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Abstract. We consider the problem of the blind separation of noisy
instantaneously mixed images. The images are modeled by hidden
Markov fields with unknown parameters. Given the observed im-
ages, we give a Bayesian formulation and we propose a fast version
of the MCMC algorithm based on the Bartlett decomposition for the
resulting data augmentation problem. We separate the unknown
variables into two categories: 1. The parameters of interest which
are the mixing matrix, the noise covariance and the parameters of
the sources distributions. 2. The hidden variables which are the un-
observed sources and the unobserved pixel segmentation labels.
The proposed algorithm provides, in the stationary regime, samples
drawn from the posterior distributions of all the variables involved in
the problem leading to great flexibility in the cost function choice.
Finally, we show the results for both synthetic and real data to illus-
trate the feasibility of the proposed solution. © 2004 SPIE and IS&T.
[DOI: 10.1117/1.1666873]

1 Introduction and Model Assumptions

The observations arem images (Xi) i 51...m , each imageXi

is defined on a finite set of sitesS, corresponding to the
pixels of the image:Xi5(xr

i ) r PS . The observations are a
noisy linear instantaneous mixture ofn source images
(Sj ) j 51...n defined on the same setS

xr
i 5(

j 51

n

ai j sr
j 1nr

i , r PS, i 51...m,

where A5(ai j ) is the unknown mixing matrix,Ni

5(nr
i ) r PS is a zero-mean white Gaussian noise with vari-

ancese i

2 . At each siter PS, the matrix notation is

xr5Asr1nr . ~1!

The noise and source components (Ni)1...m and (Sj ) j 51...n
are supposed to be independent. However, the noise can be
correlated across detectors, that is, the noise covariance ma-
trix Re5E@nn* # is not necessarily diagonal.

Many techniques have been proposed for the source
separation problem based on entropy and information theo-
retic approach1–5 and the maximum likelihood principle6–12

leading to contrast functions13–16 and estimating
functions.17–20Among the limitations of these methods, we
can mention:~i! the lack of possibility to account for some
prior information about the mixing coefficients or other pa-
rameters involved in the problem,~ii ! the lack of informa-
tion about the degree of uncertainty of the mixing matrix
estimate particularly in the noisy mixture,~iii ! the objective
functions are intractable or difficult to optimize when the
source model is more elaborate.

Recently, a few works using the Bayesian approach have
been presented to push further the limits of these
methods.2,21–32 For example, in the Bayesian framework,
we can introduce somea priori information on the sources
and on the mixing elements as well as on the hyperparam-
eters by assigning appropriate prior laws for them. Also,
based on posterior laws, we can quantify the uncertainty of
any estimated parameter. Finally, thanks to sampling
schemes, we can propose tractable estimation algorithms.

In previous works, we have assumed Gaussian mixture
models for sources where the labels are white.33,34 How-
ever, this model does not take into account the temporal
correlation of the sources. An extension to the hidden Mar-
kov models is considered in the one-dimensional case29 and
its formulation in the two-dimensional case@hidden Mar-
kov fields ~HMF!# seems to be appropriate in image sepa-
ration applications. The main objective of this paper is to
study the image separation problem using the HMF model.
Each source is modeled by a double stochastic process
(Sj ,Zj ). Sj is a field of values in a continuous setR and
represents the real observed image in the absence of noise
and mixing deformation.Zj is the hidden Markov field rep-
resenting the unobserved pixel classification whose compo-
nents are in a discrete set,Zr

j P$1...K j%. The joint probabil-
ity distribution of Zj satisfies the following properties:

H ;Zj , PM~zr
j uZS\$r %

j !5PM~zr
j uZN~r !

j !,

;Zj , PM~Zj !.0,

where ZS\$r %
j denotes the field restricted toS\$r %5$,
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PS,,Þr % andN(r ) denotes the set of neighbors ofr, ac-
cording to the neighborhood system defined onS for each
source component. According to the Hammersley–Clifford
theorem, there is an equivalence between a Markov random
field and a Gibbs distribution

PM~Zj !5@W~a j !#
21 exp$2Ha j

~Zj !%,

where Ha j
is the energy function anda j is a parameter

weighting the spatial dependencies supposed to be known.
Conditionally to the hidden discrete fieldZj , the source

pixels Sr
j , r PS are supposed to be independent and have

the following conditional distribution:

p~Sj uZj ,h j !5)
r PS

pr~sr
j uzr

j ,h j !,

where the positive conditional distributions depend on the
parameterh jPRd. We assume in the following thatpr

(•uz) is a Gaussian distribution with parametersh j

5(m jk ,s jk
2 )k51...K .

