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Microwave imaging of piecewise constant
objects in a 2D-TE configuration
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Abstract. In this paper we propose a stochastic algorithm applied to an electromagnetic inverse scattering problem. The
objective is to characterise an unknown object from measurements of the scattered fields at different frequencies and for several
illuminations.

This inverse problem is known to be nonlinear and ill-posed. It then needs to be regularized by introducing prior information.
The particular prior information we account for is that the object is composed of a known finite number of different materials
distributed in compact regions. The algorithm is applied to the inversion of experimental data collected at the Institut Fresnel
(Marseille) and has already provided satisfactory results in a 2D-TM configuration. Herein, the goal is to test the same kind of
method in a 2D-TE configuration.
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1. Direct model

We deal herein with an electromagnetic inverse obstacle scattering problem where the goal is to
characterise unknown targets from measurements of the scattered fields that result from their interactions
with a known interrogating (or incident) wave in the microwave frequency range. The configuration
considered herein is that of the Institut Fresnel experiment [1]: an incident time-harmonic wave at angular
frequencyω (the time-dependenceexp(−iωt) is implied) illuminates a cylindrical target (considered as
infinite along the �Oz axis and of arbitrary cross-section shapeΩ in the (x, y) plane) atNq frequencies
in the range 1–18 GHz and the resulting electric field is collected around the target on a circular
measurement domainS (of radiusRmes = 1.67m) atNr = 241 receiver positions. The propagation
directionφ of the incident wave lies in the(x, y) plane and can be varied (φ ∈ [0, 2π]), Nv views
being carried out at varying incidence for each frequencyq. The different media are supposed to be
linear isotropic and non-magnetic and are characterised by their propagation constantk(�r) such that
k2(�r) = k2

0 = ω2ε0µ0, �r = (x, y) �∈ Ω, whereε0 andµ0 represent the dielectric permittivity and the
magnetic permeability of vacuum, respectively, ork2(�r) = k2

Ω(�r) = ω2ε(�r)µ0, �r ∈ Ω, whereε is the
complex permittivity (ε(�r) = ε0εr(�r) + iσ(�r)/ω) andεr andσ represent the relative permittivity and
the conductivity of the target, respectively.

The situation is such that a 2D configuration is considered: the TM polarisation case, where the electric
field �E is parallel to the cylinder axis�Oz, has been the subject of a previous paper [2] published in a
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168 O. Féron et al. / Microwave imaging of piecewise constant objects in a 2D-TE configuration

special section dedicated to the test of inversion algorithms against experimental data [3]; we consider,
herein, the TE polarisation case, where the electric field lies in the(x, y) plane. Let us notice that, in
that case, the data consist of the electric field component tangential to the measurement circle.

Modelling is based upon a domain integral representation obtained by applying Green′s theorem to the
Helmholtz wave equations satisfied by the fields and accounting for continuity and radiation conditions.
This leads to two coupled contrast-source integral equations, denoted as the state and observation
equations, that express the total electric field�E inside the domainΩ occupied by the object and the
scattered field�Edif observed on the measurement domainS, respectively:

�E(�r) = �Einc(�r) +
∫

Ω
G(�r,�r ′) �J(�r ′) d�r ′ +

1
k2
0

�∇�∇.
∫

Ω
G(�r,�r ′) �J(�r ′) d�r ′ �r ∈ Ω (1)

�Edif (�r) =
∫

Ω
G(�r,�r ′) �J(�r ′) d�r ′ +

1
k2
0

�∇�∇.
∫

Ω
G(�r,�r ′) �J(�r ′) d�r ′ �r ∈ S, (2)

where �J(�r ′) = χ(�r ′)�E(�r ′) are the induced currents,χ(�r ′) = k2(�r ′) − k2
0 is a contrast function null

outsideΩ, G(�r,�r ′) = i
4H

1
0 (k0R) is the free space Green’s function andR = |�r − �r ′|. The contrast

function χ characterises the unknown object and the inverse problem then consists in retrieving this
function. In a TM configuration [2], these coupled equations become simple and scalar, whereas, in
the TE configuration considered herein, the electric field is a two-component vector and the problem is
then more involved. It can be noticed that, as the operator�∇�∇ acts upon a convolution product, several
strategies [4–6] can be used to solve Eqs (10) and (11): i) both of the differential operators can be applied
to the Green’s function or ii) one can be applied to the latter and the other to the induced currents. The
latter strategy is adopted herein. Equation (10) then reads:

