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ABSTRACT

In this paper we propose a joint estimation of the parame-
ters and hyperparameters (the parameters of the prior law)
when a Bayesian approach with Maximum Entropy (ME)
priors is used to solve the inverse problems which arise in
signal and image reconstruction and restoration problems.
In particular we propose two methods: one based on the Ex-
pectation Maximization (EM) algorithm who aims to find
the Marginalized MAP (MMAP) estimate and the second
based on a joint MAP estimation (JMAP). We discuss and
compare these methods and give some simulation results in
image restoration to show the relative performances of the
proposed methods.

1. INTRODUCTION

In many signal and image reconstruction and restora-
tion problems, the observed data g(s,) are related to
the quantities of the direct physical interest f(r) by a
linear transformation:

9(sm) = /D F)hm(r)dr+b(sm), m=1,..., M, (1)

where hp,(7) is the instrument function which we as-
sume to be known. When this integral equation is dis-
cretized, we have to solve a linear system of equations:

g=Hf+b, (2)
where H is a matrix whose components depend on A, .
H has, in general, very large dimensions and is very
ill-conditionned. f is a vector whose components rep-
resents the unknown parameters to estimate (for exam-
ple the pixel values of an image). g is a vector whose
components are the observed data, and b is a vector
whose components represents both the measurement
noise and any other unmodeled error.

The objective of an inversion procedure is to obtain
an unique and stable solution f to this ill-posed prob-
lem. This can be achieved by introducing prior knowl-
edge on f and on b by adopting a Bayesian approach

which consists in translating our prior knowledge on
f and b by the probability laws p(f|0) and p(g|f, B)
and using the Baye’s rule to obtain p(f|g,/3,0). The
final step then is to choose a decision rule (for example
Maximum a posteriori MAP) to determine a solution
} to the problem.

One of the difficulties in this bayesian approach is
to assign the prior law p(f|6) in a way to reflect our
prior knowledge about the solution f. In cases where
the prior knowledge is in the form of expectations then
maximum entropy principle (MEP) can give us the so-
lution. However, in general, no matter how p(f|0) is
assigned, it may depend on some unknown parameters
0, called hyperparameters, so that, in the inversion pro-
cedure we want to estimate also them from the data.
To be more specific, let us describe a method that we
developed in preceeding works [1, 2, 3] which can be
resumed as follows:

e Information about noise b is the covariance matrix
W = o2I = (2/B)I. So that, using this only informa-
tion with MEP we obtain :

p(glf,B) x exp [-BQ(£)] with Q(f) = |lg — Hfll(z |
3

e Information about f is assumed to be in the form :

N
E{:(f)} = pi with ¢i(£) = Y Qu(fa), i=1,2 (4)

Using this information with MEP we obtain :

N
p(£16) = T[] p(/16) (5)
Wlth n=1
p(/.16) = Z(ﬁ) exp =000 () — 02 (fa)] (6)
and

Z(01,05) = /exp [—0:Q1(f) — 02Q2:(N)] df  (7)

A scale invariance argument [3, 4] limits the set of pos-

sible functions Q4 (f) and Qa(f) :



{(frﬁf”), (f™In f), (f™*, f™ In f), (In f,In* f)} (®)

e Applying the Bayes’ rule to obtain the posterior law
p(flg) and MAP estimation rule we obtain :

F = arg max —argmin{J , 9
f=arg 2 {p(flg} = arg 4 {/(f)} (9)

with — J(f) = BQ(f) + 0161(F) + 0202(F).  (10)

So, the well-posed Bayesian problem solving should
be stated as follows:

Given H,g,3 = 2/0?, and {u1, p2} or equivalently

{61, 02}, estimate f.

However, in practical applications (u1, u2) or equiva-
lently (61, 602) are not given to us and we want also to
estimate them from the data g.

2. JOINT ESTIMATION PROBLEM

In this paper we considered the following problem :

Given H g and 3 estimate f and the
hyperparameters 68 = [0, 05].

