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Abstract. We consider the problem of the blind separation of noisy
instantaneously mixed images. The images are modeled by hidden
Markov fields with unknown parameters. Given the observed im-
ages, we give a Bayesian formulation and we propose a fast version
of the MCMC algorithm based on the Bartlett decomposition for the
resulting data augmentation problem. We separate the unknown
variables into two categories: 1. The parameters of interest which
are the mixing matrix, the noise covariance and the parameters of
the sources distributions. 2. The hidden variables which are the un-
observed sources and the unobserved pixel segmentation labels.
The proposed algorithm provides, in the stationary regime, samples
drawn from the posterior distributions of all the variables involved in
the problem leading to great flexibility in the cost function choice.
Finally, we show the results for both synthetic and real data to illus-
trate the feasibility of the proposed solution. © 2004 SPIE and IS&T.
[DOI: 10.1117/1.1666873]

1 Introduction and Model Assumptions

The observations ama images K');_; ., each imageX'
is defined on a finite set of siteS, corresponding to the

pixels of the imageX‘=(xi,)rE$. The observations are a

noisy linear instantaneous mixture of source images
(8)j=1.n defined on the same st

n

i i i .
Xr_,Zl ajst+n,, reS, i=1.m,

where A=(a;;) is the unknown mixing matrix, N'

=(n;); s iS @ zero-mean white Gaussian noise with vari-

anceaii. At each siter € S, the matrix notation is
X, =As+n,. (1)

The noise and source component$)g , and &)y ,

Many techniques have been proposed for the source
separation problem based on entropy and information theo-
retic approach ™ and the maximum likelihood princigie*?
leading to contrast functioh¥!® and estimating
functions'’~2°Among the limitations of these methods, we
can mention{i) the lack of possibility to account for some
prior information about the mixing coefficients or other pa-
rameters involved in the problertij) the lack of informa-
tion about the degree of uncertainty of the mixing matrix
estimate particularly in the noisy mixtur@ij ) the objective
functions are intractable or difficult to optimize when the
source model is more elaborate.

Recently, a few works using the Bayesian approach have
been presented to push further the limits of these
methods>?Y~32 For example, in the Bayesian framework,
we can introduce some priori information on the sources
and on the mixing elements as well as on the hyperparam-
eters by assigning appropriate prior laws for them. Also,
based on posterior laws, we can quantify the uncertainty of
any estimated parameter. Finally, thanks to sampling
schemes, we can propose tractable estimation algorithms.

In previous works, we have assumed Gaussian mixture
models for sources where the labels are wit¥.How-
ever, this model does not take into account the temporal
correlation of the sources. An extension to the hidden Mar-
kov models is considered in the one-dimensional
its formulation in the two-dimensional cagkidden Mar-
kov fields (HMF)] seems to be appropriate in image sepa-
ration applications. The main objective of this paper is to
study the image separation problem using the HMF model.
Each source is modeled by a double stochastic process
(9,2)). 9 is a field of values in a continuous sgt and
represents the real observed image in the absence of noise
and mixing deformationz’ is the hidden Markov field rep-
resenting the unobserved pixel classification whose compo-

are supposed to be independent. However, the noise can beents are in a discrete s@ e{1..KJ}. The joint probabil-
correlated across detectors, that is, the noise covariance maty distribution of Z! satisfies the following properties:

trix R,=E[nn*] is not necessarily diagonal.
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vz, PM(ZHZES\{r}) = PM(ZHZ;\J(r))v
vZi, Pu(ZhH)>0,

where Zfs\{r} denotes the field restricted to\{r}={¢
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Table 1
r Pixel location
S The set of all pixel locations
Variables
X The image on the detector number i
s/ The source image number j
Z The image classification of the source number j
X (XNi—1._m (known data)
S (S));-1..» (hidden sources)
z (Z))j-1.. (idden labels)
X, The vector of observed data at the pixel r
S, The vector of sources at the pixel r
Parameters
A The mixing matrix
R. Noise covariance
7= (wh Vi=(d))?) The means and variances of the source j
k=1..K;
e S,¢+#r} andN(r) denotes the set of neighbors fac- problem. In Sec. 3, we propose an original construction of

cording to the neighborhood system definedsfor each  the prior law selection for the parameters. In Sec. 4, a fast
source component. According to the Hammersley—Clifford implementation of an MCMC algorithm based on the data
theorem, there is an equivalence between a Markov randonugmentation technique is proposed. In Sec. 5, numerical

field and a Gibbs distribution simulations on synthetic and real data are shown to illus-
_ _ trate the feasibility and the performances of the proposed
Pu(Z)=[W(a;)]™*exp{ —H, (Z))}, solution.