�E(�r) = �Einc(�r) +
∫

Ω
G(�r,�r ′) �J(�r ′) d�r ′ − 1

k2
0

∫
Ω

�∇′G(�r,�r ′) �∇′. �J(�r ′) d�r ′

�r ∈ Ω, (3)

where �∇′ means a derivation with respect to the variable�r ′ and the observation equation is of the same
form.

With in mind the fact that we want to solve the above equations by means of the method of moments,
we partition the test domain into elementary square pixelsΩm of constant complex permittivity. Then,
by expressing�∇′. �J(�r ′) as a function of the electric flux�D = ε �E, we found that the former vanishes
everywhere except at the frontierC between pixels of different contrasts. By accounting for the continuity
of the normal component of�D across the latter, this reads:

− 1
k2
0

�∇′. �J(�r ′) = ε(�r ′) �E(�r ′). �∇′ 1
ε(�r ′)

= ε(�r ′) �E(�r ′). �nC ζ(�r ′) δC(�r ′), (4)

where�nC is the normal to the contourC, ζ(�r ′) is the jump of the function1/ε(�r ′) across the latter and
δC is the Dirac delta function centred onC. This means that the second integral in Eq. (3) is reduced to a
line integral along the contours of the above-mentioned pixels.

By applying the method of moments with point matching and pulse basis functionsHm, defined as
Hm(�r) = 1 if �r ∈ Ωm, 1/2 if �r ∈ Cm and 0 elsewhere, whereΩm andCm represent the pixelm and its
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contour, respectively, we obtain discrete versions of the observation and state equations:

�E(�r) = �Einc(�r) + GΩ �E(�r) �r ∈ Ω (5)

�Edif (�r) = GS �E(�r) �r ∈ S, (6)

These two equations are of the same kind as in the TM configuration, but obviously the expressions
of the operatorsGΩ andGS , that act fromΩ onto itself and fromΩ ontoS, respectively, are a little bit
more intricate and4 times bigger. Equation (5) (as well as Eq. (6)) can be decomposed into two scalar
equations of the form:

Eu(�r) = Einc
u (�r) +

NΩ∑
m=1

[
χ(�rm)GΩ

0 (�r,�rm)Eu(�rm) +GΩ
ux(�r,�rm)Ex(�rm) +GΩ

uy(�r,�rm)Ey(�rm)
]
,

u = x or y, (7)

whereNΩ is the number of pixels that partitionΩ, �rm is the centre of themth pixel,GΩ
0 results from

the first integral in Eq. (3) and is obtained analytically by replacing the square pixel by a disc of same
area [7] andGΩ

vx andGΩ
vy result from the second integral in Eq. (3) and correspond to line integrals along

the parts of the pixel contour that are perpendicular tox andy, respectively. It can be noticed that the the
last two terms are obtained by means of fast Fourier transforms, integration being performed analytically
along the exact contour of the pixels after a spectral decomposition of the Green’s function as in [6];
they are of the form:

GΩ
uv(�r,�rm) = ε(�rm) [ζ(�rm + a�v)Quv(�r,�rm + a�v) − ζ(�rm − a�v)Quv(�r,�rm − a�v)] ,

u = x or y, v = x or y, (8)

wherea is the pixel half-side,�v is a unitary vector oriented along thex or y axis andQuv is given by:

Quv(�r,�r ′) =
1
2π

∫ +∞

−∞
Fuv

sin (αa)
2α

eiβ|(�r−�r ′).�v| eiα((�r−�rm). �w) dα,

w = x or y, w �= v, �r ′ = �rm ± a�v, β =
√
k2
0 − α2, 
m(β) � 0,

Fuv = α/β if u �= v, Fvv = sign((�r − �r ′).�v). (9)

