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ABSTRACT where theay (w) are theK spectral source components and

Hyperspectral images can be represented either as a set8c51(r) are their associated images.

images or as a set of spectra. Spectral classification and seg This relation, when discretized, can be written as follows:

mentation and data reduction are the main problems in hyper-

spe:‘ctra] image analysis.. In this paper we propose a Bayesian z(r) = As(r) + (r) )

estimation approach with an appropriate hiearchical model

with hidden markovian variables which gives the possipilit , ) _

to jointly do data reduction, spectral classification andgm (") = {2i(r),7 =1,---, M} is the set of\/ observed im-

segmentation. In the proposed model, the desired indepeft9€s I different bands;, A is the mixing matrix of dimen-

dent components are piecewise homogeneous images whicf?"S (M, K) whose columns are composed of the spectra

share the same common hidden segmentation variable. Thife,(w)s (1) = {sk(r),k = 1,---, K} is the set ofK un-

the joint Bayesian estimation of this hidden variable as welkn"oWn components (source images) aiid) = {¢;(r),i =

as the sources and the mixing matrix of the source separatidn "~ + 77} répresents the errors.

problem gives a solution for all the three problems of dimen- The main objective in unsupervised classification of the

sionality reduction, spectra classification and segmmmtatf ~ spectra is to find both the specira(w) and their associated

hyperspectral images. A few simulation results illustihie  image components;, (r). This problem, written as in equa-

performances of the proposed method compared to other claton (2) is recognized as the Blind Source Separation (BSS) i

sical methods usually used in hyperspectralimage praugssi Signal processing community, for which, many general solu-
tions such as Principal Components Analysis (PCA) and In-

1. INTRODUCTION dependent Components Analysis (ICA) have been proposed.

However these general purpose methods do not account for

Hyperspectral images data can be represented either as a §& specificity of the hyperspectral images.

of imagesz,, (r) or as a set of spectra,(w) wherew € Q Indeed, as we mentioned, neither the classical methods of
indexes the wavelength ande R a pixel position [1, 2, 3].  spectra or images classification nor the PCA and ICA meth-
In both representations, the data are dependent in both spads of BSS give satisfactory results for hyperspectral iesag
tial positions and in spectral wavelength variable. Cleasi The reasons are that, in the first category of methods either
methods of hyperspectral image analysis try either to clasthey account for spatial or for spectral properties and oot f
sify the spectra,,(r) in K classes{a,(w),k = 1,--- K}  both of them simultaneously, and PCA and ICA methods do

or to classify the images,, () in K classes{s;(r),j = not account for the specificity of the mixing matrix and the
1,---, N}, using the classical classification methods such asources.
distance based methods (likemeans) or probabilistic meth- In this paper, we propose to use this specificity of the hy-

ods using the mixture of Gaussian (MoG) modeling of thésergpeciralimages and consider the dimensionality réstuct
data. These methods thus either neglect the ;patlal suteuctupromem as the blind sources separation (BSS) of equation 2
of the spectra or the spectral natures of the pixels along thg,q se a Bayesian estimation framework with a hierarchical

wavelength bands. . . ~ model for the sources with a common hidden classification
The dimensionality reduction problemin hyperspectralimga iaple which is modelled as a Potts-Markov field. The joint
ages can be written as: estimation of this hidden variable, the sources and thengixi

” matrix of the BSS problem gives a solution for all the three
(W) = Z sk(r) ar(w) + e (w) (1) problems of dimensionality reduction, spectra classiicat
" — ' e and segmentation of hyperspectral images.



2. PROPOSED MODEL AND METHOD diagonal matrix of sizex x n with all elements equal to zero
except thek-th main diagonal element wheke= z(r).
We propose to consider the equation (2) written in the follow  Combining the observed data model (3) and the sources
ing vector form: model (6) of the previous section, we obtain the following
z=As+e (3)  hierarchical model:

where we use& = {x(r),r € R}, s = {s(r),r € R}

ande = {e(r),r € R} and we are going to account for the Zlg:;tg:;
specificity of the hyperspectral images through a probsbili [, [, 0. b b bisbsoisoisois zjv(r)|z,-(r’) e V(r)
tic modeling of all the unknowns, starting by assumingtha; 1 1 1 2 2 3 3 3 1 ]Zj(r) :J{L . K}

the errors(r) are centered, white, Gaussian with covariance

matrix 3. = diag [a?l, . UEAJ- This leads to Fig. 1. Proposed hierarchical model for hyperspectralimages:
the sources;(r) are hidden variables for the data(r) and
p(zls, A, X)) = H/\/(As(r), 3.) (4) the common classification and segmentation variablesis
» a hidden variable for the sources.