2 Bayesian Formulation

where Haj is the energy function and; is a parameter .
. _ m o
weighting the spatial dependencies supposed to be knownCIVen the observed daté= (X", ... X"), our objective is
Conditionally to the hidden discrete fielti, the source the estimation of the mixing matri&, the noise covariance

X : 2
pixels S|, r e S are supposed to be independent and haveRe: the means and variancea ko)1 nk-1.x Of the
the following conditional distribution: conditional Gaussians of the prior distribution of the
sources. Thea posterioridistribution of the whole param-
- o eter0=(A,R€,Mjk,aj2k) contains all the information that
p(S|Z), 7)) = 11 pi(siz}, 7)), we can extract from the data. According to the Bayesian
res rule, we have

where the positive conditional distributions depend on the X X
parametery’ e R%. We assume in the following that, P(oIX)p(X|0)p(0).

(-]2) is 2 Gaussian distribution with parameteng In Sec. 3, we will discuss the attribution of appropriate
=(Mjk Tjidk=1.K - prior distribution p(6). Concerning the likelihood, it has
We note that we have a two-level inverse problem. the following expression:

1. The problem described ki ) when the mixing ma-

trix A is _unknown which is the source separation p(XIG)=; fsp(X.S,Zw)dS

problem?7:35:36

2. Given the source compone8it the estimation of the _ N
parametery’ and the recovering of the hidden clas- :; HS N Az AR, AT +R0) Pu(2), (2)
sification labelsz! which is known as the unsuper-
vised segmentatiof. where N denotes the Gaussian distribution,the (mx 1)

. . : vector of observations on the sitez, is the vector label,
Table 1 gives a summary of the notations for the variables, = t . .
the parameters and the indices used in this paper and the#*s ~ [#1z;---#nz, ] @nd R, the diagonal = matrix
meanings. diad o7, ,....0%, ] We note that the expressid@) does not
In this contribution, given the observationX' (i have a tractable form with respect to the paramétée-
=1..m) we propose a solution to jointly separate the cause of the integration of the hidden variab®sand Z.
unknown sources and perform their unsupervised segmenThis remark leads us to consider the data augmentation
tations. In Sec. 2, we give a Bayesian formulation of the algorithnt® where we complete the observatiodsby the
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hidden variables 4,S); the complete data are then
(X,S$,Z). In a previous work® we implemented
restoration-maximization  algorithms in the one-
dimensional case to estimate the maximarosteriories-
timate of 6. We extend this work in two directionsi) the
sources are two-dimensional signdis) we implement an
MCMC algorithm to obtain samples @f drawn from their

a posteriori distribution. This gives the possibility of not
being restricted to estimate the parameters by its maximu
a posteriori We can consider another cost function and
compute the corresponding estimate.

3 a priori Selection

The Bayesian method is more and more attracting practi-
tioners. The basic reason is its ability to combine, in a
simple way, two sources of information: information from
collected data and priori information. This combination
consists in multiplying the likelihood by the prior:
p(data #)I1(#) to obtain the posteriop(#|data). How-
ever, the problem that arises with this method is the choice
of a Prior distribution for the parametef. In a recent
work,*? the author proposed an original rule to construct a
prior. The rule’s principle consists in exploiting the prior
knowledge without adding irrelevant information. The re-
sulting prior distribution(called & prior) is the minimizer of

a cost function representing a trade-off between some de
sirable behaviofgiven by a distance to a reference pyior
and uniformity(given by a distance to Jeffreys prioiThe
proposed cost function has the following expression:

JI) = 7eJ IT(6)D s(pg,po)de

+ | To0gTI(0) T,

wherep,=p(datal §) is the likelihood ofé, y./y, is the
trade-off between the confidence degreen the reference
distribution po and the uniformity degree, g(6) is the
Fisher information matrix an® s is the & divergencé!