We note that we have a two-level inverse problem.

1. The problem described by~1 ! when the mixing ma-
trix A is unknown which is the source separation
problem.27,35,36

2. Given the source componentSj , the estimation of the
parameterh j and the recovering of the hidden clas-
sification labelsZj which is known as the unsuper-
vised segmentation.37

Table 1 gives a summary of the notations for the variables,
the parameters and the indices used in this paper and their
meanings.

In this contribution, given the observationsXi ( i
51...m) we propose a solution to jointly separate then
unknown sources and perform their unsupervised segmen-
tations. In Sec. 2, we give a Bayesian formulation of the

problem. In Sec. 3, we propose an original construction of
the prior law selection for the parameters. In Sec. 4, a fast
implementation of an MCMC algorithm based on the data
augmentation technique is proposed. In Sec. 5, numerical
simulations on synthetic and real data are shown to illus-
trate the feasibility and the performances of the proposed
solution.

2 Bayesian Formulation

Given the observed dataX5(X1,...,Xm), our objective is
the estimation of the mixing matrixA, the noise covariance
Re , the means and variances (m jk ,s jk

2 ) j 51...n,k51...K of the
conditional Gaussians of the prior distribution of the
sources. Thea posterioridistribution of the whole param-
eter u5(A,Re ,m jk ,s jk

2 ) contains all the information that
we can extract from the data. According to the Bayesian
rule, we have

p~uuX!}p~Xuu!p~u!.

In Sec. 3, we will discuss the attribution of appropriate
prior distribution p(u). Concerning the likelihood, it has
the following expression:

p~Xuu!5(
Z
E

S
p~X,S,Zuu!dS

5(
Z

H )
r PS

N~xr ;Amzr
,ARzr

A* 1Re!J PM~Z!, ~2!

whereN denotes the Gaussian distribution,xr the (m31)
vector of observations on the siter, zr is the vector label,
mzr

5@m1z1
,...,mnzn

# t and Rzr
the diagonal matrix

diag@s1z1

2 ,...,snzn
2 #. We note that the expression~2! does not

have a tractable form with respect to the parameteru be-
cause of the integration of the hidden variablesS and Z.
This remark leads us to consider the data augmentation
algorithm38 where we complete the observationsX by the

Table 1

r Pixel location

S The set of all pixel locations

Variables

Xi The image on the detector number i

Sj The source image number j

Zj The image classification of the source number j

X (Xi) i51...m (known data)

S (Sj) j51...n (hidden sources)

Z (Zj) j51...n (hidden labels)

xr The vector of observed data at the pixel r

sr The vector of sources at the pixel r

Parameters

A The mixing matrix

Re Noise covariance

hk
j 5(mk

j ,v k
j 5(sk

j )2)
k51...Kj

The means and variances of the source j
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hidden variables (Z,S); the complete data are then
(X,S,Z). In a previous work,39 we implemented
restoration-maximization algorithms in the one-
dimensional case to estimate the maximuma posteriories-
timate ofu. We extend this work in two directions:~i! the
sources are two-dimensional signals,~ii ! we implement an
MCMC algorithm to obtain samples ofu drawn from their
a posteriori distribution. This gives the possibility of not
being restricted to estimate the parameters by its maximum
a posteriori. We can consider another cost function and
compute the corresponding estimate.

3 a priori Selection

The Bayesian method is more and more attracting practi-
tioners. The basic reason is its ability to combine, in a
simple way, two sources of information: information from
collected data anda priori information. This combination
consists in multiplying the likelihood by the prior:
p(datauu)P(u) to obtain the posteriorp(uudata). How-
ever, the problem that arises with this method is the choice
of a prior distribution for the parameteru. In a recent
work,40 the author proposed an original rule to construct a
prior. The rule’s principle consists in exploiting the prior
knowledge without adding irrelevant information. The re-
sulting prior distribution~calledd prior! is the minimizer of
a cost function representing a trade-off between some de-
sirable behavior~given by a distance to a reference prior!
and uniformity~given by a distance to Jeffreys prior!. The
proposed cost function has the following expression:

J~P!5geE P~u!Dd~pu ,p0!du

1guE P~u!logP~u!/Aig~u!idu,

wherepu5p(datauu) is the likelihood ofu, ge /gu is the
trade-off between the confidence degreege in the reference
distribution p0 and the uniformity degreegu , g(u) is the
Fisher information matrix andDd is thed divergence41

Dd~p,q!5
* p

12d
1

* q

d
2

* pdq12d

d~12d!
.