It can be noticed (see Eq. (8)) that, throughζ(�rm ± a�v) = 1/ε(�rm ± 2a�v) − 1/ε(�rm), this model
introduces an intrinsic correlation between neighbouring pixels, and also a high level of non-linearity
with respect to the contrast functionχ; on one hand the prior information that we want to introduce
is precisely based upon such a correlation, but, on the other hand, the latter brings a lot of difficulties
into the inversion algorithm implementation, especially with respect to memory requirements, that are
not yet solved at the present time. This is the reason why we introduce, in a first step, a bilinearized
approximation of the direct model which consists in neglecting these correlation terms. The latter can
be expressed, as in the TM case, in terms of contrast and induced currents (or contrast sources):

�J(�r) = χ(�r) �Einc(�r) + χ(�r) GΩ
0
�J(�r) �r ∈ Ω (10)

�Edif (�r) = GS
0
�J(�r) �r ∈ S. (11)
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Fig. 1. Modulus (left) and phase (right) of the measured (—) and computed scattered fields obained by means of the complete
(. . . ) and the bilinearized (- - -) direct model versus the position of the receiver relative to the direction of illumination
(θr = φr − φe + π).

In order to test the validity of the above considerations, we have compared the results obtained by means
of the complete direct model described by Eqs (5) and (6) and those obtained by means of the bilinearized
model described by Eqs (10) and (11) to the Institut Fresnel experimental results. Hence, we first solve
Eq. (7) for �E(�r = �rm), m = 1, . . . , NΩ (or Eq. (10) for�J(�r)), and then�Edif (�r), �r ∈ S, is obtained
directly from the discrete counterpart of Eq. (6) (or of Eq. (11), respectively). Solving Eq. (7) requires
the knowledge of the incident field�Einc(�r) insideΩ. The latter is supposed to be as follows:

�Einc(�r) = f(θ)H1
0 (k0R) �uθ, (12)

where�R = �r−�re = (R, Φ),�re = (re = Rmes, φe) is the position of the emitting antenna,θ = Φ−φe+π,
�uθ is a unitary vector such that�uθ ⊥ �R andf(θ) is a directivity factor obtained from the incident field
measured onS.

Figure 1 displays the results obtained for the configuration studied in [1], Fig. 9, the latter being chosen
for comparison purposes. The target under consideration corresponds to the data setFoamDielExtTE
in the Institut Fresnel data-base. It is illuminated by an emitting antenna located atφe = 270◦ and
operating at a 8 GHz frequency. The domainΩ is a rectangular area partitioned into34× 25 pixels with
side2a = 3.5 mm, which corresponds to a discretization step ofλ/10.7, whereλ is the wavelength.

It can be concluded that the complete model yields good results, as compared to the experimental ones,
which are similar to those obtained in [1] by means of a different model based upon contour integrals,
whereas the results obtained by means of the bilinearized model are less good but seem to be satisfactory
enough for the inversion task.

2. Inversion algorithm: Prior information and Bayesian approach

Inverse problems in microwave imaging are known to be very ill-posed. Hence a regularization is
required prior to their resolution. The latter consists generally in introducing a priori information on
the sought solution such as positivity [8], smoothness, or the fact that it is both smoothly varying and
piecewise constant [9] or that it contains edges to be preserved [10]. Herein, we introduce a particular
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additional information: although the materials that compose the object are not known, their numberN l

is supposed to be known and finite. We introduce this prior information, through a Bayesian approach,
by modelling the contrast image by a hidden Markov random field. This consists in considering a hidden
variablez(�r) which represents a classification of the contrast image. This hidden variable takes discrete
values between1 andNl, each value being associated to a given material. Each material will thus be
identified by a labeln in the imagez and characterised by a mean complex valuemn (associated to its
estimated complex permittivity) and a varianceρn that allows some fluctuations around the latter and
that is considered, herein, as identical for all the labels (ρn = ρ, ∀n = 1, . . . , Nl).

Let subscriptsq andv stand for the frequency and the view, respectively,A stands for the set that
includes all frequencies and views (A = {Aq,v}, q = 1, . . . , Nq, v = 1, . . . , Nv), except when a
subscript does appear where only the latter is of concern,�A stands for the set that accounts also for the
co-ordinates (�A = {Au}, u = x, y) andGS andGΩ stand forGS

0 q,v andGΩ
0 q, respectively.