The next step is to model the sources. As we mentioned in
the introduction, we want to impose to all these sourdes
to be piecewise homogeneous and share the same commg

tse%mehntanon, where thz pixels !ntezcth reg|ont_are| consid(terghe prior Potts-Markov model (8) and also assigning appropr
0 b€ homogeneous and assoclated 1o a particuiar spectr prior probability lawg(A) andp(0) to the hyperparam-
representing the type of the material in that region. We als% _ s _ 2

¢ that th tra be classifiedzin distinct cl ters® = {6.,0,} whered. = R. and@, = {(m;, 07, )},
want that those spectra be ClassiledAn GISNCL Classes, =, gptain an expression for the posterior law
thus all the pixels in regions associated with a particysacs
trum share some common statistical parameters. This can be(s, 2, 4, 0|z) < p(z|s, A, 6.) p(s|z, ;) p(z) p(A) p(0)
achieved through the introduction of a discrete valued &idd _ _ _ 9) _
variablez(r) representing the labels associated to each typkthis paper, we used conjugate priors for all of them, i.e.,
of material and thus assuming the following: Gaussian for the elements df, Gaussian for the means;,

and inverse Gamma for the varianef;'ﬁ, as well as for the
p(s;(r)|z(r) = k)) = N(mjy,03,), k=1,---,K (5) noise variances.;. /

When given the expression of the posterior law, we can
then use it to define an estimator such as Joint Maximum A
Posteriori (JMAP) or the Posterior Means (PM) for all the

! unknowns. The first needs optimization algorithms and the
P(2) oc exp 62 Z O(z(r) = 2(r)) ©) second integration methods. Both are computationally de-
manding. Alternate optimization is generally used for tihet fi
wherez = {z(r),r € R} represents the common segmenta-while the MCMC techniques are used for the second.
tion of the sources and the data. The parameiantrols the In this work, we propose to separate the unknowns in two
mean size of those regions. sets(s, z) and(A, @) and then use the following iterative al-

We may note that, assumiragpriori that the sources are gorithm:
mutually independent and that pixels in each claase inde-
pendent form those of clags$, we have

3. BAYESIAN ESTIMATION FRAMEWORK

Qing the prior data model (5), the prior source model (6) and

with the following Potts-Markov field model

T oreV(r)

° Estimate(§,zA) lisingp(§,z|ﬁ, E, x) byA N
s~p(s[z,A,0,z) and Z~p(z|A 0 z)
p(slz) = > D p(s;(r)z(r) =k) () o Estimate(A, 0) usingp(A, 0[3,z,z) by
k reRy ] A~p(Als,2,6,z) and 0 ~p(@)35 2, A, x)
whereR;, = {r : z(r) = k} andR = Uy Ry In this algorithm,~ represents eithedrgmax or generate
To insure that each image(r) is only non-zero in those Sample using or still compute the Mean Field Approximation

regions associated with theh Spectrum, we |mp03K =n (MFA) TO implement this algorithm, we need the fOllOWing
andm;, = 0,Yj # kando?, = 0,Yj # k. We may then ~EXPressions:

write . p%Iz,A,Q,z)ocp(hzlf,lA,fs)p(flz,Q). "
Itis then easy to see thats|z, A, 8, x) is separable im:
(slz) = (s(r)|z(r) =k)) = > N(my(r),Ey(r))
plalz) =D _plalr 2 Nmulr) B o p(sls8,z) = [[p(s(r)=(r),6,2(r)

wheremy(r) is a vector of sizen with all elements equal _ N(5(r). B 10
to zero except thé-th elementt = z(r) and Xy (r) is a H (8(r), B(r)) (10)

7‘



with The mean field approximation is a general method for ap-
B(r)= |A'S'A + 2—(1) -t proximating the expectation of a Markov random variable.
B F‘t PR (11)  The idea consists in, when considering a pixel, to neglext th
8(r) = B(r)[A'E"2(r) + E ;)M fluctuation of its neighbor pixels by fixing them to their mean

In this relationm.,., is a vector of sizen with all ele- ~ values. [5, 6]. Another interpretation of the MFA is to ap-

ments equal to zero except theh element wheré = z(r) ~ Proximate a non separable

andXZ. . is a diagonal matrix of size x n with all elements

equal to zero except theth diagonal wheré: = z(r). p(z) x exp 52 Z‘S(Z(T) —2(r)

o p(2[A.0.z) xp(z|z, A, 0) p(z), where v

bz A.0) = [[pa(r)=(r). A0 12) x [pwlr), " v

r

HN(Amz(T),AZz(T)At ). with the following separable one:

a(2) o< [T a(z(r)[2(r"), 7" € V(7))

