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Abstract. Probability theory and statistics are two main tools in signal and
image processing. Bayesian inference has a privileged place in developing meth-
ods for inverse problems arising in signal and image processing which can be
applied in real world applications. In this tutorial presentation, first I will briefly
present the Bayesian estimation approach in signal and image processing. Then,
I will show a few examples of inverse problems such as signal dconvolution, im-
age restoration, tomographic image construction and show how the Bayesian
estimation approach can be used to give solutions for these problems. Finally,
I will focus on two recent research domain which are blind sources separation
and data fusion problems and present new methods we developed recently and
their applications.
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1 Introduction

Probabilistic methods and statistical estimation are two main tools in signal
and image processing. Bayesian inference has a privileged place in developing
methods for inverse problems arising in many signal and image processing which
can be applied in real world applications. Indeed, a great number of image
processing problems can be presented as inverse problems. The first step for
this purpose is to model the relation of the observed image g(r) to the unknown
desired feature f(r) explicitly. A very general form for such a relation is

g(r) = [Hf ](r) + ε(r), r ∈ R (1)

where r represents the pixel position, R represents the whole surface of the
observed images, H is an operator representing the forward problem and ε(r)
represents the errors (modeling uncertainty and observation errors). When the
operator H is linear we can write

g(r) =

∫

R′

f(r′)h(r, r′) dr′ + ε(r) (2)
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and when h(r, r′) is translation invariant, the relation becomes a convolution

g(r) =

∫

R′

f(r′)h(r, r′) dr′ + ε(r) = h(r) ∗ f(r) + ε(r) (3)

and the corresponding inverse problem becomes image deblurring. When this
relation is discretized, we can write it in a vector-matrix form

g = Hf + ε (4)

where g = {g(r), r ∈ R}, f = {f(r), r ∈ R} and ε = {ε(r), r ∈ R}
are vectors containing respectively the observed blurred image pixel values, the
unknown original image pixel values and the observation errors and H is a
huge dimensional matrix whose elements are defined from the system response
function h(r, r′). Fig. 1 shows an image deconvolution problem.

f(x, y) - h(x, y) -±°
²¯
+ - g(x, y) = f(x, y) ∗ h(x, y) + ε(x, y)
?

ε(x, y)

Observation model : g = Hf + ε

?

⇐=

Fig. 1: Image deconvolution example

In case of a multi sensor observation data, a more general model is

gi = Hif i + εi, i = 1, · · · ,M. (5)

This can be, for example, the case of color image (with three components Red,
Green and Blue) restoration as it is shown in Fig. 2.
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fi(x, y) - h(x, y) -±°
²¯
+ - gi(x, y) = fi(x, y) ∗ h(x, y) + εi(x, y)
?

εi(x, y)

Observation model : gi = Hf i + εi, i = 1, 2, 3

?

⇐=

Fig. 2: Color image (multi-spectral) deconvolution example. Note that a color
image is composed of 3 images (for example Red, Green, Blue).

Finally, we propose two more general models:

• General multi input multi output (MIMO) system

gi =
N∑

j=1

Hijf j + εi, i = 1, · · · ,M (6)

where H ij are assumed to be known, and

• General unknown mixing gain MIMO system

gi =

N∑

j=1

AijHjf j + εi, i = 1, · · · ,M (7)

where A = {Aij , i = 1, · · · ,M, j = 1, · · · , N} is a known or unknown mixing
matrix. A particular case of this last one is the case of instantaneous mixing of
signals or images (Hj identity operators):

gi =

N∑

j=1

Aijf j + εi, i = 1, · · · ,M (8)
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Fig. 3 shows an example of such problem.

f1(r)

f2(r)

f3(r)

?

Separation

⇐=

g1(r)

g2(r)

gi(r) =

N∑

j=1

Aijfj(r) + εi(r)

g(r) = {gi(r), i = 1,M}

g(r) = Af(r) + ε(r),

g = {gi(r), i = 1,M}

gi = {gi(r), r ∈ R},

g = Af + ε

Fig. 3: Blind image separation and joint segmentation

As we will see in the following, this forward modeling associated with a hidden
Markov modeling (HMM) for the unknown images f j can be used for modeling
many image processing problems such as image de-noising or image segmenta-
tion, (M = N = 1 and A = 1,H = 1), single or multi channel image restoration
(M = N and A = 1 and Hj known), image fusion (M > 2 and N = 1, A

known) or PCA, FA, ICA and BSS (M 6= N and A unknown).