_Jp Jq [pq?
DolP =155 51-0)"

By variational calculus, the5 prior has the following
form (see Ref. 40 for details

[1(9)xe™7e/"PoPor00 g (o)]. €

We note that the prior selection needs to be established®(¢) =
in a specific geometry in that it depends on the measure of

distinguishability(here thes divergencg between probabil-
ity distributions.

The rest of this section is the computation of thprior
in our special cask. Our parameter of interest i®

*The reader who is not interested in derivation details can directly consult
the prior expressions obtained in the end of this section.

PROOF COPY 002402JEI

m

=(AR.,7). Alis the mixing matrixR, the noise covariance
and n contains all the parameters of the sources model

nj:(n{()kzl...Kjv
M=k ,vk=(0)?)’

where the indey indicates the sourcg k indicates the
Gaussian componert of the distribution of the sourcg
and (ul,v}) are the corresponding mean and variance. Our
objective is the computation of th&priors (3). We have an
incomplete data problem with two hierarchies of hidden
variables, the sources; 1 and the labelz; 1 so that the
complete data arex¢ 1,51 1,21 71)-

We assume that the reference distributmnbelongs to
the parametric family{p,} so that it is defined by the ref-
erence parameters= (A%, R, 7°). The expressions of the
Fisher matrix and theS divergence are intractable for the
incomplete model. Consequently, they are approximated in
the following by their expression in the complete model
case.

We begin by the computation of the Fisher information
matrix.

3.1 Fisher Information Matrix
The Fisher matribg(0) is defined as

(92
——logp(Xy 1,517,217 0) |.

gij(6)=— E —
X1.T:81. 7217 9i;
The  factorization of the joint  distribution

P(X1. 1.S1.7.21.7/6) @s
P(X1. 1.S1.71+21.7/60)
=p(X1 781721 7,.0)P(S1. 7|21 7.0)P(21. 7| 6)

and the corresponding expectations as

[-1= E[-] [-]

1.7

E

X1.T:S1.T 21T

E

sy.tlzar

E

Xy.glsirzer

[-]

and taking into account the conditional independences

[(Xl...T_| S1.1 21, 1) e (X 7lS1.1) and G1.121.7)
<1Is) 1|z 11, the Fisher information matrix will have a
block diagonal structure as follows:

[ 9(A,R.) [0] T

a(7h)

(0] 9(7")

3.1.1 (A Re)-block
The Fisher information matrix ofA,R,) is

2

d
—EE|-—logp(xy_t|s1.1,AR,)

Fi(AR)=
ij (AR e

Journal of Electronic Imaging / April 2004/ Vol. 13(2) /3
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which is very similar to the Fisher information matrix of #° is obtained as a particular case=1) of the general
the mean and covariance of a multivariate Gaussian distri-expression derived in the multivariate case in Ref. 29 lead-

bution. The obtained expression is ing to a normal inverse gamma prior
( E RSS‘)®R;1 [0] K
S1.1 Il = Il )
g(A,R,) = L aR o(7) kl;[l o 7%
(0]

2 IR, K Ve
= H /\/(,U«kiﬂo.—o
k=1 v

whereRss= 1/TX s;sf and® is the Kronecker produdtie-
fined as in Ref. 4R

We note the block diagonality of the\(R,)-Fisher ma-  with 1= awy, a=1v./y,, wy is the marginal probability
trix. The term corresponding to the mixing mat#xis the of the labelk andG(-) the Gamma distribution
signal to noise ratio as can be expected. Thus, the amount
of information about the mixing matrix is proportional to  g(x|d, g)=x~1exd — Bx].
the signal to noise ratio. The induced volume &f,R,)
[the local volume of the differential manifold of the set of
distributionsp(X|S,A,R,)] is then

0 .0
g(vkl;%,%v‘)) @

The expressions of the averaged divergences between
the (A,R,) parameters are

ERS m/2
AR)Y2IAdR = "7 % Ad E Do(AR.:A° R°)=E log|RRR? ~*[+Tr(R;'R?)
|g( , e)l RE_|R|m—+n+l/2 RE g0 Is0 e AT R 2( €' Ve € €
3.1.2 (7)) block +Tr{Rel(A—A°) E [Rqd]

) s/ 7°
Eachg(#') is the Fisher information of a one-dimensional o !
Gaussian distributiofisee Ref. 29 for details X (A—A")* )