Let us rewrite the observation and state equations with additive noises�b and�η, respectively, that
account for measurement and model errors. We assume that these noises are Gaussian, white and centred
(�b ∼ N (0, ρ�b Id), �η ∼ N (0, ρ�η Id)) and independent of the frequency and the view. The likelihood
function can then be expressed as:

p(�Edif | �J, ρ�b) ∝ exp

{
− 1

2ρ�b

∑
q,v

‖�Edif − GS�J ‖2
S

}
. (13)

Let us now define a prior conditional probability distribution of the contrast as a Gaussian law: for each
pixel �r of the contrast image,p(χ(�r) | z(�r) = n,mn, ρ) = N (mn, ρ). The distribution of the entire
vectorχ, givenz, m = {mn}n=1,...,Nl

andρ, reads then as follows:

p(χ | z,m, ρ) = N (mz, ρ Id)

∝ exp
{
− 1

2ρ
‖χ− mz‖2

Ω

}
, (14)

withmz(�r) = mn if z(�r) = n.
We focus herein on the joint estimation of the contrast and the induced currents related to the contrast

by the state equation (10). Their prior distribution reads as follows:

p(�J, χ | z,m, ρ) ∝ exp
{
− 1

2ρ�η

∑
u,q,v

‖�J − χq�E
inc − χqG

Ω�J‖2
Ω − 1

2ρ
‖χ− mz‖2

Ω

}
, (15)

where the first term in the exponential accounts for the state equation and the second term expresses
the hidden Markov model of the contrast. Obviously the classificationz and all the parametersmn and
ρ have also to be estimated, as the materials themselves are not known. Prior probability distributions
have then to be assigned to these variables. As the materials are supposed to be distributed in compact
regions, a local spatial correlation on the pixels of the classification is introduced by modellingz with a
Potts Markov random field:

p(z) ∝ exp




∑
�r∈Ω

∑
�r′∈V(�r)

δ(z(�r) − z(�r ′))


 , (16)
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whereδ is the Kronecker function andV(�r) is the set of the four nearest neighbours of the pixel�r. The
prior probability distributions of the parametersmn andρ are chosen to be in the so-called “conjugate
prior” family in order to render their estimation easier. In a totally unsupervised estimation framework,
the parametersρ�b andρ�η have also to be estimated; however, herein, these two parameters are manually
fixed in order to control the respective weights of the likelihood Eq. (13) and of the two terms of the
prior Eq. (15).

We can now define a joint prior distributionp(�J, χ, z,m, ρ) of all the unknowns that takes into account
the state equation (10) and all the information introduced earlier. By using the Bayes formula, thea
posterioridistribution of all the unknowns, given the scattered field data, can be expressed as:

p(�J, χ, z,m, ρ | �Edif ) ∝ p(�Edif | �J, ρ�b) p(�J, χ | z,m, ρ) p(z) p(m, ρ) (17)

This posterior distribution represents all the information we have on the unknowns that accounts for the
a priori knowledge and the data. The Bayesian approach consists then in using this posterior distribution
to define an estimator for the unknowns. We propose to estimate the posterior mean by means of a Gibbs
sampling algorithm. This consists in splitting the set of variables into subsets and alternately sample
these subsets from their conditional probability distributions. Herein, we partition the set of variables
into three subsets:�J, (χ, z) and(m, ρ). The Gibbs sampling algorithm then reads: given an initialisation
�J(0), χ(0) andz(0),

repeat

1. sample
(
m(n), ρ(n)

) ∼ p (
m, ρ | �J(n−1), χ(n−1), z(n−1), �Edif

)
2. sample (χ(n), z(n)) ∼ p (

χ, z | �J(n−1),m(n), ρ(n), �Edif
)

3. sample �J(n) ∼ p (
�J | χ(n), z(n),m(n), ρ(n), �Edif

)
Because the hyper-parameters(m, ρ) are chosen as the conjugate priors, the sampling of

p(m, ρ | �J, χ, z, �Edif ) is easy and comes down to sampleρ(n) from an Inverse Gamma law and to
sample the meansm(n) from Gaussian distributions.
Applying the product rule leads to:

p(χ, z | �J,m, ρ, �Edif ) = p(χ | z,�J,m, ρ, �Edif ) p(z | �J,m, ρ, �Edif )