2 Bayesian estimation framework

To illustrate the basics of the Bayesian estimation framework, we consider the
general unknown mixing gain MIMO system (eq. 7) of the previous section where
we assume that Hj and A are known. In what follows, we use the following
notations: g = {gi, i = 1, · · · ,M} and f = {f j , j = 1, · · · , N}.

In a general Bayesian estimation framework, the forward model is used to
define the likelihood function p(g|f ,θ1) and we have to translate our prior
knowledge about the unknowns f through a prior probability law p(f |θ2) and
then use the Bayes rule to find an expression for p(f |g,θ)

p(f |g,θ) ∝ p(g|f ,θ1) p(f |θ2) (9)

where θ = (θ1,θ2) represents all the hyperparameters (parameters of the like-
lihood and priors) of the problem.
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When the expression of p(f |g,θ) is obtained, we can use it to define any
estimates for f . Two usual estimators are the maximum a posteriori (MAP)

f̂ = arg max
f

{p(f |g,θ)} and the Mean Square Error (MSE) estimator which

corresponds to the posterior mean f̂ =

∫
f p(f |g,θ) df . Unfortunately only

for the linear problems and the Gaussian laws where p(f |g,θ) is also Gaussian
we have analytical solutions for these two estimators. For almost all other cases,
the first one needs an optimization algorithm and the second an integration one.
For example, the relaxation methods can be used for the optimization and the
MCMC algorithms can be used for expectation computations. Another difficult
point is that the expressions of p(g|f ,θ1) and p(f |θ2) and thus the expression
of p(f |g,θ) depend on the hyperparameters θ which, in practical applications,
have also to be estimated either in a supervised way using the training data
or in an unsupervised way. In both cases, we need also to translate our prior
knowledge on them through a prior probability p(θ). Thus, one of the main steps
in any inversion method for any inverse problem is modeling the unknowns. In
probabilistic methods and in particular in the Bayesian approach, this step
becomes the assignment of the probability law p(f |θ1). This point, as well as
the assignment of p(θ), are discussed the next two subsections.

2.1 Simple case of linear and Gaussian models

Let consider as a first example the simple case of

g = Hf + ε

and assume the following:

p(ε) = N (0,Rε = σ2
ε I0)

p(f) = N (f0,Rf = σ2
fP 0)

Then, it is easy to show that p(g|f) = N (Hf , σ2
ε I0) and p(f |g) = N (f̂ , P̂ )

with
{

P̂ = Rf − RfHt(HRfHt + Rε)
−1HRf = (R−1

f + HtR−1
ε H)−1

f̂ = RfHt(HRfHt + Rε)
−1g = P̂HtR−1

ε g,

which can also be rewritten as
{

f̂ =
(
HtH + λP−1

0

)−1
Htg

P̂ = σ2
b

(
HtH + λP−1

0

)−1 (10)

with λ =
σ2

ε

σ2

f

.

These equations can easily be extended for the case of multi-sensor case.
However, even if a Gaussian model for the noise is acceptable, this model is

rarely realistic for most real word signals or images. Indeed, very often, a signal
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or image can be modeled locally by a Gaussian, i.e.; piecewise homogeneous
and Gaussian. To find an appropriate model for such cases, the hidden Markov
modeling (HMM) is the appropriate tool.

2.2 HMM modeling of images

In general, any image fj(r), r ∈ R is composed of a finite set Kj of homo-
geneous regions Rjk

with given labels zj(r) = k, k = 1, · · · ,Kj such that
Rjk

= {r : zj(r) = k}, Rj = ∪kRjk
and the corresponding pixel values

f jk
= {fj(r) : r ∈ Rjk

} and f j = ∪kf jk
. The Hidden Markov modeling

(HMM) is a very general and efficient way to model appropriately such images.
The main idea is to assume that all the pixel values f jk

= {fj(r), r ∈ Rjk
} of

a homogeneous region k follow a given probability law, for example a Gaussian
N (mjk

1,Σjk
) where 1 is a generic vector of ones of the size njk

the number of
pixels in region k.

