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Abstract

This paper is a synthetic overview of regularization, maximum entropy and probabilistic methods for some inverse problems
such as deconvolution and Fourier synthesis problems which arise in mass spectrometry. First we present a unified description

of such problems and discuss the reasons why simjile maethods cannot give satisfactory results. Then we briefly present

the main classical deterministic regularization methods, maximum entropy-based methods and the probabilistic Bayesian
estimation framework for such problems. The main idea is to show how all these different frameworks converge to the
optimization of a compound criterion with a data adequation part and an a priori part. We will however see that the Bayesian
inference framework gives naturally more tools for inferring the uncertainty of the computed solutions, for the estimation of
the hyperparameters or for handling the myopic or blind inversion problems. Finally, based on Bayesian inference, we present
a few advanced methods particularly designed for some mass spectrometry data processing problems. Some simulation results
illustrate mainly the effect of the prior laws or equivalently the regularization functionals on the results one can obtain in
typical deconvolution or Fourier synthesis problems arising in different mass spectrometry technique. (Int J Mass Spectrom,

in press) © 2002 Published by Elsevier Science B.V.

Keywords:Regularization; Maximum entropy; Bayesian inference; Deconvolution; Fourier synthesis

1. Introduction are, in general, transformed and distorted version ef
the ideal physical quantity of interest which is thess
1.1. Data processing problems in mass spectrometry mass distribution of the object under the test. 35

Some distortions are related directly to the measures

In mass spectrometry, the data acquisition and ment system, for example the blurring effect of thez
processing is an essential part of the final measure-time-of-flight (TOF) [1] mass spectrometry data cans
ment process. Even if, in some cases, only some be written as a simple one-dimensional convolutiogp

pre-processing is done during the acquisition process, equation: 40
the post-acquisition data processing is a vital part of
many new mass spectrometry instruments. The main 8(7) = ff(t)h(f —t)dt, 1,

reason is that the raw data do not, in general, directly

represent the parameters of interest. These raw dataVherei(z) is the point spread function (psf) of blur-42
ring effect, f (¢) the desired mass distribution ap¢t) 43

* Corresponding author. E-mail: djafari@Iss.supelec.fr the data. Fig. 1 shows an example where in place of
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Fig. 1. Blurring effect in TOF mass spectrometry data: (a) desired spectra; (b) observed data.

observing the signaf (¢) in (a) the signal(¢) in (b) the observed data are related to the Fourier transfoem

has been observed. (FT) or Laplace transform (LT) of the mass distribusg
Some others are due to the output parts of the instru- tion: 60

ment, for example the interaction and coupling effect

of focal plane detectors (FPD) [2] or non-uniformity 8(¥) = / f(s)expl—st}do, 62

ofion conversion devices (electron multipliers)ingen-  wjiths = jwors = jo + a, (3) &3

eral and in matrix-assisted laser desorption ionization _ . .
(MALDI) techniques in particular. These distortions Where« is an attenuation factor. Fig. 2 shows an exes

can be written as a two-dimensional convolution equa- @mple of the theoretical spectruits) in (a) and the s
tion: corresponding observed datér) in (b). We may ob- 66

serve that, due to the attenuation and the noise in tke
g, y) =/ fx, h(x' —x,y —y)dxdy. (2) data, a simple inversion by inverse FT (c) may nais
give satisfactory result. 69
In some other mass spectrometry techniques such as In this paper we try to give a unified approach too
Fourier transform ion cyclotron resonance (FT-ICR), deal with all these problems. For this purpose, first wa
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Fig. 2. The reference spectrum (a), its corresponding simulated data in FT-ICR (b) and the inverse FT of the data (c).

note that all these problems are special cases of
¢ = [ fonesa. (4)

Then, we assume that the unknown functjbi) can
be described by a finite number of parameters-

[)C]_, e xn]: 76
fr) =Y x;bj(r), (5)
j=1 77

whereb; (r) are known basis functions. With this as-7s
sumption the raw data(i) = g(s;),i =1,... ,mare 79
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related to the unknown parametardy prior information about the errors and about the unso
; knownsx. This can be done through the genesg)- 121
v(i) = g(s;) = ZAi,jxja uIarlzat|on-t.he-or-yor in a more gengrgl way t-hrogghzz
= the probabilistic inference and statistical estimatiorn.2s
In probabilistic methods, the rough prior informationsa
with A; ; = /bj(r)h(r,sz')dr, (6) about the errorg and the unknowns are used to 125
_ _ . _ _ assign the prior probability distributiop(e|¢1) and 126
which can be written in the simple matrix formn= p(x|¢,) whereg, ande, are their respective paramsz7
Ax The inversion problem can then be simplified t0 gters. 128
the estimation of given A andy. Two approaches Thus, the first steps of solving the problem are teo