By variational calculus, thed prior has the following
form ~see Ref. 40 for details!:

P~u!}e2ge /guDd~pu ,p0!Aig~u!i . ~3!

We note that the prior selection needs to be established
in a specific geometry in that it depends on the measure of
distinguishability~here thed divergence! between probabil-
ity distributions.

The rest of this section is the computation of thed prior
in our special case.* Our parameter of interest isu

5(A,Re ,h). A is the mixing matrix,Re the noise covariance
andh contains all the parameters of the sources model

H h j5~hk
j !k51...K j

,

hk
j 5~mk

j ,vk
j 5~sk

j !2!
,

where the indexj indicates the sourcej, k indicates the
Gaussian componentk of the distribution of the sourcej
and (mk

j ,vk
j ) are the corresponding mean and variance. Our

objective is the computation of thed priors ~3!. We have an
incomplete data problem with two hierarchies of hidden
variables, the sourcess1...T and the labelsz1...T so that the
complete data are (x1...T ,s1...T ,z1...T).

We assume that the reference distributionp0 belongs to
the parametric family$pu% so that it is defined by the ref-
erence parametersu5(A0,Re

0,h0). The expressions of the
Fisher matrix and thed divergence are intractable for the
incomplete model. Consequently, they are approximated in
the following by their expression in the complete model
case.

We begin by the computation of the Fisher information
matrix.

3.1 Fisher Information Matrix

The Fisher matrixg(u) is defined as

gi j ~u!52 E
x1...T ,s1...T ,z1...T

F ]2

] i] j
log p~x1...T ,s1...T ,z1...Tuu!G .

The factorization of the joint distribution
p(x1...T ,s1...T ,z1...Tuu) as

p~x1...T ,s1...T ,z1...Tuu!

5p~x1...Tus1...T ,z1...T ,u!p~s1...Tuz1...T ,u!p~z1...Tuu!

and the corresponding expectations as

E
x1...T ,s1...T ,z1...T

@•#5 E
z1...T

@•# E
s1...Tuz1...T

@•# E
x1...Tus1...T ,z1...T

@•#

and taking into account the conditional independences
@(x1...Tus1...T ,z1...T)⇔(x1...Tus1...T) and (s1...Tuz1...T)
⇔Ps1...T

j uz1...T
j )], the Fisher information matrix will have a

block diagonal structure as follows:

g~u!5F g~A,Re! ¯ @0#

] g~h1!

�

•

@0# ¯ g~hn!

G .

3.1.1 (A,Re)-block

The Fisher information matrix of (A,Re) is

Fi j ~A,Re!52E
s

E
xus

F ]2

] i] j
log p~x1...Tus1...T ,A,Re!G*The reader who is not interested in derivation details can directly consult

the prior expressions obtained in the end of this section.
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which is very similar to the Fisher information matrix of
the mean and covariance of a multivariate Gaussian distri-
bution. The obtained expression is

g~A,Re!5F S E
s1...T

RssD ^ Re
21

@0#

@0# 2
1

2

]Re
21

]Re

G ,

whereRss51/T( stst* and^ is the Kronecker product~de-
fined as in Ref. 42!.

We note the block diagonality of the (A,Re)-Fisher ma-
trix. The term corresponding to the mixing matrixA is the
signal to noise ratio as can be expected. Thus, the amount
of information about the mixing matrix is proportional to
the signal to noise ratio. The induced volume of (A,Re)
@the local volume of the differential manifold of the set of
distributionsp(XuS,A,Re)] is then

ug~A,Re!u1/2dAdRe5

UEh RssUm/2

uReum1n11/2
dAdRe .

3.1.2 (h j) block

Eachg(h j ) is the Fisher information of a one-dimensional
Gaussian distribution~see Ref. 29 for details!

ug~h j !u1/2dh j5)
k51

K j 1

vk
3/2

dh j .