In the following, we consider two cases:

• The pixels in a given region are assumed iid:

p(fj(r)|zj(r) = k) = N (mjk
, σ2

j k
), k = 1, · · · ,Kj (11)

and thus

p(f jk
|zj(r) = k) = p(fj(r), r ∈ Rjk

) = N (mjk
1, σ2

j k
I) (12)

• The pixels in a given region are assumed to be locally dependent:

p(f jk
|zj(r) = k) = p(fj(r), r ∈ Rjk

) = N (mjk
1,Σjk

) (13)

where Σjk
is an appropriate covariance matrix.

In both cases, the pixels in different regions are assumed to be independent:

p(f j) =

Kj∏

k=1

p(f jk
) =

Kj∏

k=1

N (mjk
1,Σjk

). (14)

2.3 Modeling the labels

Noting that all the models (11), (12) and (13) are conditioned on the value of
zj(r) = k, they can be rewritten in the following general form

p(f jk
) =

∑

k

P (zj(r) = k) N (mjk
,Σjk

) (15)

where either Σjk
is a diagonal matrix Σjk

= σ2
j k

I or not. Now, we need also
to model the vector variables zj = {zj(r), r ∈ R}. Here also, we can consider
two cases:



7

• Independent Gaussian Mixture model (IGM), where {zj(r), r ∈ R} are
assumed to be independent and

P (zj(r) = k) = pk, with
∑

k

pk = 1 and p(zj) =
∏

k

pk (16)

• Contextual Gaussian Mixture model (CGM), where zj = {zj(r), r ∈ R}
are assumed to be Markovian

p(zj) ∝ exp


α

∑

r∈R

∑

s∈V(r)

δ(zj(r) − zj(s))


 (17)

which is the Potts Markov random field (PMRF). The parameter α con-
trols the mean value of the regions’ sizes.

2.4 Hyperparameters prior law

The final point before obtaining an expression for the posterior probability law
of all the unknowns, i.e, p(f ,θ|g) is to assign a prior probability law p(θ) to
the hyperparameters θ. Even if this point has been one of the main discussing
points between Bayesian and classical statistical research community, and still
there are many open problems, we choose here to use the conjugate priors for
simplicity. The conjugate priors have at least two advantages: 1) they can
be considered as a particular family of a differential geometry based family of
priors [1,2] and 2) they are easy to use because the prior and the posterior
probability laws stay in the same family. In our case, we need to assign prior
probability laws to the means mjk

, to the variances σ2
j k

or to the covariance
matrices Σjk

and also to the covariance matrices of the noises εi of the likelihood
functions. The conjugate priors for the means mjk

are in general the Gaussians
N (mjk0

, σ2
j k0

), those of variances σ2
j k

are the inverse Gammas IG(α0, β0) and

those for the covariance matrices Σjk
are the inverse Wishart’s IW(α0,Λ0).

2.5 Expressions of likelihood, prior and posterior laws

We now have all the elements for writing the expressions of the posterior laws.
We are going to summarizes them here:

• Likelihood: The expression of the likelihood depends on the observation
model. Here, we consider the general case of

gi =

N∑

j=1

Hijf j + εi, i = 1, · · · ,M.

Then, the expression of the likelihood is

p(g|f ,θ) =
M∏

i=1

p(gi|f i,Σεi) =
M∏

i=1

N


gi −

N∑

j=1

f j ,Σεi
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where we assumed that the noises εi are independent, centered and Gaus-
sian with covariance matrices Σεi which, hereafter, are also assumed to
be diagonal Σεi = σε

2
i I.

• HMM for the images:

p(f |z,θ) =

N∏

j=1

p(f j |zj ,mj ,Σj)

where we used z = {zj , j = 1, · · · , N} and where we assumed that f j |zj

are independent.