are then in competition: (a) the dimensional control clearly identifyx, A, 6 andy and to define an opti-130
approach which consists in an appropriate choice of mgjjity criterion for# which may also depends on thes:
the basis function$;(r) andn < m in such away  pyperparameteis = [¢1, ¢,]. The next step is to find 132
that the equatiotly = Ax be well conditioned; (b) the  an efficient algorithm to optimize it, and finally, thess
more general regularization approach where a classicalthjrg step is to characterize the obtained solution. \ie
sampling basis fob;(r) with desired resolution is || however see that these steps are forcibly depens
choose no matter if > m or if A is ill-conditioned. dent to each other. 136

In the following, we follow the second approach |n this paper we focus on this general problem. Wer
which is more flexible for adding more general prior  first consider the case where the model is assumexd
information onx. We must also remark that, in gen- g pe perfectly known4 and® known). This is the 139
eral, it is very hard to give a very fine mathematical sjmpleinversion problemThen we consider the moreo
model to take account for all the different steps of the general case where we have also to infer alolthis 141
measurement process. However, very often, we cans themyopicor blind inversionproblem. We may alsoz42
find a rough linear model for the relation between the \yant to infer on the hyperparametesrom the data 143
data and the unknowns (one- or two-dimension con- (ynsupervised inversion). In some cases, we may have
volution or FT or any other linear transformation). But g sets of data, one with known input (for calibratioms
this model may depend on some unknown parame- or point spread function estimation purposes) and ane
ters@, for example the amplitude and the width of the  \yith unknown input. Finding an optimal solution fot47

Gaussian shape psf. It is then usual to write the psf and the unknown input from the two sets ofs
y = Apx + €, @) data _can be considered mmilti-channel blind decon-149
volution 150

wheree is a random vector accounting for the remain-
ing uncertainties of the model and the measurement ; Why simple naé methods do not give
noise process.

When the direct model is perfectly known, the main
objective of the data processing step is to obtain an
estimatex of thex such thatx optimizes some op-
timality criteria. We will see that, very often, a data
matching criterion such as a least square (LS) criterion
J(x) = |ly — AX||2 does not give satisfactory results. ® the operato” may not be invertibleA~* does not 156

151
satisfaction? 152

When the degradation model is assumed to be pee-
fectly known, we are face to a simple inversion probsa
lem. However, even in this case 155

This is, in general due tdl-posednessf the prob- exists); 157
lem which, in the case of linear problems, results in ® it may admit more than one inverséK; and 1ss
ill-conditionedlinear systems of equations [3]. To ob- ~ B2[B1(A) = B2(A) = I wherel is the identity 150

tain a satisfactory result, we need to introduce some operator); 160
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e it may be ill-posed or ill-conditioned meaning that problem is discretized and we are faced to a linear
there existst andx + asx for which |[A™%(x) — system of equations = Axwhich may be either underzo2
A~ 1(x + aéx)| never vanishes evendf — 0. or over-determined. 203
In the first case the equatign= Ax has more than 204

one solution and one way to obtain a unique solutioss

is to define a criterion, for exampl&(x, m) to choose 206

that unique solution by 207

These are the three necessary conditiong»a$-
tence uniquenessand stability of Hadamard for the
well-posedness of an inversion problem [4—6]. This
explains the reason for which, in general, even in this
simple case, many in&e methods based on general- x = arg MiN. ax—y) A, m), (8) 208
ized inversion or on least squares may not give sat- ) o ) _
isfactory results. Fig. 3 shows, in a simple way, the wherem is an a priori solution and\ a distance mea-209
ill-posedness of a deconvolution problem. In this fig- SU'€ _ _ ‘ S 210
ure, we see that three different input signals can re- The solution to this constrained optimization can:
sult three outputs which are practically indistinguish- P& obtained via Lagrangian techniques [7] which conz
able from each other. This means that, data adequations'tStS of defining the Lagrangial(x, ) = A(x,m) + 213
alone cannot distinguish between any of these inputs. * (v —AX) and searching fo@., x) through 214

As a concluspn, we see that, apart from. thg data, (3 _ argmin (DQ) = infy £(x, 1)},
we need extra information. The art afversionin
a particular inverse problem is how to incluglest

enough prior informatiorto obtain a satisfactory re-  As an example, whea (x, m) = 1/2|x — m|? then 216