3.2 d Divergence (d50)

In this paper, we fix the value ofd to 0. The 0 divergence
between two parameters u5(A,Re ,h) and u0

5(A0,Re
0,h0) for the complete data likelihood

p(x1...T ,s1...T ,z1...Tuu) is

D0~u:u0!5 E
x,s,zuu0

log
p~x1...T ,s1...T ,z1...Tuu0!

p~x1...T ,s1...T ,z1...Tuu!
.

Similar developments of the above equation as in the com-
putation of the Fisher matrix based on the conditional in-
dependences lead to an affine form of the divergence,
which is a sum of the expected divergence between the
(A,Re) parameters and the divergence between the sources’
parametersh

D0~u:u0!5 E
suh0

D
us

0~A,Re :A0,Re
0!1D0~h:h0!,

whereD
us

0 means the divergence between the distributions

p(x1...TuA,Re ,s1...T) and p(x1...TuA0,Re
0,s1...T) keeping the

sourcess1...T fixed.
The 0 divergence betweenh andh0 is the sum of the 0

divergences between each source parameterh j andh0 j due
to the a priori independence between the sources. In the
following, we omit the superscriptj referring to the source
j to have clear expressions. The divergence betweenh and

h0 is obtained as a particular case (n51) of the general
expression derived in the multivariate case in Ref. 29 lead-
ing to a normal inverse gamma prior

P0~h!5)
k51

K

P0~hk!

5)
k51

K

NS mk ;m0,
vk

n0D GS vk
21;

n0

2
,
n0

2
v0D ~4!

with n05awk
0, a5ge /gu , wk

0 is the marginal probability
of the labelk andG~•! the Gamma distribution

G~xud,b!}xd21 exp@2bx#.

The expressions of the averaged divergences between
the (A,Re) parameters are

E
suh0

D
us

0~A,Re :A0,Re
0!5

1

2 S loguReRe
0 21u1Tr~Re

21Re
0!

1TrFRe
21~A2A0! E

suh0

@Rss#

3~A2A0!* G D
leading to the following 0 priors on (A,Re):

P0~A,Re
21!5NS A;A0,

1

a
Rss

021
^ ReDWim~Re

21;a,Re
0 21!

3U E
suh

@Rss#Um/2

whereRss
0 5E

suh0Rss andWn is the Wishart distribution of

an n3n matrix

Wn~R;n,S!}uRun2~n11!/2 expF2
n

2
Tr~RS21!G .

Therefore, the 0 prior is a normal inverse Wishart prior
~conjugate prior!. The mixing matrix and the noise covari-
ance are nota priori independent. In fact, the covariance
matrix of A is the noise to signal ratio 1/aRss

021
^ Re . We

note a multiplicative term which is a power of the determi-
nant of thea priori expectation of the source covariance
E

suh@Rss#. This term can be injected in the priorp(h) and

thus the (A,Re) parameters and theh parameters area
priori independent.

We note that the precision matrix for the mixing matrix
A (aRss

0
^ Re

21) for P0 is the product of the confidence
term a5ge /gu in the reference parameters and the signal
to noise ratio. Therefore, the resulting precision of the ref-
erence matrixA0 is not only oura priori coefficientge but
the product of this coefficient and the signal to noise ratio.
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4 MCMC Implementation

We divide the vector of unknown variables into two sub-
vectors: the hidden variables (Z,S) and the parameteru and
we consider a Gibbs sampler

repeat until convergence,
1. draw (Z̃(h),S̃(h));p(Z,SuX,ũ (h21))
2. draw ũ (h);p(uuX,Z̃(h),S̃(h))
This Bayesian sampling43 produces a Markov chain

( ũ (h)), ergodic with stationary distributionp(uuX). After
h0 iterations~warming up!, the samples (ũ (h01h)) can be
considered to be drawn approximately from theira poste-
riori distributionp(uuX). Then, by the ergodic theorem, we
can approximatea posterioriexpectations by empirical ex-
pectations

E@ f ~u!uX#'
1

H (
h51

H

f ~ ũ~h01h!!. ~5!

Sampling (Z,S): The sampling of the hidden fields (Z,S)
from p(Z,SuX,u) is obtained by,

~1! draw Z̃ from

p~ZuX,u!}p~XuZ,u!PM~Z!.

