available. There-
fore, for an unsupervised learning, one has to estimate them
from the data. In this paper, the noise variance and the
Gamma distribution parameters are estimated as follows:

a) Noise variance

The estimated sources, mixing matrix and the measured data
being given, the noise variance can be estimated by maxi-
mizing the posterior distributionπ(σ|x,A, s) which has the
following expression:

π
(

σ−2|x,A, s
)

∝

(

1

σ2

)

mN
2

exp

{

−
1

2σ2
‖x − As‖2

}

× p
(

σ−2
)

. (9)

The prior for the noise varianceσ2 is an inverse Gamma,
which corresponds to assigning a Gamma distribution for
σ−2:

σ−2 ∼ G(αo
σ, βo

σ), (10)



leading to ana posteriorigiven by:

(σ−2|x,A, s) ∼ G(αpost
σ , βpost

σ ), (11)

αpost
σ = αo

σ +
mN

2
, (12)

βpost
σ = βo

σ +
1

2
‖x − As‖2, (13)

then the maximum is reached for :

(

σ̂−2
)(r+1)

=
αo

σ + mN
2 − 1

βo
σ + 1

2

∥

∥x − A(r+1)s(r+1)
∥

∥

2 . (14)

The parametersαo
σ, βo

σ are chosen according to ana pri-
ori noise level and variance. Note that this approach trans-
forms the original problem of choosingσ2 in that of choos-
ing (αo

σ, βo
σ). But the point is that this last choice is by no

way as crucial as the choice ofσ2 is.
b) Source hyperparameters{αj , βj}

n

j=1

The estimated sources being given, their associated Gamma
distribution parameters{αj , βj}

n

j=1 are estimated as fol-
lows:
The posterior distributionπ(βj |sj) is given by:

π(βj |sj , αj) ∝ β
Nαj

j exp

{

−βj

N
∑

t=1

sj(t)

}

×p(βj). (15)

Therefore, one can note that the conjugate prior for the pa-
rameterβj is a Gamma density:

βj ∼ G(αo
βj

, βo
βj

), (16)

leading to ana posterioriGamma distribution:

(βj |sj(t), αj) ∼ G(αpost
βj

, βpost
βj

), (17)

with parameters:

αpost
βj

= αo
βj

+ Nαj + 1, (18)

βpost
βj

= βo
βj

+

N
∑

t=1

sj(t). (19)

The maximum is then reached for:

β̂
(r+1)
j =

αo
βj

+ Nα̂
(r)
j

βo
βj

+
N
∑

t=1
s
(r+1)
j (t)

(20)

For the hyperparameter{αj}
n

j=1 assessment, we consider
µj = αj/βj . The lawπ (αj |sj , µj) takes the form:

π (αj |sj , µj) =

N
∏

t=1

α
αj

j

µ
αj

j Γ(αj)
s

αj−1
j (t)

× exp

{

−
αj

µj

sj(t)

}

p(αj). (21)

By assigning a Gamma prior forαj of parametersαo
αj

and
βo

αj
, this posterior density takes the form:

π (αj |sj , µj) =
α

Nαj

j

µ
Nαj

j ΓN (αj)

N
∏

t=1

sj(t)
αj−1

× exp

{

−
αj

µj

N
∑

t=1

sj(t)

}

α
αo

αj
−1

j exp
{

−βo
αj

αj

}

, (22)

The maximization of this density and using a second order
approximation of the first derivative oflog Γ(αj):

d log Γ(αj)

dαj

= log αj −
1

2αj

−
1

12α2
j

+ ..., (23)

yields the MAP estimate of{αj}
n

j=1:

α̂
(r+1)
j =

N
2 + αo

αj
− 1

αo
αj

βo
αj

+
N

∑

t=1

[

s
(r+1)
j (t)

µ
(r)
j

− log
s
(r+1)
j (t)

µ
(r)
j

− 1

] ,

(24)
c) Mixing coefficient hyperparameters{αj , λj}

n

j=1

Since the mixing coefficients are also assigned by gamma
densities as prior laws, their hyperparameters are estimated
by generalizing the results obtained for the sources:

γ̂
(r+1)
j =

αo
γj

+ mλ̂
(r)
j

βo
γj

+
m
∑

i=1

a
(r+1)
ij

, (25)

λ̂
(r+1)
j =

m
2 + αo

λj
− 1

αo
λj

βo
λj

+

m
∑

i=1

[

a
(r+1)
ij

ν
(r)
j

− log
a
(r+1)
ij

ν
(r)
j

− 1

] , (26)

whereν
(r)
j = λ

(r)
j /γ

(r)
j .

3. EXPERIMENT

To illustrate the method applicability, we consider a simula-
tion example which consists in analyzing a mixture of three
sources. The mixture is obtained by constructing three syn-
thetic spectra and considering nineteen measures with mix-
ing coefficients chosen in such a way to have a realistic evo-
lution. A Gaussian noise is added to have a signal to noise
ratio equal to 50 dB. Figure 1 shows the resulting mixture.
To discuss the result accuracy, we use the global system ma-
trix G = Â

−1
A that indicates the separation performance.

The empirical source covariance matrix is:

R̂s =





1.000 0.516 0.386
0.516 1.000 −0.105
0.386 −0.105 1.000



 . (27)
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Fig. 1: Mixture synthesis

When analyzing this covariance matrix we note that the avail-
able samples of the sources are spatially correlated, so the
independence assumption is not sufficient for the spectra re-
construction. This explains the failure in applying directly
an ICA algorithm. To give an illustration of this aspect, the
global system matrix resulting from the analysis by JADE
algorithm [1] is shown:

G =





−0.499 0.836 1.030
1.263 −0.412 −0.280
−0.127 0.856 −0.480



 . (28)

The results obtained by applying the proposed method
for the mixture analysis are presented in figure 2. We can
see that source spectra and mixing coefficients are estimated
without apparition of negative values. Concerning the sepa-
ration performances, the global system matrix associated to
the reconstruction is:

G =





1.028 −0.027 −0.011
0.014 0.996 0.137
−0.018 0.089 1.020



 . (29)

4. CONCLUSION

In this paper, the Bayesian theory for source separation has
been applied to the particular case of positive sources and
mixing coefficients. The non-negativity has been consid-
ered explicitly by assigning Gamma density as priors for
the sources and for the mixing coefficients. We showed the
superior performances of the proposed method compared to
the classical JADE algorithm. Future works concern com-
paring this method performances with that of available al-
gorithms such as NMF, PMF and ALS.
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