. - 9
X =argmin {L(x, A)}. @) 215

sult. In the following, we will see that, to do this, the solution is given by 217

there are, at least, three approaches: (i) classical deter-

minist regularization approach; (ii) information theory X =m+ AAR) Ty — Am). (10) 218

and entropy-based approach; and (iii) probabilistic and One can remark that, whem = O we havei — 21

more specifically the Bayesian estimation approach. AYAAY~1y and this is the classical minimum norrazo
_ The main idea of this paper is to show hovy aII_ these generalized inverse solution. oot

different frameworks converge to the optimization of Another example is the case wherk(x,m) = 222

a compound criterion: a data adequation part (likeli- . x;In (x;/m) which is more detailed in Sectiorezs
J
224

hood) and an a priori part (or penalization). We will 31
see however that the 3aye§ian framework -gives MOr€ " The main issue here is that, this approach providega
tools, for example, for inferring the uncertainty of the
computed solutions, for accounting for more specific
knowledge of the errors and noise and for the estima-
tion of the hyperparameters and for handling myopic
and blind inversion problems.

unigue solution to the inverse problem, but in generadg
this solution remains sensitive to error on the data.227

In the second case the equatipn= Ax may not 228
even has a solution. One then can try to define a s&

lution by 230

x =argmin{A(y, AX)}, (11) 231

2. Regularization methods whereA(y, z) is a distance measure betweeandz. 232
The case whereA(y,z) = |y — z||? is the 233

Conceptually, regularization means finding a unique well-known least squares (LS) method. In this cases
and stable solution to an ill-posed inverse problem. it is easy to see that amywhich satisfies the normalass
A review of the regularization theory and its different equationA'Ax = A'ly is a LS solution. IfA'A is in- 236
presentations is out of the scope of this paper. Here, vertible and well-conditioned thet = (A'A)~1Aly 237
we adopt a practical discrete approach, i.e., when theis again the unique generalized inverse solution. Bz
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Fig. 3. lll-posedness of a deconvolution problem: inputs on the left give practically indistinguishable outputs.

230 in general, this is not the casa!A is rank deficient {x :Vj,x; > 0}. Another example i€ = {x : |x]|2 < 247
240 or ill-conditioned and we need to constrain the space «} where the solution can be computed via the optis
241 of the admissible solutions. The constraint LS is then mization of 249

2¢2 defined as J@) = Iy = A@ 17+ 2llx]?. (13) 250

£ = argmi — Ax|?}, 12 , R , ,
243 x = argmin.c{lly 117} (12) The main technical difficulty is the relation betweers:

244 whereC is a convex set. The choice of the €4t pri- «a and A. The minimum norm LS solution can alsas2
245 mordial to satisfy the three conditions of a well-posed be computed using the singular values decompaosi
246 solution. An example is the positivity constraiBt= tion, where there is a link between the choice of the:
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threshold for truncation of the singular values and
or A.

In the general case, it is always possible to define a 3.1. Classical ME methods

unigue solution as the optimizer of a compound crite-
rion J(x) = ||y — AX||2 + AF (x) or the more general
criterion

J(x) = Al(}’an) + )\«AZ(xs m)v (14)

where A; and A, are two distances or discrepancy
measures). a regularization parameter andis an a
priori solution. The main questions here are: (i) how
to chooseA; and A, and (ii) how to determine and

m. For the first question, many choices exist:

e Quadratic orL, distance:A(x,z) = |x —z||2 =
PIFIETEE N

e L, distanceA(x,z) = |Ix —z||” = Zj |xj—z;17;

o Kullback distanceA(x,z) = >_; x;In(x;/z;) —
(xj —zj);

e roughness distancet(x, z) any of the previous dis-
tances withg; = x;_1 0rz; = (x;_1+x;-1)/2 or
any linear functionz; = ¥ (x¢, k € N(j)) where
N (j) stands for the neighborhood g¢f (One can

3. Maximum entropy methods 296

297

The notion of entropy has been used in differemis
ways in inversion problems. The classical approash
is consideringx as a distribution and the dagaas 300
linear constraints on them. Then, assuming that the
data constraints are satisfied by a non-empty set:@f
solutions, a unique solution is chosen by maximizings
the entropy 304

S@x)=—Y xjlnx;, (16)
J

305

or by minimizing the cross-entropy or the Kullbackses
Leibler distance between and a default solutiom 307

KL(x,m):ijln%—(xj—mj), 17)
7 j

308

subject to the linear constraings= Ax. This method 309
can be considered as a special case of the regular-
ization technique described in previous section fan

see the link between this last case and the Gibbsianthe under-determined case. Here, we have, m) = 312

energies in the Markovian modeling of signals and
images).
The second difficulty in this approach is determination
of the regularization parametarwhich is discussed
at the end of this paper, but its description is out of
the scope of this paper.