Kj
| 1/2 j — j
|9(#")|*d 7’ _kll E/gd’f' leading to the following 0 priors onA,R,):

3.2 & Divergence (6=0)

In this paper, we fix the value af to 0. The 0 divergence
between two parameters =(A,R.,7) and ¢° >
=(A%R?% 7% for the complete data likelihood

P(X1.1,S1.7.21.7]0) is

Wim(RZ H,R 7h

1
Mo(AR;Y) =/\< A;AO,Z R, 'oR,
E [RSS] m/2

sl

whereR).=E_ (R.sand W, is the Wishart distribution of
SS 5‘77

X1 1,51 71,21 7| 6° ,
P(X1. 1,S1.71.21.7/6°) annxn matrix

P(X1. 7,S1.7,21.7/0)

Do(6:6°)= E log

X,S,2| a0

Similar developments of the above equation as in the com-)), (R, 3)oc|R[¥~("+1/2 ex;{ 4 ZTr( RE‘l)}
putation of the Fisher matrix based on the conditional in- 2

dependences lead to an affine form of the divergence,

which is a sum of the expected divergence between theTherefore, the O prior is a normal inverse Wishart prior
(A,R,) parameters and the divergence between the sourcegconjugate prior. The mixing matrix and the noise covari-

parametersy ance are not priori independent. In fact, the covariance
matrix of A is the noise to signal ratio 4R2; '@ R, . We

Do(8:6°)= E Do(AR.:A°R?)+Dg(7:7°), note a multiplicative term which is a power of the determi-

sl Is nant of thea priori expectation of the source covariance

whereD, means the divergence between the distributions ES\ n[ Rsgl- This term can be injected in the prip() and

Is thus the A,R,) parameters and the parameters ar@a
p(x1 1/AR.,8. 1) and p(x, 1|A%R%s, 1) keeping the  priori independent.
sourcess; 7 fixed. We note that the precision matrix for the mixing matrix

The 0 divergence betweenand ° is the sum of the 0 A (aR)®R_") for I, is the product of the confidence
divergences between each source paramgtand % due term a= v,/ v, in the reference parameters and the signal
to the a priori independence between the sources. In theto noise ratio. Therefore, the resulting precision of the ref-
following, we omit the superscrigtreferring to the source  erence matriXA° is not only oura priori coefficienty, but
j to have clear expressions. The divergence betwgand the product of this coefficient and the signal to noise ratio.
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4 MCMC Implementation 1. Inverse Wishart for the noise covariance and inverse

We divide the vector of unknown variables into two sub- gar;ml\fil for slo;Jrceﬁ’ variances. d for th ,
vectors: the hidden variableZ (S) and the parametetand - Normal for the mixing matrix and for the sources

; ) means.
we consider a Gibbs sampler . C .
repeat until convergence, The expressions of these distributions are developed in

=~ < ~h the Appendix A. We give below the expressions 8 R,)
(h) g(hy—~ (h—1) €
;' 3raw9(%h) ’S(H)|X %((f)%'(ﬁ())a ) in the particular case whew=0 (Jeffreys prioy
. draw 6" ~p VAN

This Bayesian samplifg produces a Markov chain

(79“_‘)), ergodic with stationary distributiop(6|X). After RC A~ Wi, 3p) Vp:|5|_”,
h, iterations(warming up, the samples g"o*") can be 2
c_on_S|d_ere_d t_o be drawn approximately from theiposte- s :@(R _R R’lR*S)
riori distributionp(6|X). Then, by the ergodic theorem, we { P o VXX TxsTiss Tixsly (6)
can approximata posterioriexpectations by empirical ex- p(A|R5)~N(Ap To), Ap= RXSRS_511
pectations 1
__~ p1
L8 \ P e R
ELF(0)[X]~ 7 2 f(M™). (5)
h=1
where we define the empirical statisticsR,,

Sampling ,S): The sampling of the hidden fieldZ(S) =1USIZ XX, Res=US|Zxsf and Rs=1/S|2,s,s7
from p(Z,9/X, 6) is obtained by, (the sourcesS are generated in the first step of the Gibbs

1) drawZ from sampling. We note that the covariance matrix Afis pro-

portional to the noise to signal ratio. This explains the fact
noted in Ref. 45 concerning the slow convergence of the

P(Z|X,0)<p(X|Z,0)Pu(Z). Einstein—Maxwell algorithm.