Two main approaches studied and compared here are :

e Joint Maximum a posteriori (JMAP) :

The main idea behind this approach is to consider the
hyperparameters 8 on the same level that the other
parameters f and try to estimate them by

(f,6) = arg (I}lag) {p(£,6l9)} (11)

where

p(f,6lg) x p(f,0,9) =p(g|f)p(f16)p(6) (12)

Note that, we can choose either an improper or an uni-
form prior for p(8).

This optimization problem can be implemented by
successively maximizing with respect to 8 and to f :

~(k k)

' = arg max {p(?(k) ; BIQ)} = arg max {p(?(

(E+1)

Note that the first equation can be interpreted 251132)1
maximum likelihood estimate of 8 if p(8) is choosed to
be uniforme and if f
of the prior law p(f|0).

e Marginalized MAP (MMAP) :

The main idea behind this approach is to consider the
hyperparameters 8 on a different level than f. So, 8 is
first estimated by marginalizing with respect to f :

) could be considered as a sample

0)0(6) }
= arg m;gx {p(fﬁ(k) Ig)} = arg m;gx {p(flg, 8"

o= argmgx{L(e) = [ 45619 df} (14)

Then using 6 we can estimate the solution by

7 = argmax{p(719.0) (15)

Unfortunately the analytical calculus of the integral
L(0) is rarely (excepted for the Gaussian case) pos-
sible. However, noting that when p(8) is uniform L(8)
becomes actually the likelihood and 8 the maximum
likelihood (ML) estimate, in some cases one can obtain
the solution using the Expectation-Maximisation (EM)
algorithm, which in our case, is given by :

B Q0,8") =8, _w {Inp(f,0l9)}
fig@ (16)
~(k+1) ~(k)
M: 6 :argm@ax{Q(@,@ )}

3. COMPARISON OF JMAP AND
EM-MMAP

Now, let us go a little further inside these two methods
by assuming p(€) is chosen to be uniforme. Noting

back 8 = (f1,0;) and replacing p(f|6) from (4) and

p(g|f) from (3) in the equations (13) and (16) we can

make the following comparison :

e IMAP : At iteration (k + 1) of the iterative opti-
mization algorithm (13) we have to estimate (1, 92)(k+1)

by maximizing lnp( |91, f) with respect to (01, 03).

To do this we have to deal with the following system

of nonlinear equations :
81HZ(61,92) . 1¢ < (k) )

so = w0 (fuar ). i=12 (7)

where the right hand side (RHS) of these equations are

%f/ﬁ (fMAP) ZQ IMAP i=1,2 (18)

¢ EM-MMAP : When using the EM algorithm (16)
at iteration (k + 1) we have to estimate (91,92)(k+1)
by maximizing @ ((01,62); (01, 62)(k)) with respect to
(01,62). To do this we have to deal with the following
system of nonlinear equations :

61nZ(91,02 _
T N/¢ f|g,

The RHS of these two equations can be written

hag, i=1.2.
(19)

N
n=1



Thus, comparing (17) and (19), we can say that if
~(k ~(k
p(flg,0 ) is very concentrated around the fy/4p,1.€.,

p(f|g,§(k)) ~I(f - ?E\Z)AP), then the integrals of the
RHS of the equation (19) will be equivalent to RHS of
(17) and the two methods will give the same numerical
result. But this is not true in general.

However JMAP is easy to implement, because it
does not need any integration. This is not true in the
case of the EM-MMAP. Note however that, thanks to
the entropic priors, the N-dimentional integration in
(19) is replaced by N one-dimentional integrations in
(20). However, in general, these integrals have rarely
analytical solutions, so, implementing the EM algo-
rithm is very difficult due to the need of calculating
the marginal law p(f,|g) and these integrals. Two so-
lutions have been proposed in litteratures [5, 6, 7, 8] to
surround this difficulty:

1) making a Gaussian approximation for p(f|g,§(k))
around the maximum }MAP which allows to obtain an
analytic solution to these integrals, and
2) calculating the integrals in a stochastic method which
leads us to Stochastic EM (SEM) like methods.

