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ABSTRACT dimensionality reduction problem can be written as:
K
Dimensionality reduction, spectral classification anchseg- (W) =Y Ar(r) sp(w) + (W), 1)
tation are the three main problems in hyperspectral image k=1

analysis. In this paper we propose a Bayesian estimation aQhere thes, (w) are theK spectral source components and
proach which gives a solution for these three problemsljpint

. . : each column of the mixing matriA is in factan imaged (r).
The data reduction problem is modeled as a blind sources S€Phe ideal case here would be to obtain an estimatetferch

aration (BSS.) where the sources are the images which MUitat each columunl, (r) represents an image where only non-
be mutually independent and piecewise homogeneous. To 'Dero values for the pixels in the regions which are assatiate

sure these_ properties, we propose a h?grar_chical modehéor_t to the spectrunay, («).

Sources with a common hidden _cIaSS|f|cat!or1 varlablg which When the data are considered as a set of spectra, then the
IS quelled asa .Potts-Mar_kov field. The joint Bayesian eSgiimensionality reduction problem can be written as:
timation of this hidden variable as well as the sources an

the mixing matrix of the BSS problem gives a solution for all N

the three problems of dimensionality reduction, spectaa-cl zy(r) = Z Ai(w) sj(r) + €eu(r), (2)
sification and segmentation of hyperspectral images. For th j=1

Bayesian computation, we propose to use either Gibbs San-,

: . o Where the sources;(r) are theN source images and each
pling (GS) or Mean Field Approximation (MFA) methods. column of the mixing matrixA in this case correspond to the

A few simulation results illustrate the performances of the ectrumA, (w). The ideal case here would be to obtain an

) : S
proposed method and some comparison with other Class'ngtimate for the sources such that the pixels of each image
methods of PCA and ICA used for BSS. s;j(r) be non-zero only for the positions in the regions which
are associated to the spectrum(w).
As we mentioned, the classical methods in hyperspectral
1. INTRODUCTION imaging consider these two problems indepen_dently. But we
see that the two representations are really linked, because
_ _ the columnsAy(r) of the mixing matrix in the first model
Hy.per-spectral images data can be represented either &s a g€g|ated to the sources (r) in the second model and the
of imagesz,,(r) or as a set of specta, (w) wherew € Q0 ¢olymns4; (w) of the mixing matrix in the second model is

indexes the wavelength andc R a pixel position P, ?, 7. related to the sources,(w) in the first model. This becomes
In both representations, the data are dependent in botlakspatsgij more explicit if we choosds = N.

position; and in spectlral barjds. Classicgl methods of hyper |, this paper, we propose to use this specificity of the hy-
spectralimage analysis try either to classify the specfi@r)  perspectral images and consider the dimensionality réstuct
in K classegsy,(w), k = 1,--- , K} orto classify the images proplem as the blind sources separation (BSS) of equafion
z,(r) in N classes{s;(r),j = 1,---, N}, using the clas- anq yse a Bayesian estimation framework with a hierarchical
sical classification methods such as distance based methogs el for the sources with a common hidden classification
(like K-means) or probabilistic methods using the mixture ofyariaple which is modelled as a Potts-Markov field. The joint
Gaussian (MoG) modeling of the data. These methods thusstimation of this hidden variable, the sources and thengixi
either neglect the spatial structure of the spectra or te€-SP matrix of the BSS problem gives a solution for all the three
tral natures of the pixels along the wavelength bands. problems of dimensionality reduction, spectra classifcat
When the data are considered as a set of spectra, then thrd segmentation of hyperspectral images.



2. PROPOSED DIMENSIONALITY REDUCTION pendent form those of clags, we have

MODEL AND METHOD
plslz) = Y D> D plsi(r)l=(r) = k)
2.1. Dimensionality reduction model k reRy j

2
We propose to consider the equati@&?)written in the fol- Z Z ZN(mﬂ'kv )
lowing vector form: kE reRy j

whereRy, = {7 : z(r) = k} andR = U, Ry.