• PMRF for the labels:

p(z) ∝
N∏

j=1

exp


α

∑

r∈R

∑

s∈V(r)

δ(zj(r) − zj(s))




where we used the simplified notation p(zj) = P (Zj(r) = z(r), r ∈ R)
and where we assumed {zj , j = 1, · · · , N} are independent.

• Conjugate priors for the hyperparameters:

p(mjk
) = N (mjk0

, σ2
j k0

), p(σ2
j k

) = IG(αj0, βj0),

p(Σjk
) = IW(αj0,Λj0), p(σεi) = IG(αi0, βi0).

• Joint posterior law of f , z and θ

p(f , z,θ|g) ∝ p(g|f ,θ1) p(f |z,θ2) p(z|θ2) p(θ)

The general MCMC algorithm we propose to estimate f , z and θ by their MSE
estimators is a Gibbs sampling scheme where we first separate the unknowns in
two sets p(f , z|g,θ) and p(θ|f , z, g). Then, we separate again the first set in
two subsets p(f |z,θ, g) and p(z|θ, g). Finally, when possible, using the separa-
bility along the channels, separate these two last terms in p(f j |zj ,θj , gj) and
p(zj |θj , gj). The general scheme is then, using these expressions, to generates

samples f (n), z(n),θ(n) from the joint posterior law p(f , z,θ|g) and after the
convergence of the Gibbs samplers, to compute their mean and to use them as
the posterior estimates.

In the following section we examine some particular cases.

3 Particular examples

3.1 Single channel image restoration

The forward model and the priors for this case can be summarized as follows:
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g(r) = h(r) ∗ f(r) + ε(r), r ∈ R or g = Hf + ε

p(g|f) = N (Hf ,Σε) with Σε = σε
2I

p(f(r)|z(r) = k) = N (mk, σ2
k), k = 1, · · · ,K

Rk = {r : z(r) = k}, fk = {f(r) : r ∈ Rk}
p(fk|z(r) = k) = N (mk1k,Σk) with Σk = σ2

kIk

p(z) = p(z(r), r ∈ R) ∝ exp
[
α
∑

r∈R

∑
s∈V(r) δ(z(r) − z(s))

]

p(f |z) =
∏

k N (mk1k,Σk) = N (mz,Σz) with
mz = [m11

′
1, · · · ,mK1′

K ]′ and Σz = diag [Σ1, · · · ,ΣK ]
p(mk) = N (mk0, σ

2
k0), p(σ2

k) = IG(αk0, βk0), p(σε
2) = IG(αε

0, β
ε
0)

and the posterior probability laws are:



p(f |z,θ, g) = N (f̂ , Σ̂) with

Σ̂ = (HtΣε
−1H + Σz

−1)−1 and f̂ = Σ̂
(
HtΣε

−1g + Σz
−1mz

)

p(z|g,θ) ∝ p(g|z,θ) p(z) with
p(g|z,θ) = N (Hmz,Σg) with Σg = HΣzH

t + Σε

p(mk|z,f) = N (µk, v2
k) with v2

k =
(

nk

σ2

k

+ 1
σ2

k0

)−1

and µk = v2
k

(
nk f̄k

σ2

k

+ mk0

σ2

k0

)

p(σ2
k|f , z) = IG(αk, βk) with αk = αk0 + nk

2 and βk = βk0 + nk s̄k

2

where f̄k = 1
nk

∑
r∈Rk

fi(r) and s̄k =
∑

r∈Rk
(f(r) − mk)

2

p(σε
2|f , g) = IG(αε, βε) with αε = n

2 + αε
0 and βε = 1

2‖g − Hf‖2 + βε
0

nk = number of pixels in Rk and n = total number of pixels.
For an application see [3].