As a simple example, we consider the case where hately heréD(1) is not a quadratic function of and

both A1 and A, are quadraticy (x) = ||y — AXI|3, +
Xllx —m||2 with the notationiz||3, = z'Wz The opti-
mization problem, in this case, has an analytic solution

% = (AWA+10)" 1 (A'Wy— Qm), (15)

which is a linear function of the a priori solution
and the datay. Note also that whem =0, Q =1
andW = I we havet = (A'A +1I)~1A'y and when
A = 0 we obtain the generalized inverse solutidns
(A'A)~1Aly.

As we mentioned before, the main practical diffi-
culties in this approach are the choice#f and A»
and determination of the hyperparameterand the
inverse covariance matricd% and Q.

KL (x, m) and the solution is given by 313

%; = m; exp[-[AX];], 315

with A = argmin (D) = Aly — G(AA, m)}, (18) 316

whereG(s,m) = Zj mj(1 — exp[-s;]). Unfortu- s17
318
thus there is not an analytic expressionffoHowever, 319
it can be computed numerically and many algorithras
have been proposed for its efficient computation. See
for example [8,9] and the cited references for mose
discussions on the computational issues and algoritk
implementation. 324

For other choices of entropy expressions and the
presentation of the optimization problem in continuouss
case (functions and operators in place of vectors aod
matrices) see [10]. 328

However, even if in these methods, thanks teo
convex analysis and Lagrangian techniques, the ceso-
strained optimization of (16) or (17) can be replacest
by an equivalent unconstrained optimization, the oz
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tained solutions satisfy the uniqueness condition of e Determine P by minimizing KL(P; ©) subject 367
well-posedness but not always the stability one [5,6]. to the data constraints. Hepe(x) is a reference ses
measure corresponding to the prior informatics

3.2. Entropy as a regularization functional on the solution. The solution is obtained via theo

Lagrangian and is given by 37
Entropy (16) or cross-entropy (17) has also been ‘

used as a regularization functionab(x, m) in (14). dP(x,2) = expRAY — In Z(A)]dp(x), 373

The main difficulty in this approach is the determina- whereZ(A) = / exp[AX] dw(x).

tion and proper signification of the regularization pa- c 37

rameterir. Note that the criterion The Lagrange parameters are obtained by search-

J0) = lly — AX| + A KL (x, m), (19) ilng theAL/;nique solution o In Z(\) /or; = y;, | = :i

is convex onR” and the solution, when exists, is The solution to the inverse problem is then definets
unique and can be obtained either by any simple as the expected value of this distributiond) = 379

gradient-based algorithm or by using the same La- Ep{X}= [xdP(x,}). 380
grangian technique giving: These steps are very fo[mal. In fact, it is possibder
. to show that the solutiof (L) can be computed inss2

&j =m;exp[-[AA]], two ways: 383
with e Via optimization of a dual criterion: the solutioh 384
is gxpressed as a function of the dual variable 385

A = argmin, {’D(A) —ly —G(AA, m) + %IIAIIZ} _ A by 2(§) = VG (5, m) where 386

(20) G(s,m)=InZ(s,m) = In/ explstx]du(x),
C

Note that the only difference between (18) and (20)
is the extra term Ax||A]|2 in D(A). Note also that
the solution is not a linear function of the daga = argmax{D() = Aly — G(AW)}. 390
but a linear approximation to it can be obtained by

replacing KL(x, m) by its Taylor series expansion up Via optimization of a primal or direct criterion:  3g3
to the second order which writes

m=E, (X} = /cx du(x) andi 289

X =argmin.c{H(x,m)} 393

J(x) = |ly — AX|? + A(x — m)'diagln] " (x —m), st., y = AxwhereH (x, m) 304
which gives = sug{stx —G(s,m)}. 395
% = m + diagm] (A diagpm]A' + A1)~ 1(y — Am). What is interesting here is the link between thes®
two options. Note that 397

.3. Maximum entr in the mean .
3:3. Maximum entropy in the mea e FunctionsG and H depend on the reference meass

. . . sureu(x). 399

The following summarizes the different steps of the e The dual criterionD(.) depends on the data andoo
approach: )

the functionG. 401

e Considerx as the mean value of a quantiXy/ e C, e The primal criterionH (x, m) is a distance measureo2

whereC is a compact set on which a probability law betweenx andm which meansH (x,m) > 0 and 403

P is definedx = Ep{X}, and the daty as exact Hx,m) =0 iff x =m; H(x,m) is differentiable 404

equality constraints on ity = AX= AEp{X}. and convex oif andH (x,m) = oo if x ¢ C. 405
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e If the reference measure is separablgx) =
[1021 1j(xj) then P is too: dP(x. 1) = [T},
dP;(x;,A) and we have

Gls,m) = g(s;,m)),
J

H(x,m) =Y hj(xj,m)), % =gj(s;,m),

J
where g; is the logarithmic Laplace transform of
wj: gj(s) = In [ exp[s{du;(x); andh; is the
convex conjugate of ;: i (x) = max {sx—g;(s)}.