It is then easy to see that, evenite|z, A, 0) is separable in

r,p(z|A, 8, x) is not and it has the same markovian structure P , )
thatp(z). wherez(r’) is the expected value of(r’) computed using

Alz. 0 A4.0) (A q(zb). This approximate separable expression is obtained in
o p(Alz,0,z) x p(z|z, A,0) p(A). such a way to minimizé L(p, ¢) for a given class of separa-

It is easy to see that, with a Gaussian or uniform prior forble distributions; € Q

p(A) we obtain a Gaussian expression for this posterior law. Using now this approximation in the expression of the

Indeed, with an “r?'fo”” prior, the p(_)sterlor mean IS €quUV-c,gitional posterior law(z| A, 8, ) gives the separable MFA
alent to the posterior mode and equivalent to the Maximum

s s AT ) T < A0
. where q(z(r)|Z(r'). 7" € V(r), A, 0,a(r)) =
i [Zm(r)sl(r)l [Zs(r)s,(r) + B() p(@(r)|z(r), A,6) a(z(r)|2(r"), 7" € V(7))

andz(r) can be computed by

wheres(r) and B(r) are given by (11). ) = 2 2(1) a(z(r)[Z(r'), 7" € V(r), A, 0, 2(r))
e p(Rz A0, z) x p(z|z A,0) p(R.). 2o a(z(r)[2(r), 7 € V(r), A, 0, x(r))
Itis also easy to show that, with an uniform prior on the log-

arithmic scale or an inverse gamma prior for the noise vari- 5. SIMULATION RESULTS

ances, the posterior is also an inverse gamma.

o p(0lz,A,x) x p(z|z, A, 0)p(€)
Again here, using the conjugate priors for the means and

The main objectives of these simulations are: first to show
that the proposed algorithm gives the desired results, acd s
. ) . . ond to compare its relative performances with respect toesom
inverse gamma for the varlance% we can obtain easily the : . )
; . k classical methods. For this purpose, first we generated some

expressions of the posterior laws for them. . . . o

Details of the expressions pf A |z, 0, z), p(R. |z, A, 0, z) S|mqlated data acgordlng to the data generatin mod_el, ie.;

== e == starting by generating(r), then the sources(r), then using

andp(8|z, A as well as their modes and means can be . : : .
p(0lz A, z) some given spectral signatures obtained from real magerial

found in [4]. construct the mixing matrixd and finally generate date(r).
Fig. 2 shows an example of such data generated with the fol-
4. COMPUTATIONAL CONSIDERATIONSAND lowing parametersin = 32,n = 4, K = 4 and SNR=20 dB
MEAN FIELD APPROXIMATION and Fig. 3 shows a comparison of the results obtained by two

) . . classical spectral and image classification methods ukiag t
As we can see, the expression of the conditional posterior Qfjassjcali-means with the results obtained by the proposed

the sources is separablenbut this is not the case for the neihod. Some other simulated results as well as the results
conditional posterior of the hidden variabi¢r). So, evenif  jpiained on real data will be given in near future.
it is possible to generate samples from this posterior uaing

Gibbs sampling scheme, the cost of the computation is very 6. CONCLUSION

high for real applications. The Mean Field Approximation

(MFA) then becomes a natural tool for obtaining approximateClassical methods of data reduction in hyperspectral inggi
solutions with lower computational cost. use classification methods either to classify the spectta or



Fig. 2. Two examples of data generating process: (&) b)
spectral signatures used to construct the mixing madrand
c) m = 32 images. Upper row:K = 4 and image sizes
(64x64). Lower row:K = 8 and image sizes (128x128).

classify the images iX classes wherd& is, in general, much
less than the number of spectra or the number of observed im-
ages. However, these methods neglect either the spatel org
nization of the spectra or the spectral property of the gixel
along the spectral bands. In this paper, we considered the
dimensionality reduction problem in hyperspectral images |
a source separation and presented a Bayesian estimation ap- |
proach with an appropriate hierarchical prior model for the
observations and sources which accounts for both speatial a
spatial structure of the data, and thus, gives the podyildi

jointly do dimensionality reduction, classification of spa
and segmentation of the images.
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Fig. 3. Dimensionality reduction by different methods: a)
Spectral classification usingf-means, b) Image classifica-
tion using K-means, c) Proposed method. Upper row shows
estimatedz () and lower row the estimated spectra. These
results have to be compared to the originét) and spectra

in previous figure.

Fig. 4. Real data: a) Spectral classification usiiigmeans,
b) Image classification using -means, c) Proposed method.
Upper row shows estimateqr) and lower row the estimated
spectra.



