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ABSTRACT

Dimensionality reduction, spectral classification and segmen-
tation are the three main problems in hyperspectral image
analysis. In this paper we propose a Bayesian estimation ap-
proach which gives a solution for these three problems jointly.
The data reduction problem is modeled as a blind sources sep-
aration (BSS) where the sources are the images which must
be mutually independent and piecewise homogeneous. To in-
sure these properties, we propose a hierarchical model for the
sources with a common hidden classification variable which
is modelled as a Potts-Markov field. The joint Bayesian es-
timation of this hidden variable as well as the sources and
the mixing matrix of the BSS problem gives a solution for all
the three problems of dimensionality reduction, spectra clas-
sification and segmentation of hyperspectral images. For the
Bayesian computation, we propose to use either Gibbs Sam-
pling (GS) or Mean Field Approximation (MFA) methods.
A few simulation results illustrate the performances of the
proposed method and some comparison with other classical
methods of PCA and ICA used for BSS.

1. INTRODUCTION

Hyper-spectral images data can be represented either as a set
of imagesxω(r) or as a set of spectraxr(ω) whereω ∈ Ω
indexes the wavelength andr ∈ R a pixel position [?, ?, ?].
In both representations, the data are dependent in both spatial
positions and in spectral bands. Classical methods of hyper-
spectral image analysis try either to classify the spectraxω(r)
in K classes{sk(ω), k = 1, · · · , K} or to classify the images
xω(r) in N classes{sj(r), j = 1, · · · , N}, using the clas-
sical classification methods such as distance based methods
(like K-means) or probabilistic methods using the mixture of
Gaussian (MoG) modeling of the data. These methods thus
either neglect the spatial structure of the spectra or the spec-
tral natures of the pixels along the wavelength bands.

When the data are considered as a set of spectra, then the

dimensionality reduction problem can be written as:

xr(ω) =

K∑

k=1

Ak(r) sk(ω) + ǫr(ω), (1)

where thesk(ω) are theK spectral source components and
each column of the mixing matrixA is in fact an imageAk(r).
The ideal case here would be to obtain an estimate forA such
that each columnAk(r) represents an image where only non-
zero values for the pixels in the regions which are associated
to the spectrumsk(ω).

When the data are considered as a set of spectra, then the
dimensionality reduction problem can be written as:

xω(r) =

N∑

j=1

Ai(ω) sj(r) + ǫω(r), (2)

where the sourcessj(r) are theN source images and each
column of the mixing matrixA in this case correspond to the
spectrumAj(ω). The ideal case here would be to obtain an
estimate for the sources such that the pixels of each image
sj(r) be non-zero only for the positions in the regions which
are associated to the spectrumAj(ω).

As we mentioned, the classical methods in hyperspectral
imaging consider these two problems independently. But we
see that the two representations are really linked, because
the columnsAk(r) of the mixing matrix in the first model
is related to the sourcessj(r) in the second model and the
columnsAj(ω) of the mixing matrix in the second model is
related to the sourcessk(ω) in the first model. This becomes
still more explicit if we chooseK = N .

In this paper, we propose to use this specificity of the hy-
perspectral images and consider the dimensionality reduction
problem as the blind sources separation (BSS) of equation??
and use a Bayesian estimation framework with a hierarchical
model for the sources with a common hidden classification
variable which is modelled as a Potts-Markov field. The joint
estimation of this hidden variable, the sources and the mixing
matrix of the BSS problem gives a solution for all the three
problems of dimensionality reduction, spectra classification
and segmentation of hyperspectral images.



2. PROPOSED DIMENSIONALITY REDUCTION
MODEL AND METHOD

2.1. Dimensionality reduction model

We propose to consider the equation (??) written in the fol-
lowing vector form:

x(r) = As(r) + ǫ(r) (3)

as the dimensionality reduction where:x(r) = {xi(r), i =
1, · · · , m} is the set ofm observed images in different bands
ωi, A is the unknown mixing matrix of dimensions(m, n),
s(r) = {sj(r), j = 1, · · · , n} is the set ofn unknown com-
ponents (source images) andǫ(r) = {ǫi(r), i = 1, · · · , m}
represents the errors.

This equation can also be written as:

x = As + ǫ (4)

where we usedx = {x(r), r ∈ R}, s = {s(r), r ∈ R}
andǫ = {ǫ(r), r ∈ R}. In this paper, we assume that the
errorsǫ(r) are centered, white, Gaussian with covariance ma-
trix Σǫ = diag

[
σ2

ǫ1
, .., σ2

ǫm

]
. This leads to

p(x|s, A,Σǫ) =
∏

r

N (As(r),Σǫ) (5)

2.2. Sources model

As we mentioned in the introduction, we want to impose to all
these sourcess(r) to be piecewise homogeneous and share
the same segmentation, where the pixels in each region are
considered to be homogeneous and associated to a particular
spectrum representing the type of the material in that region.
We also want that those spectra be classified inK distinct
classes, thus all the pixels in regions associated with a par-
ticular spectrum share some common statistical parameters.
This can be achieved through the introduction of a discrete
valued hidden variablez(r) representing the labels associated
to each type of material and thus assuming the following:

p(sj(r)|z(r) = k)) = N (mjk
, σ2

j k
), k = 1, · · · , K (6)

with the following Potts-Markov field model:

p(z(r), r ∈ R) ∝ exp



β
∑

r∈R

∑

r′∈V(r)

δ(z(r) − z(r′))



 .