In this expression, we have two kinds of dependendigs:
Z are independent across componemZ) =II{_,p(Z') 4.1 Fast MCMC Implementation

but each discrete imag& ~Py(Z') has a Markovian A cyitical aspect of the above implementation is the com-
structure.(ii) GivenZ, the fieldsX are independent through putational cost of the sampling steps. Indeed, the conver-
the set S, p(X|Z,0)=Il;sp(x|z;,0) but dependent gence of the MCMC sampling may require a great number
through the components because of the mixing operationof iterations to ensure the convergence. Therefore, we need
P(X|z,0) =N, ;Au, AR, A*+R,) where z, is the  fast steps in the proposed algorithm to obtain a great num-
vector label on the site, i, =[1.,... .0, ]t @ndR, the ber of iterations with a reasonable computational cost.
diagonal matrix diagp? raz 1 ' " ' We investigated this direction by avoiding the sources
L e nz - sampling. In fact, the sourc&sare sampled in the MCMC
(2) draw S|Z from algorithm but only the statistid®,; andR¢¢ are used in the
generation of the parametdrs, R, (see Eq(6)]. Therefore
we avoid the sampling of the sourc&and we sample
directly the statistic matriceR,s andRgs. We show in the
following how these simulations are easily performed in
our problem formulation.

p(SIX,z,0)=TT Ms, ;marost yarosy,
reS

where thea posteriori mean and covariance are easily

computed? After the drawing of the labelg, the multidimensional
source imageSare classified inti =K, X ... XK, regions

VrapOSE [A* RE—1A+ Rz_l]_l (SZ)ZZI..K defined by

MEPOS= VPO A* R, +R; a1, S;={resz(r)=z.

Sampling #: Given the observationX and the samples In each regionS,, the sources are Gaussians with mean
(Z,5), the sampling of the parametérbecomes an easy and covariance

task(this represents the principal reason for introducing the
hidden sourcesThe conditional distributiop(6|X,Z,S) is k1 141
factorized into two conditional distributions Vo=[A*RIA+R, 717, @

P(6|X,Z,9)=p(A,R|X,S)p(u,0|S,Z) m,=V,(A* R 3%, +R; ).
leading to a separate sampling &,R,) and(u,o). Choos-

ing the O priors developed in the previous section, ghe We then define the statistic matricB$? and R{? on the
posteriori distributions are regionsS, as

Journal of Electronic Imaging / April 2004/ Vol. 13(2) /5
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10 20 30 40 50 60 10 20 30 40 50 60

(a)- True classification for source 1 (b)- True classification for source 2

2

10 20 30 50

(e)- Observed image 1 (f)- Observed image 2

Fig. 1 True and observed images: the observations are a noisy mixture of true images.

1 RZ=R,+UZ*,C*
R = x,s*, RP=—- s .s*, xsT LT Enl
XS |Sz| rezS r ss | erESZ 8
@  RE=R,+V,(A*R, U} + U} )CH
1
R<sz>:|82| r;s XX C,(Up iR, *A+U, ) +C,U,Ch

whereV,=C,C} . The matriceR; andR, are not random
From the expression&/) and (8) and some algebraic matrices and are updated at each iteration. The matrices
manipulations, the statistic®®? and R? can be decom- U, ,, U,,, andU,, are random matrices and have the fol-
posed as follows: lowing distributions:

6/ Journal of Electromc Imaging / April 2004 / Vol. 13(2)
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1 (2)
Un,lN O,@Rxxﬁgﬂn s

1 -1 *p—1
Up2~ Ovaz Mapez Ry @10 |,
z

UWNWinHSzlaln)]-

Win(v,2) denotes the Wishart distribution with degree of
freedomv and parameter matriX. We have thus avoided
the sampling of the sources and, instead, we generate di-
rectly the random statistic matrices in each classom
Normal and Wishart distributions, then we compute the to-
tal statisticsR,s and R, by linear combination of the ma-
tricesR? andRY as follows:

(a)- Estimated classification for source 1 (b)- Estimated classification for source 2

Rys=

%)

K
1
§ 2 [SIRE,

(¢)- Source 1 (d)- Source 2

Fig. 2 Source reconstruction and segmentation.