= p(χ | z,�J,m, ρ) p(z | �J,m, ρ) (18)

Thus, a joint sample(χ(n), z(n)) is obtained by first samplingz(n) from p(z | �J,m, ρ) and then sampling
χ(n) from p(χ | z,�J,m, ρ). The distributionp(z | �J,m, ρ) is obtained by using the Bayes formula:

p(z | �J,m, ρ) ∝ p(�J | z,m, ρ) p(z), (19)

wherep(z) is the Potts prior distribution ofz, and the expression ofp(�J | z,m, ρ) can be obtained by
integratingp(�J, χ | z,m, ρ) with respect toχ. As a result of this integration,p(�J | z,m, ρ) is a separable
function of the pixels with respect toz. Therefore, the conditional distributionp(z | �J,m, ρ) is a Markov
random field with a neighbouring system of four pixels, as its prior distribution. The sampling of this
kind of distribution is easy [2].

Concerning the sampling ofχ, the conditional distributionp(χ | z, �J,m, ρ) is directly obtained from
the joint prior distributionp(χ,�J | z,m, ρ) and the product rule. By using the Bayes formula, we get:

p(�J | χ, z,m, ρ, �Edif ) ∝ p(�Edif | �J) p(�J | χ, z,m, ρ) (20)
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Dielext Dielint Twindiel Metext (real part) Metext (imag. part)

Fig. 2. The true contrast (up) and the contrast retrieved by means of the proposed method (middle) and by means of the CSI
method (down) for the four targets of the Institut Fresnel database (Dielext:1st column, Dielint: 2nd column, Twindiel:3rd

column and Metext:4th and5th columns). Both the real and imaginary part of the contrast are displayed for the object Metext,
whereas only the real part is displayed for the three other targets.

∝ exp
{
−

∑
u,q,v

[
1

2ρ�b
‖�Edif − GS�J‖2

S +
1

2ρ�η
‖�J − χq�E

inc − χqG
Ω�J‖2

Ω

]}
.

This conditional distribution is in fact Gaussian with a non-diagonal covariance matrix. However, a
sample of this distribution can be generated by a maximization technique [2].

3. Results

The above method has been applied to the reconstruction of the four targets (denoted as Dielext, Dielint,
Twindiel and Metext, respectively) considered in theInstitut Fresneldatabase, which are composed of
different dielectric and metallic cylinders (see [1] for a description of their basic features). The results
are displayed in Fig. 2. They are compared to those obtained with the contrast source inversion method
(CSI) [8]. It can be noticed that only a part of the available data has been used, i.e., four frequencies (3,
5, 7 and9 GHz),61 measurement points (each4◦) and8 (Dielext and Dielint) or9 (Twindiel and Metext)
views around the object. The test domain is a17.85 cm sided square divided into51×51 pixels with side
3.5 mm. As a general rule our method provides good results concerning the shape reconstruction, the
localisation and the estimated values of the contrast for the different materials. As expected, the retrieved
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objects are composed of quasi-homogeneous regions. Except for the target Twindiel, the results are
comparable to those obtained in the TM case [2]: they are slightly less good than in the latter case, which
is not surprising as i) less data are used and ii) the contribution of the discontinuities at the frontiers of
the different materials is neglected. This latter point is probably at the origin of the poor results obtained
for target Twindiel as the latter presents a complex geometry that is favourable to the enhancement of the
effect of the non-linearities linked to the discontinuities. Finally, the contribution of the prior information
that we have introduced can be estimated by noticing that the results are much better than those obtained
by means of the CSI method.

4. Conclusion

In this paper we present a new approach of inversion in a TE configuration. We propose a solution
in order to introduce a particular prior information: the object is composed of a known finite number
of different materials distributed in compact regions. First, we have developed an approximated direct
model which is bilinearized with respect to the induced currents and to the contrast function. Then,
we have implemented an appropriate Gibbs sampling algorithm that takes into account the property
of bilinearity and the prior information. The results obtained by means of this approach show its
effectiveness. However, better results can be expected by considering the exact direct model; the inverse
problem has then to be reformulated with the total field and the contrast as unknowns.
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