In this expression, we have two kinds of dependencies:~i!
Z are independent across components,p(Z)5P j 51

n p(Zj )
but each discrete imageZj;PM(Zj ) has a Markovian
structure.~ii ! GivenZ, the fieldsX are independent through
the set S, p(XuZ,u)5P r PSp(xr uzr ,u) but dependent
through the components because of the mixing operation
p(xr uzr ,u)5N(xr ;Amzr

,ARzr
A* 1Re) where zr is the

vector label on the siter, mzr
5@m1z1

,...,mnzn
# t andRzr

the

diagonal matrix diag@s1z1

2 ,...,snzn
2 #.

~2! draw S̃uZ̃ from

p~SuX,Z,u!5)
r PS

N~sr ;mr
apost,Vr

apost!,

where thea posteriori mean and covariance are easily
computed44

Vr
apost5@A* Re

21A1Rzr

21#21

mr
apost5Vr

apost~A* Re
21xr1Rzr

21mzr
!.

Sampling u: Given the observationsX and the samples
(Z,S), the sampling of the parameteru becomes an easy
task~this represents the principal reason for introducing the
hidden sources!. The conditional distributionp(uuX,Z,S) is
factorized into two conditional distributions

p~uuX,Z,S!}p~A,ReuX,S!p~m,suS,Z!

leading to a separate sampling of (A,Re) and~m,s!. Choos-
ing the 0 priors developed in the previous section, thea
posteriori distributions are

1. Inverse Wishart for the noise covariance and inverse
gamma for sources’ variances.

2. Normal for the mixing matrix and for the sources’
means.

The expressions of these distributions are developed in
the Appendix A. We give below the expressions for (A,Re)
in the particular case whena50 ~Jeffreys prior!

5
Re

21;Wim~np ,SP!, np5
uSu2n

2
,

Sp5
uSu
2

~Rxx2RxsRss
21Rxs* !,

p~AuRe!;N~Ap ,Gp!, Ap5RxsRss
21,

Gp5
1

uSu
Rss

21
^ Re ,

~6!

where we define the empirical statisticsRxx

51/uSu( rxrxr* , Rxs51/uSu( rxrsr* and Rss51/uSu( rsrsr*
~the sourcesS are generated in the first step of the Gibbs
sampling!. We note that the covariance matrix ofA is pro-
portional to the noise to signal ratio. This explains the fact
noted in Ref. 45 concerning the slow convergence of the
Einstein–Maxwell algorithm.

4.1 Fast MCMC Implementation

A critical aspect of the above implementation is the com-
putational cost of the sampling steps. Indeed, the conver-
gence of the MCMC sampling may require a great number
of iterations to ensure the convergence. Therefore, we need
fast steps in the proposed algorithm to obtain a great num-
ber of iterations with a reasonable computational cost.

We investigated this direction by avoiding the sources
sampling. In fact, the sourcesS are sampled in the MCMC
algorithm but only the statisticsRxs andRss are used in the
generation of the parameters@A, Re ~see Eq.~6!#. Therefore
we avoid the sampling of the sourcesS and we sample
directly the statistic matricesRxs andRss. We show in the
following how these simulations are easily performed in
our problem formulation.

After the drawing of the labelsZ, the multidimensional
source imagesSare classified intoK5K13...3Kn regions
(Sz)z51...K defined by

Sz5$r PSuZ~r !5z%.

In each regionSz , the sources are Gaussians with mean
and covariance

Vz5@A* Re
21A1Rz

21#21,
~7!

mz5Vz~A* Re
21xr1Rz

21mz!.

We then define the statistic matricesRss
(z) and Rxs

(z) on the
regionSz as

Fast joint separation and segmentation . . .
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Rxs
~z!5

1

uSzu
(

r PSz

xrsr* , Rss
~z!5

1

uSzu
(

r PSz

srsr* ,

~8!

Rxx
~z!5

1

uSzu
(

r PSz

xrxr* .

From the expressions~7! and ~8! and some algebraic
manipulations, the statisticsRxs

(z) and Rss
(z) can be decom-

posed as follows:

Rxs
~z!5R11Un,1* Cz* ,

Rss
~z!5R21Vz~A* Re

21Un,1* 1Un,2* !Cz* ,

Cz~Un,1Re
21A1Un,2!1CzUwCz* ,

whereVz5CzCz* . The matricesR1 andR2 are not random
matrices and are updated at each iteration. The matrices
Un,1 , Un,2 , andUw are random matrices and have the fol-
lowing distributions:

Fig. 1 True and observed images: the observations are a noisy mixture of true images.
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Un,1;NS 0,
1

uSzu
Rxx

~z!
^ I nD ,

Un,2;NS 0,
1

uSzu
Rz

21mzmz* Rz
21

^ I nD ,

Uw;Wi n@ uSzu,I n!].