K
1
Rss= E zzl |SZ| R<szs) :

The key point of this acceleration is the use of the Bartlett
decomposition to sample from a Wishart distributfén.

This procedure is summarized in Appendix B. slower that the mixing elements and the means. Finally,
_ _ Fig. 2 shows a sample from source and labels marginal
5 Simulation Results distributions compared to the original images, illustrating

To illustrate the feasibility of the algorithm, we generate the ability of the algorithm to recover the true signals and
two discrete fields of 6464 pixels from the Potts model  their classifications.
We test our algorithm on real data. The first source is a
satellite image of an earth region and the second source

) represents the cloudérst row of Fig. 7. We have artifi-
Pw(Z)=[W(a;)] *expl a; > Izr—zs} cially mixed these two images and added a Gaussian noise.
s : The mixed images are shown in the second row of the
aj=2 figure. We choose an Ising model for the labéiso col-

ors). The results of the algorithm are illustrated in the third
row of the figure where the sources are successfully sepa-
wherea;= 2 implies a homogeneous structysee Fig. 1 rated. The last row illustrates the joint segmentation of the
The first source has three coldthree Gaussiansvhereas  sources. We note that the results of the two segmentations
the second has two coloftsing mode). obtained from the noisy mixed images are the same as the
Conditionally toZ, the continuous sources are generated results which can be obtained if we directly apply the seg-
from Gaussian distributions of meapg=[—3 0 3] and mentation on the original sources.
variances o0y=[10.30.5 for the first source andu,
=[—-33], 0,=[0.12] for the second source.
The sources are then mixed with the matrik 6 Conclusion

_r0.850.4 . . . . .
=[05305d and a white Gaussian noise with covariance In this contribution, we propose an MCMC algorithm to

—r317 ; i i i i . . . K
R.=[15] is added. The signal to noise ratio is 1-3 dB. jointly estimate the mixing matrix and the parameters of the
Flgure 1 shows the true discrete labels, the true sources anﬂidden Markov fields. The prob|em has an interesting natu-

the mixed images obtained on the detectors. ral hidden variable structure leading to a two-level data
We apply the MCMC a'QOFIIQm dehscnbed in hSec._ IV'to augmentation procedure. The observed images are embed-
obtain the Markov chana®™, R, ,uj(k). andcrjk( ). Fig- ded in a wider space composed of the observed images, the

ure 3 shows the histograms of the element samplésavfd original unknown images and hidden discrete fields model-
their empirical expectation&). We note the concentration ing a second attribute of the images and allowing to take
of the histograms representing approximately the marginalinto account a Markovian structure. In this work the num-
distributions around the true values and the convergence ober of sources and the number of the discrete values of the
the empirical expectations after about 2000 iterations. Fig-hidden Markov field are assumed to be known. However,
ures 4, 5 and 6 show the convergence of the empiricalthe implementation of the algorithm could be extended to
expectations of the sources’ parameters and the noise covanvolve the reversible jump procedure on which we are
riance. We note that the convergence of the variances isvorking.
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Fig. 3 Convergence of the empirical expectations of a;; after 2000 iterations and the corresponding
histograms.

7 Appendix A: a posteriori Distributions P(A,R]X,S,2)=NAA, ,Fp)Wim(Rgl; Vp Sp).

7.1 (A,R.)—a posteriori

According to the Bayes rule, tteeposterioridistribution of
the (A,R,) parameters is given by

The parameters of these distributions are updated according
to the following equations:

Vp:K+a,(K:|S|),
VedA,)=[R;'+R; 1" [R 'VedA,) +R; 'VedAy)],
Fot=R;MHR.Y,

R,=K 'R @R,

R.=a 'RL'®R,,

A,=RR.. T

SS !

P(A,RX,S,Z)=p(X,S,Z|A,RIIIo(AR,),
<p(X|S,ARIIIH(AR,).

The priorll has the same advantage as the conjugate prior
in that the posterior distribution remains in the same family
of the prior distribution. In the case of th&(R,) param- .
eters, thea posterioridistribution is normal inverse Wishart Re=Ryx

1

S)t= —[kR +aRy+(Ag—A,)

X (K~ 1R33+ *1R2;1) YAg—
— RyeRoe Ry

AT,

8/ Journal of Electromc Imaging / April 2004 / Vol. 13(2)
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Fig. 4 (a) Convergence of the empirical expectations of the means m; of the source 1, (b) histograms
of the means of the source 1, (c) convergence of the empirical expectations of the means m;; of the
source 2, (d) histograms of the means of the source 2.