3.2 Registered images fusion and joint segmentation

Here, each observed image gi(r) (or equivalently gi) is assumed to be a noisy
version of the unobserved real image fi(r) (or equivalently f i) and all the un-
observed real images fi(r), i = 1, · · · ,M are assumed to have a common seg-
mentation z(r) (or equivalently z) which is modeled by a discrete value Potts
Random Markov Field (PRMF):



gi(r) = fi(r) + εi(r), r ∈ R, or gi = f i + εi, i = 1, · · · ,M

p(g|f) =
∏

i p(gi|f i) with
p(gi|f i) = N (f i,Σεi) with Σεi = σε

2
i I

p(fi(r)|z(r) = k) = N (mik, σ2
i k), k = 1, · · · ,K

Rk = {r : z(r) = k}, f ik = {fi(r) : r ∈ Rk}
p(f ik|z(r) = k) = N (mik1k,Σik) with Σik = σ2

i kIk

p(z) = p(z(r), r ∈ R) ∝ exp
[
α
∑

r∈R

∑
s∈V(r) δ(z(r) − z(s))

]

p(f i|z) = N (mzi,Σzi) with
mzi = [mi11

′
1, · · · ,miK1′

K ]′ and Σzi = diag [Σi1, · · · ,ΣiK ]
p(mik) = N (mik0, σ

2
i k0

), p(σ2
i k) = IG(αi0, βi0), p(σε

2
i ) = IG(αε

i0, β
ε
i0)

p(f |z) =
∏

i p(f i|z)
and we have
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p(f i|z,θi, gi) = N (f̂ i, Σ̂i) with

Σ̂i = (Σε
−1
i + Σz

−1)−1 and f̂ i = Σ̂i

(
Σε

−1
i gi + Σz

−1
i mzi

)

p(z|g,θ) ∝ (
∏

i p(gi|z,θi)) p(z(r), r ∈ R) with
p(gi|z,θi) = N (mzi,Σg i

) with Σg i
= Σzi + Σεi

p(mik|f i, z, σ2
i k) = N (µik, vi

2
k) with

µik = vi
2
k

(
mi0

σ2

i 0

+ nkf̄ik

σ2

i k

)
and vi

2
k =

(
1

σ2

i 0

+ nk

σ2

i k

)−1

p(σ2
i k|f i, z) = IG(αik, βik) with αik = αi0 + nk

2 and βik = βi0 + s̄i

2

where f̄ik = 1
nk

∑
r∈Rk

fi(r) and s̄i =
∑

r∈Rk
(fi(r) − mik)

2

p(σε
2
i |f i, gi) = IG(αε

i , β
ε
i ) with αε

i = n
2 + αε

i0 and βε
i = 1

2‖gi − f i‖
2 + βε

i0

nk = number of pixels in Rk, n = total number of pixels.
For more details on this model and its application in medical image fusion as

well as in image fusion for security systems see [4].

g1

g2

−→
f̂1

f̂2

ẑ

Fig. 3: Image fusion and joint segmentation of two images from a security
system measurement.

3.3 Joint segmentation of hyper-spectral images

The proposed model is the same as the model of the previous section except
for the last equation of the forward model which assumes that the pixels in
similar regions of different images are independent. For hyper-spectral images,
this hypothesis is not valid and we have to account for their correlations. This
work is under consideration.

3.4 Segmentation of a video sequence of images

Here, we can not assume that all the images in the video sequence have the
same segmentation labels. However, we may use the segmentation obtained
in an image as an initialization for the segmentation of next image. For more
details on this model and to see a typical result see [5].
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3.5 Joint segmentation and separation of instantaneous

mixed images

Here, the additional difficulty is that we also have to estimate the mixing matrix
A. For more details on this model and to see some typical result in joint
segmentation and separation of images see [2].

4 Conclusion

In this paper we first showed that many image processing problems can be pre-
sented as inverse problems by modeling the relation of the observed image to the
unknown desired features explicitly. Then, we presented a very general forward
modeling for the observations and a very general probabilistic modeling of im-
ages through a hidden Markov modeling (HMM) which can be used as the main
basis for many image processing problems such as: 1) simple or multi channel
image restoration, 2) simple or joint image segmentation, 3) multi-sensor data
and image fusion, 4) joint segmentation of color or hyper-spectral images and
5) joint blind source separation (BSS) and segmentation. Finally, we presented
detailed forward models, prior and posterior probability law expressions for the
implementation of MCMC algorithms for a few of those problems.
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