To insure that each image(r) is only non-zero in those
regions associated with thi¢h spectrum, we imposg = n
andm;, = 0,Yj # kando?, = 0,Yj # k. We may then

z(r) = As(r) + €(r) 3)

as the dimensionality reduction where(r) = {z;(r),i =

1,---,m} is the set ofn observed images in different bands write
w;, A is the unknown mixing matrix of dimensioris:, n),
s(r) ={s;(r),j = 1,--- ,n} is the set of» unknown com-
ponents (source images) aar) = {e;(r),i = 1,--- ,m} _ —
represents the errors. plslz) ;p(s(r”zm )
This equation can also be written as:
= > N(my(r),Zk(r)) (8)
xr=As+e€ (4) reER

h & — B wherem(r) is a vector of sizen with all elements equal
w c?re_vve usex = {w(rl),rhg R}, s = {s(r),r € hR} o [0 Z€10 except th-th elementk = 2(r) and X(r) is a
ande = {e(r),r € R}. In this paper, we assume that the diagonal matrix of size: x n with all elements equal to zero

erI‘OI’Se(r) are ce2ntered2, wh|te,_ Gaussian with covariance maéxcept thek-th main diagonal element wheke= = ().
trix . = diag[o? ,..,0? |. Thisleadsto

2.3. Dataand sour ces hierarchical model
plzls, A, %) = [[N(As(r), =) (5)

r Combining the observed data mode&Pfand the sources model
(??) of the previous section, we obtain the following hierar-

2.2. Sources model chical model:

As we mentioned in the introduction, we want to impose to all zi(r)|s(r)

these sources(r) to be piecewise homogeneous and shar i(r)|z(r)

the same segmentation, where the pixels in each region ape-e—e—e—eeeeeee z;(r)|z;(r), 7 € V(r)
g P g 122333 1 Er)=41,",K)

considered to be homogeneous and associated to a particuilar 11 T
spectrum representing the type of the material in that regio

We also want that those spectra be classifiedvirdistinct  Fig. 1. Proposed hierarchical model for hyperspectralimages:
classes, thus all the pixels in regions associated with a paghe sources; (r) are hidden variables for the data(r) and

ticular spectrum share some common statistical parametefgye common classification and segmentation variablesis
This can be achieved through the introduction of a discretg hidden variable for the sources.

valued hidden variable(r) representing the labels associated
to each type of material and thus assuming the following:

VA
<

2.4. Bayesian estimation framework
ps;(P)|=(r) = k) = N(mj,.02,), k=1,--- K (6) Y

Using the prior data modeP®), the prior source model?@)
with the following Potts-Markov field model: and the prior Potts-Markov mode??) and also assigning
appropriate prior probability laws(A) andp(@) to the hy-
) perparameter® = {0.,0;} wheref. = R. and0, =
p(z(r),7 € R) xexp |3 27:3 z:( )5(2(7“) —z(r'))] - {(m;y,,02,)}, we obtain an expression for the posterior law
reRr eV(r
(7)  p(s, 2, A,8lz) x p(z|s, A, 0c) p(s|z,0,) p(z) p(A) p(8)
z(r) then will represents the common segmentation of the 9)
sources and the data. The paramgtepntrols the mean size | this paper, we used conjugate priors for all of them, i.e.,
of those regions. Gaussian for the elements df, Gaussian for the means;,
We may note that, assumirggpriori that the sources are and inverse Gamma for the varianefﬁ as well as for the
mutually independent and that pixels in each claase inde- noise variances,;.



When given the expression of the posterior law, we cartikelihood (ML) estimateA = argmaxa {p(z|z, A,0)}
then use it to define an estimator such as Joint Maximum Avhose expression is:
Posteriori (JMAP) or the Posterior Means (PM) for all the
unknowns. The first needs optimization algorithms and the
second integration methods. Both are computationally de- A = [
manding. Alternate optimization is generally used for the fi
while the MCMC techniques are used for the second. )
In this work, we propose to separate the unknowns in twdvheres(r) andB(r) are given by ¢?).
sets(s, z) and(A, 8) and then use the following iterative al- ¢ p(R.|2, A, 0, z) x p(z|z, A, 0) p(R.)

3 w(r)s'm] [Z s(rg(m+Br)| (1)

’I‘ ™

gorithm: Itis also easy to show that, with an uniform prior on the log-
. ~ arithmic scale or an inverse gamma prior for the noise vari-
o Estimate(s, z) usingp(s, 2|4, 8, z) by _ ances, the posterior is also an inverse gamma.
s~p(s|z, A, 0,z) and z~p(z|A 0 z)
o p(8]2, A, z) x p(z|z, A, 8) p(0):
e Estimate(A, 0) usingp(A,0[s, z, z) by Again here, using the conjugate priors for the means and
A ~ p(Als, z, 0 ,z) and 9 ~p(0)s, z, A, ) inverse gamma for the varlanoe%, we can obtain easily the

expressions of the posterior Iaws for them.
Details of the expressions pfA|z, 8, ), p(R.|z, A, 0, x)
andp(8|z, A, z) as well as their modes and means can be