The statisticsR,s and Rgs are computed from the 7.2 (,uk,v=(ri)—a posteriori

sampled sourceS or directly sampled according to th&r  The same computations as in the previous section lead to a

pOSteriori distributions in the fast version of the MCMC normal inverse gamma for the means and variances of the
implementationRSS is thea priori expectation of the ma- univariate Gaussians

trix Rgg

Res= E [Redl. o .,
s|7° P(pk vk |X:S1Z):Mﬂk;/~’«prvp)g(vk ;nprﬁp)-

Journal of Electronic Imaging / April 2004/ Vol. 13(2) /9
PROOF COPY 002402JEl



PROOF COPY 002402JEI

Snoussi and Mohammad-Djafari

2 2 2
(e (o} e}
11 12 13
3 3 3
25 25
2
2 2
1.5 L 15
1
1 1
0.5 0 0.5
0 5000 10000 0 5000 10000 5000 10000
(a)
2 2 2
(o] (¢} (o]
11 12 13
1500 1500 1500
1000 1000 1000
500 500 500
0 0
-2 0 2 4 o 2 4 ) a
Q)
2 2
G214 S22
4.5 8
4 7
3.5
(=]
3
2.5 5
2 4
1.5 a
|
2
0.5
00 2000 4000 6000 8000 10000 1 2000 4000 6000 8000 10000
(©
2 2
S2q 22
2500 1000
2000 800
1500 600
1000 400
500 200
92 [»] 2 4 [=3 95 o 5 15
(d)

Fig. 5 (a) Convergence of the empirical expectations of the variances o; of the source 1, (b) histo-
grams of the variances of the source 1, (c) convergence of the empirical expectations of the variances
aj; of the source 2, (d) histograms of the variances of the source 2.
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Fig. 6 (a) Convergence of the empirical expectations of the noise
variances, (b) histograms of the noise variances.

Fig. 7 From top to bottom: original sources, mixed sources, esti-
mated sources, and segmented images.

whereSy is the region of the imagesuch that the sampled
label is equal tk

Sc={r e 8|Z(r)=k},
Ni=1Sy/.

8 Appendix B: Bartlett Decomposition
Let W be anmX m matrix distributed from a Wishart dis-

The parameters of these distributions are updated accordin§fiution Wim(»,X). A direct simulation from this distribu-

to the following equations:

( Ny s+ aW(k),uo
=
P Nlaw(k’
Uk
Vp=—,
P Nlawg
Nlawg
< np: 2 |
0 2 0
aW,vg S 1 NkaWk _
Bo=——t 5t 55 (5 ko),
P 2 2 2 Nlawg
3o S(0)
S=—,
Ny
\Sz: 2 s(n?=N&?,
reSk
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tion consists in samplingy m-variate normal vectors
~NMN(0,l ) and then computing

v T
B ElU kU k BT,

14

where 3 =BB'. This method involvesym simulations
from univariate normal distribution leading to a high com-
putational cost whem increases.

An alternative is to use the Bartlett decomposition which
can be summarized in the following theorem:

Theorem LetW be W,(»,2) and 3=BB'. Put W
=1/vBVV'BT, whereV is a lower-triangulamx m matrix
with positive diagonal elements. Then the elemanig1
<j<i=m) are independent, and ea@}fﬁ is Xi,iﬂ (i
=1,...m) while eachv;; is M(0,1) (j <i).

The pseudo code of this algorithm is

[[---Sampling Wishart distribution----//

Journal of Electronic Imaging / April 2004/ Vol. 13(2) / 11
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e tdf=v
e W=zerogm,m);
efori=1:1:m-1,
* W(i,i)=sqrtf2xgamrndtdf/2,1)];

e tdf=tdf—1;
e W(i+1:m,i)=randn(m—i,1);
* end

e W(m,m)=sqrtf2*xgamrndtdf/2,1)];
« B=[chol(2)]’;

* W=B*W, and

e W=W+W'/v;

/l---End of sampling------ 1l

wheregamrndis a random generator from a gamma distri-
bution, randn from a normal distribution anahol is the
Cholesky factorization of a matrix.
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