(7)
z(r) then will represents the common segmentation of the
sources and the data. The parameterβ controls the mean size
of those regions.

We may note that, assuminga priori that the sources are
mutually independent and that pixels in each classk are inde-

pendent form those of classk′, we have

p(s|z) =
∑

k

∑

r∈Rk

∑

j

p(sj(r)|z(r) = k))

=
∑

k

∑

r∈Rk

∑

j

N (mjk
, σ2

j k
)

whereRk = {r : z(r) = k} andR = ∪kRk.
To insure that each imagesj(r) is only non-zero in those

regions associated with thekth spectrum, we imposeK = n

andmjk
= 0, ∀j 6= k andσ2

j k
= 0, ∀j 6= k. We may then

write

p(s|z) =
∑

r∈R

p(s(r)|z(r) = k))

=
∑

r∈R

N (mk(r),Σk(r)) (8)

wheremk(r) is a vector of sizen with all elements equal
to zero except thek-th elementk = z(r) andΣk(r) is a
diagonal matrix of sizen × n with all elements equal to zero
except thek-th main diagonal element wherek = z(r).

2.3. Data and sources hierarchical model

Combining the observed data model (??) and the sources model
(??) of the previous section, we obtain the following hierar-
chical model:

• • • • • • • • • • • xi(r)|s(r)
| | | | | | | | | | |
• • • • • • • • • • • sj(r)|z(r)
| | | | | | | | | | |
•↔•↔•↔•↔•↔•↔•↔•↔•↔•↔• zj(r)|zj(r

′), r′ ∈ V(r)
1 1 1 1 2 2 3 3 3 1 1z(r) = {1, · · · , K}

Fig. 1. Proposed hierarchical model for hyperspectral images:
the sourcessj(r) are hidden variables for the dataxi(r) and
the common classification and segmentation variablesz(r) is
a hidden variable for the sources.

2.4. Bayesian estimation framework

Using the prior data model (??), the prior source model (??)
and the prior Potts-Markov model (??) and also assigning
appropriate prior probability lawsp(A) andp(θ) to the hy-
perparametersθ = {θǫ, θs} where θǫ = Rǫ and θs =
{(mjk

, σ2
j k

)}, we obtain an expression for the posterior law

p(s, z, A, θ|x) ∝ p(x|s, A, θǫ) p(s|z, θs) p(z) p(A) p(θ)
(9)

I this paper, we used conjugate priors for all of them, i.e.,
Gaussian for the elements ofA, Gaussian for the meansmjk

and inverse Gamma for the variancesσ2
j k

as well as for the
noise variancesσǫi.



When given the expression of the posterior law, we can
then use it to define an estimator such as Joint Maximum A
Posteriori (JMAP) or the Posterior Means (PM) for all the
unknowns. The first needs optimization algorithms and the
second integration methods. Both are computationally de-
manding. Alternate optimization is generally used for the first
while the MCMC techniques are used for the second.

In this work, we propose to separate the unknowns in two
sets(s, z) and(A, θ) and then use the following iterative al-
gorithm:

• Estimate(s, z) usingp(s, z|Â, θ̂, x) by
ŝ ∼ p(s|ẑ, Â, θ̂, x) and ẑ ∼ p(z|Â, θ̂, x)

• Estimate(A, θ) usingp(A, θ|ŝ, ẑ, x) by
Â ∼ p(A|ŝ, ẑ, θ̂, x) and θ̂ ∼ p(θ|ŝ, ẑ, Â, x)

In this algorithm,∼ represents eitherargmax or generate
sample using or still compute the Mean Field Approximation
(MFA).

To implement this algorithm, we need the following ex-
pressions:

• p(s|z, A, θ, x) ∝ p(x|s, A,Σǫ) p(s|z, θ).
It is then easy to see thatp(s|z, A, θ, x) is separable inr:

p(s|z, θ, x) =
∏

r

p(s(r)|z(r), θ, x(r))

=
∏

r

N (s̄(r), B(r))

with




B(r) =

[
At

Σ
−1
ǫ A + Σ

−1
z(r)

]−1

s̄(r) = B(r)[At
Σ

−1
ǫ x(r) + Σ

−1
z(r)mz(r)]

(10)

In this relationmz(r) is a vector of sizen with all ele-
ments equal to zero except thek-th element wherek = z(r)
andΣz(r) is a diagonal matrix of sizen×n with all elements
equal to zero except thek-th diagonal wherek = z(r).

• p(z|A, θ, x) ∝ p(x|z, A, θ) p(z), where

p(x|z, A, θ) =
∏

r

p(x(r)|z(r), A, θ)

=
∏

r

N (Amz(r), AΣz(r)A
t + Σǫ).

It is then easy to see that, even ifp(x|z, A, θ) is separable in
r, p(z|A, θ, x) is not and it has the same markovian structure
thatp(z).