Wi n(n,S) denotes the Wishart distribution with degree of
freedomn and parameter matrixS. We have thus avoided
the sampling of the sources and, instead, we generate di-
rectly the random statistic matrices in each classz from
Normal and Wishart distributions, then we compute the to-
tal statisticsRxs andRxs by linear combination of the ma-
tricesRxs

(z) andRss
(z) as follows:

Rxs5
1

uSu (z51

K

uSzuRxs
~z! ,

Rss5
1

uSu (z51

K

uSzuRss
~z! .

The key point of this acceleration is the use of the Bartlett
decomposition to sample from a Wishart distribution.46

This procedure is summarized in Appendix B.

5 Simulation Results

To illustrate the feasibility of the algorithm, we generate
two discrete fields of 64364 pixels from the Potts model

H PM~Zj !5@W~a j !#
21 expH a j(

r;s
I zr5zsJ

a j52
,

wherea j52 implies a homogeneous structure~see Fig. 1!.
The first source has three colors~three Gaussians! whereas
the second has two colors~Ising model!.

Conditionally toZ, the continuous sources are generated
from Gaussian distributions of meansm15@23 0 3# and
variances s15@1 0.3 0.5# for the first source andm2

5@23 3#, s25@0.1 2# for the second source.
The sources are then mixed with the matrixA

5@0.50 0.89
0.85 0.44# and a white Gaussian noise with covariance

Re5@1 5
3 1# is added. The signal to noise ratio is 1–3 dB.

Figure 1 shows the true discrete labels, the true sources and
the mixed images obtained on the detectors.

We apply the MCMC algorithm described in Sec. IV to
obtain the Markov chansA(h), Re

(h) , m jk
(h) , ands jk

2(h) . Fig-
ure 3 shows the histograms of the element samples ofA and
their empirical expectations~5!. We note the concentration
of the histograms representing approximately the marginal
distributions around the true values and the convergence of
the empirical expectations after about 2000 iterations. Fig-
ures 4, 5 and 6 show the convergence of the empirical
expectations of the sources’ parameters and the noise cova-
riance. We note that the convergence of the variances is

slower that the mixing elements and the means. Finally,
Fig. 2 shows a sample from source and labels marginal
distributions compared to the original images, illustrating
the ability of the algorithm to recover the true signals and
their classifications.

We test our algorithm on real data. The first source is a
satellite image of an earth region and the second source
represents the clouds~first row of Fig. 7!. We have artifi-
cially mixed these two images and added a Gaussian noise.
The mixed images are shown in the second row of the
figure. We choose an Ising model for the labels~two col-
ors!. The results of the algorithm are illustrated in the third
row of the figure where the sources are successfully sepa-
rated. The last row illustrates the joint segmentation of the
sources. We note that the results of the two segmentations
obtained from the noisy mixed images are the same as the
results which can be obtained if we directly apply the seg-
mentation on the original sources.

6 Conclusion

In this contribution, we propose an MCMC algorithm to
jointly estimate the mixing matrix and the parameters of the
hidden Markov fields. The problem has an interesting natu-
ral hidden variable structure leading to a two-level data
augmentation procedure. The observed images are embed-
ded in a wider space composed of the observed images, the
original unknown images and hidden discrete fields model-
ing a second attribute of the images and allowing to take
into account a Markovian structure. In this work the num-
ber of sources and the number of the discrete values of the
hidden Markov field are assumed to be known. However,
the implementation of the algorithm could be extended to
involve the reversible jump procedure on which we are
working.

Fig. 2 Source reconstruction and segmentation.
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7.1 (A,Re)—a posteriori

According to the Bayes rule, thea posterioridistribution of
the (A,Re) parameters is given by

p~A,ReuX,S,Z!}p~X,S,ZuA,Re!P0~A,Re!,

}p~XuS,A,Re!P0~A,Re!.