In this algorithm ~ represents eithetrgmaax or generate
sample using or still compute the Mean Field Approximation

(MFA). _ _ _ found in 7.
To implement this algorithm, we need the following ex-
pressions:
p(s|z, A,0,z) < p(z|s, A, .) p(s|z,0). 3. COMPUTATIONAL CONSIDERATIONS AND
Itis then easy to see thats|z, A, 6, x) is separable im: MEAN FIELD APPROXIMATION
p(slz,0,z) = Hp(s(r)|z(r), 6,xz(r)) As we can see, the expression of the conditional posterior of
the sources is separablenbut this is not the case for the
— HN(g("‘% B(r)) conditional posterior of the hidden variabiér). So, even if
it is possible to generate samples from this posterior uaing
Gibbs sampling scheme, the cost of the computation is very
with high for real applications. The Mean Field Approximation
. (MFA) then becomes a natural tool for obtaining approximate
B(r) = [At I R EZ(T)} (10) solutions with lower computational cost.
5(r) = B(r)|A'S 'z (r) + Ez(r) ()] The mean field approximation is a general method for ap-

proximating the expectation of a Markov random variable.

In this relationm.,., is a vector of sizex with all ele- The idea consists in, when considering a pixel, to neglext th

ments equal to zero except theh element wheré = z(r) fluctuation of its neighbor pi.xels by fixing th.em to their mean

andX.,. is a diagonal matrix of size x n with all elements values. Another interpretation of the MFA is to approximate
equal to zero except theth diagonal wheré = z(r). anon separable

e p(z|A,0,z) x p(x|z, A, 0) p(z), where
() o exp|fB 5(z(r) — 2(r"))
plzlz, A,0) = []px(r)z(r),A0) p\= P Z Z

" S p(z v eV(r))
HN(AmZ(T),AEZ(T)At + Ee) H

. , _with the following separable one:
Itis then easy to see that, evenite|z, A, 0) is separable in

r,p(z|A, 8, x) is notand it has the same markovian structure
thatp(z). ) o H KA
e p(Alz,0,z) o< p(z|z, A, 0) p(A)

It is easy to see that, with a Gaussian or uniform prior forwhere z(r’) is the expected value of(r’) computed using
p(A) we obtain a Gaussian expression for this posterior lawg(zb). This approximate separable expression is obtained in
Indeed, with an uniform prior, the posterior mean is equiv-such a way to minimizé L(p, ¢) for a given class of separa-
alent to the posterior mode and equivalent to the Maximunible distributions; € Q.

7 € V(r))



Using now this approximation in the expression of the
conditional posterior law(z| A, 8, z) gives the separable MFA

a(2|A,0,z)oc [ [ p(@(r)|2(r), A, 0) q(=(r)|2(r"), 7" € V(r))

x [[az(r)z(r"). 7" € V(r), A,0,2(r))

wherez(r) can be computed by

Z z(r) q(z(r)|z(r"), 7" € V(r), A,0,x(r))

zZ(r) = a b c
> qlz(r)|z(r'), 7 € V(r), A, 0, (r))
2(r) Fig. 3. Dimensionality reduction by different methods: a)
Spectral classification usingf-means, b) Image classifica-
4. SIMULATION RESULTS tion using K-means, c) Proposed method. Upper row shows

estimatedz () and lower row the estimated spectra. These
The main objectives of these simulations are: first to showesults have to be compared to the originat) and spectra
that the proposed algorithm gives the desired results, end s in previous figure.
ond to compare its relative performances with respect toesom

classical methods. For this purpose, first we generated Somg gpserved images. However, these methods neglect either
simulated data according to the data generatin model, i.6e gpatial organization of the spectra or the spectral prop
starting by generating(r), then the sources(r), then using  gry of the pixels along the spectral bands. In this paper,
some given spectral signatures obtained from real maseria|,e considered the dimensionality reduction problem in hy-
construct the mixing matrid and finally generate date(r). erspectral images as a blind source separation and peeisent
Fig. 2 shows an example of such data generated Vl”th the fol gayesian estimation approach with a particular hieragghi
'OW'”9 parametersm = 32, n= 4, K =4 and SNR,‘ZO dB prior model for the observations and sources which accounts
and Fig. 3 shows a comparison of the results obtained by Wy, hoth spectral and spatial structure of the data, and, thus
class!cal spectral an_d image classmcat_lon methods ubBg t iy es the possibility to jointly do dimensionality reduati
classicali’-means with the results obtained by the proposed|asification of spectra and segmentation of the images.

method. Some other simulated results as well as the results
obtained on real data will be given in near future.
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