What we propose is an an ad hoc approach to ap-
proximate these integrals by

Xk: =1,2. (21)

This means that the expectations of Q;(f,,) are replaced
by the average values of them calculated during all the
past iterations of the algorithm. Doing this, the two
methods will have the same structure, i.e; to obtain
new values for the (1, 0;) at each iteration we have to
resolve the following system of equations:

(‘3111 Z(91 s 92)
where 00;

N
k
S @)
d; = !

?FI»—k

[utrnislg)df, =

=d;, 1=1,2, (22)
for JIMAP

N
Z (Z504p. ) for EM-MMAP

?vl»—\ﬁ
||M»

A final and very important remarque is that we lg\:j?e
to insure that the criteria to be maximized admit at
least a local maximum. This question may arises more
specifically when dealing with JMAP, but it may also
arises in the case of the EM-MMAP. This difficulty is
indepent of the algorithm used to find the optimum. To
explain more this let us have a look on the expression
to optimize in JMAP (eq. 11) which can be written as

,0) = arg min {—1In ,0 , 24
(f.6) g(fﬂ){ p(f.6lg)} (24)

where

—Inp(f,6lg) — Hf|]” + 0101(f) + 0202(f)

—NInZ(0:,02) — Inp(6).

Depending on the choice of p(8) and p(f]6) and co£r12s,5e2
quently ¢1(f), ¢2(F) and Z (01, 03), this criterion may
even not have a local minimum.

In practice this difficulty is encountered when we
are dealing with the system of equations (17), (19) or
(22) which are obtained by equating to zero the gra-
dient of the above criterion with respect to 8. In fact
this system of equations may not have any solution for
given values d;. On the same way In Z (61, 02) which de-
pends on the prior probability law p(f|f1, 82) may also
be defined only on a set of admissible values of (61, 2).
For example, in the Gaussian case where Q;(f) = f?
and Qz(f) = f we have Z(01,02) = y/7/0; which does
not depend even on 6, and #; must be positive.

However, when we have taken the necessary cau-
tions, in practical situations the two algorithms will
give satisfactory results. This has been shown at least
in our simulations as we will see below.

=0dllg

4. SIMULATION RESULTS

In this section, we present some simulation results which
show the relative performances of the the two proposed
methods in image restoration problems. For this, we
have first created two synthetic (64 by 64) images (O1
and O2) (Fig. 1). According to the histograms of the
images, we assigned
e a Gaussian law (Q1(f)
image, and
e a Gamma law (Q1(f)
the second one.

Table 1. summarizes the results of parameter esti-
mation.

:f2:92(f)
= 1nf192(f) = f:f > 0) to

= f) to the first

images | Q(f) | Q2(f) | f dom. 6, 6,
01 f? f R 45e—4 | —2.5e—2
02 f? f f>0 | 69—1| 1.1e—2

Table 1: Prior laws and their parameters.

In a next step, we created degraded images by blur-
ring them with a (9 by 9) Gaussian point spread func-
tion (PSF) and added a Gaussian noise with a given
variance so that the signal to noise ratio was fixed to
20dB. Fig. 2 shows the degraded images.

In the final step, using the JMAP and the EM-
MMAP methods we restored these images and simulta-
neously estimated the hyperparameters (61, 03). Fig. 3
and Fig. 4 show the restored images by JMAP and
EM-MMAP methods and the Table 2. summarizes the
hyperparameter estimation results.



JMAP EM-MMAP

images 2 02 0 2
01 4.3e—4 | —2.4e—2 | 4.3e—4 | —2.5e—2
02 6.2e—1 1.3e—2 6.3e—2 1.3e—2

Table 2: Results of hyperparameter estimation and dis-
tance between the original and estimated images for the

two methos JMAP and EM-MMAP.
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Fiug 4 Ra(oest(;;"edwim;ges by EM-MMAP method.

5. CONCLUSIONS

The main objective of this paper was to propose and
compare two specific methods for joint estimation of

the unknowns and the hyperparameters of the inverse
problems in a Bayesian approach with ME priors. The
first method, named EM-MMAP, is based on the marg-
inalised maximum likelihood (MML) and the EM al-
gorithm and the second, named JMAP, is based on
generalized maximum likelihood (GML) methods. The
relative performances of these two methods have been

showed in image restoration problems.
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