The priorP0 has the same advantage as the conjugate prior
in that the posterior distribution remains in the same family
of the prior distribution. In the case of the (A,Re) param-
eters, thea posterioridistribution is normal inverse Wishart

p~A,ReuX,S,Z!5N~A;Ap ,Gp!Wim~Re
21;np ,Sp!.

The parameters of these distributions are updated according
to the following equations:

¦

np5K1a,~K5uSu!,
Vec~Ap!5@Rv

211Ra
21#21@Rv

21Vec~Av!1Ra
21Vec~A0!#,

Gp
215Rv

211Ra
21,

Rv5K21Rss
21

^ Re ,
Ra5a21Rss

0 21
^ Re ,

Av5RxsRss
21,

Sp
215

1

K1a
@kR̂e1aR01~A02Av!

3~K21Rss
211a21Rss

0 21!21~A02Av!T,

R̂e5Rxx2RxsRss
21Rsx.

Fig. 3 Convergence of the empirical expectations of aij after 2000 iterations and the corresponding
histograms.
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The statisticsRxs and Rss are computed from the
sampled sourcesS̃ or directly sampled according to theira
posteriori distributions in the fast version of the MCMC
implementation.Rss

0 is thea priori expectation of the ma-
trix Rss

Rss
0 5 E

suh0

@Rss#.

7.2 (mk ,v5sk
2)—a posteriori

The same computations as in the previous section lead to a
normal inverse gamma for the means and variances of the
univariate Gaussians

p~mk ,vk
21uX,S,Z!5N~mk ;mp ,vp!G~vk

21;hp ,bp!.

Fig. 4 (a) Convergence of the empirical expectations of the means mij of the source 1, (b) histograms
of the means of the source 1, (c) convergence of the empirical expectations of the means mij of the
source 2, (d) histograms of the means of the source 2.
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grams of the variances of the source 1, (c) convergence of the empirical expectations of the variances
s i j of the source 2, (d) histograms of the variances of the source 2.
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The parameters of these distributions are updated according
to the following equations:

¦

mp5
Nks̄1awk

0m0

Nk
†awk

0
,

vp5
vk

Nk
†awk

0
,

hp5
Nk

†awk
0

2
,

bp5
awk

0v0

2
1

s2

2
1

1

2

Nkawk
0

Nk
†awk

0 ~ s̄2m0!2,

s̄5
( r Psk

s~r !

Nk
,

s25 (
r PSk

s~r !22Nks̄
2,

whereSk is the region of the imagej such that the sampled
label is equal tok

HSk5$r PSuZ~r !5k%,
Nk5uSku.

8 Appendix B: Bartlett Decomposition

Let W be anm3m matrix distributed from a Wishart dis-
tribution Wim(n,S). A direct simulation from this distribu-
tion consists in samplingn m-variate normal vectorsvk

;N(0,I m) and then computing

W5B
(1

nvkvk
T

n
BT,

where S5BBT. This method involvesnm simulations
from univariate normal distribution leading to a high com-
putational cost whenn increases.

An alternative is to use the Bartlett decomposition which
can be summarized in the following theorem:

Theorem LetW be Wim(n,S) and S5BBT. Put W
51/nBVVTBT, whereV is a lower-triangularm3m matrix
with positive diagonal elements. Then the elementsv i j (1
< j < i<m) are independent, and eachv i i

2 is xn2 i 11
2 ( i

51,...,m) while eachv i j is N(0,1) (j , i ).
The pseudo code of this algorithm is
//---Sampling Wishart distribution----//

Fig. 6 (a) Convergence of the empirical expectations of the noise
variances, (b) histograms of the noise variances.

Fig. 7 From top to bottom: original sources, mixed sources, esti-
mated sources, and segmented images.
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• td f5n;
• W5zeros(m,m);
• for i 51:1:m21,

• W( i ,i )5sqrt@2* gamrnd(td f /2,1)#;
• td f5td f21;
• W( i 11:m,i )5randn(m2 i ,1);

• end
• W(m,m)5sqrt@2* gamrnd(td f /2,1)#;
• B5@chol(S)#8;
• W5B* W; and
• W5W* W8/n;
//---End of sampling------//

wheregamrndis a random generator from a gamma distri-
bution, randn from a normal distribution andchol is the
Cholesky factorization of a matrix.
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Gif-sur-Yvette, France, in 2000. He also re-
ceived the his degree in signal processing
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