• p(A|z, θ, x) ∝ p(x|z, A, θ) p(A)
It is easy to see that, with a Gaussian or uniform prior for
p(A) we obtain a Gaussian expression for this posterior law.
Indeed, with an uniform prior, the posterior mean is equiv-
alent to the posterior mode and equivalent to the Maximum

Likelihood (ML) estimateÂ = argmaxA {p(x|z, A, θ)}
whose expression is:

Â =

[
∑

r

x(r)s̄′(r)

][
∑

r

s̄(r)s̄′(r) + B(r)

]−1

(11)

wheres̄(r) andB(r) are given by (??).

• p(Rǫ|z, A, θ, x) ∝ p(x|z, A, θ) p(Rǫ)
It is also easy to show that, with an uniform prior on the log-
arithmic scale or an inverse gamma prior for the noise vari-
ances, the posterior is also an inverse gamma.

• p(θ|z, A, x) ∝ p(x|z, A, θ) p(θ):
Again here, using the conjugate priors for the meansmjk

and
inverse gamma for the variancesσ2

j k
we can obtain easily the

expressions of the posterior laws for them.
Details of the expressions ofp(A|z, θ, x), p(Rǫ|z, A, θ, x)

andp(θ|z, A, x) as well as their modes and means can be
found in [?].

3. COMPUTATIONAL CONSIDERATIONS AND
MEAN FIELD APPROXIMATION

As we can see, the expression of the conditional posterior of
the sources is separable inr but this is not the case for the
conditional posterior of the hidden variablez(r). So, even if
it is possible to generate samples from this posterior usinga
Gibbs sampling scheme, the cost of the computation is very
high for real applications. The Mean Field Approximation
(MFA) then becomes a natural tool for obtaining approximate
solutions with lower computational cost.

The mean field approximation is a general method for ap-
proximating the expectation of a Markov random variable.
The idea consists in, when considering a pixel, to neglect the
fluctuation of its neighbor pixels by fixing them to their mean
values. Another interpretation of the MFA is to approximate
a non separable

p(z) ∝ exp

[
β

∑

r

∑

r′

δ(z(r) − z(r′))

]

∝
∏

r

p(z(r)|z(r′), r′ ∈ V(r))

with the following separable one:

q(z) ∝
∏

r

q(z(r)|z̄(r′), r′ ∈ V(r))

where z̄(r′) is the expected value ofz(r′) computed using
q(zb). This approximate separable expression is obtained in
such a way to minimizeKL(p, q) for a given class of separa-
ble distributionsq ∈ Q.



Using now this approximation in the expression of the
conditional posterior lawp(z|A, θ, x) gives the separable MFA

q(z|A, θ, x)∝
∏

r

p(x(r)|z(r), A, θ) q(z(r)|z̄(r′), r′ ∈ V(r))

∝
∏

r

q(z(r)|z̄(r′), r′ ∈ V(r), A, θ, x(r))

wherez̄(r) can be computed by

z̄(r) =

∑

z(r)

z(r) q(z(r)|z̄(r′), r′ ∈ V(r), A, θ, x(r))

∑

z(r)

q(z(r)|z̄(r′), r′ ∈ V(r), A, θ, x(r))

4. SIMULATION RESULTS

The main objectives of these simulations are: first to show
that the proposed algorithm gives the desired results, and sec-
ond to compare its relative performances with respect to some
classical methods. For this purpose, first we generated some
simulated data according to the data generatin model, i.e.;
starting by generatingz(r), then the sourcess(r), then using
some given spectral signatures obtained from real materials
construct the mixing matrixA and finally generate datax(r).
Fig. 2 shows an example of such data generated with the fol-
lowing parameters:m = 32, n = 4, K = 4 and SNR=20 dB
and Fig. 3 shows a comparison of the results obtained by two
classical spectral and image classification methods using the
classicalK-means with the results obtained by the proposed
method. Some other simulated results as well as the results
obtained on real data will be given in near future.
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Fig. 2. Data generating process:z(r) with K = 4, 4 spectral
signatures used to construct the mixing matrixA andm = 32
images of size (64x64) used as data.

5. CONCLUSION

Classical methods of dimensionality reduction in hyperspec-
tral imaging use classification methods either to classify the
spectra or to classify the images inK classes whereK is, in
general, much less than the number of spectra or the number
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Fig. 3. Dimensionality reduction by different methods: a)
Spectral classification usingK-means, b) Image classifica-
tion usingK-means, c) Proposed method. Upper row shows
estimatedz(r) and lower row the estimated spectra. These
results have to be compared to the originalz(r) and spectra
in previous figure.

of observed images. However, these methods neglect either
the spatial organization of the spectra or the spectral prop-
erty of the pixels along the spectral bands. In this paper,
we considered the dimensionality reduction problem in hy-
perspectral images as a blind source separation and presented
a Bayesian estimation approach with a particular hierarchical
prior model for the observations and sources which accounts
for both spectral and spatial structure of the data, and thus,
gives the possibility to jointly do dimensionality reduction,
classification of spectra and segmentation of the images.
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