The following table gives three examples of choices
for 1; and the resulting expressions for andh;;:

To illustrate this, let consider the case of linear ims9
verse problemy = Ax+ €. The first step is to write 440
down explicitly our hypothesis: starting by the hyza1
pothesis thak is zero-mean (no systematic errorysz
white (no correlation for the errors) and assuming that
we may only have some idea about its ene@éy: 444
1/(2¢), and using either the intuition or the maximunmus
entropy principle (MEP) lead to a Gaussian prior lawss
€ ~N(0,1/(2¢9)I). Then, using the direct model= 447
Ax + € with this assumption leads to 448

p(yIx, ¢) oc expl-olly — AX||?].

The next step is to assign a prior law to the unknowms
x. This step is more difficult and needs more cautios:

(21) 449

452

mj(x) 8j(s) hj(x,m)
Gaussian expf(1/2)(x — m)?] 1/2(s — m)? 1/2(x — m)?
Poisson m* /x! exp[—m] explm — s] —xIn(x/m)+m—x
Gamma x®Lexp[-x/m] In(s —m) —In(x/m)+ (x/m) — 1

We may remark that the two famous expressions of

Again here, let illustrate it through a few examples. ka3

Burg and Shannon entropies are obtained as speciakne first example, we assume that, a priori we do net

cases. For more details see [11-21].

As a conclusion, we see that the maximum entropy
in mean extends in some way the classical ME ap-
proach by giving other expressions for the criterion to
optimize. Indeed, it can be shown that where ever we
optimize a convex criterion subject to the data con-
straints we are optimizing the entropy of some quan-
tity related to the unknowns and vise versa. As a fi-
nal remark, we see that even if this information the-

have (or we do not want or we are not able to accoust
for) any knowledge about the correlation between thes
components of. This leads us to

p@®) =[]rixp.
J

457

(22)
458

Now, we have to assigp;(x;). For this, we may 4so
assume to know the mean valuas and some ideaaso
about the dispersions around these mean values. Ehis

ory approach gives some more insights for the choice again leads us to Gaussian law&m |, ale_), and if 4e2

of criteria to optimize, it is more difficult to account
for the errors on the data and there is no tools for the
determination of the hyperparameters.

4. Bayesian estimation approach

In Bayesian approach, the main idea is to translate tain

our prior knowledge about the errors and about the
unknowns to prior probability laws. Then, using the
Bayes rule the posterior law of the unknowns is ob-
tained from which we deduce an estimate for them.

we assumerxzj = 1/(20), Vj, we obtain 463
px) ocexpl-0 ) |x; — m;[’] = exp[-0|lx —m|?].

; 465

(23) 466

With these assumptions, using the Bayes rule, we ab-

468
p(xly) ocexpl-oly — AXI? — 0llx —m|?].  (24) a6

This posterior law contains all the information wero
can have orx (combination of our prior knowledges71
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and data). Ifx was a scalar or a vector of only two prior law 514
components, we could plot the probability distribu-

. - . . . . . —_— . . . - . .

tion and look at it. But, in practical applications, ~ P(xj) =G(@,m;) o< (x;/m )~ expl=x;/m ], 516
may be a vector with huge number of components. (27) s17

For this reason, in general, we may choospaint
estimatorto summarize it ljest representing valje
For example, we can choose the vakievhich cor-
responds to the maximum gf(x|y)—the maximum
a posteriori (MAP) estimate, or the valug which m
corresponds to the mean of this posterior—fls- ~ P(xj) X—J, exp[—m] (28)
terior mean (PM) estimate. We can also generate a
samples (using any Monte Carlo method) from this is a better choice. 522
posterior and just look at them as a movie or use In all these cases, the MAP estimates are ais
them to compute the PM estimate. We can also use ways obtained by minimizing the criteriof(x) = 524
it to compute the posterior covariance matrix from —In p(x|y) = |y — AX||?> + AF(x) where F(x) = s25
which we can infer on the uncertainty of the proposed — In p(x). Itis interesting to note the different expresss
solutions. sions we obtain fotF(x) for these choices contairs27
In the Gaussian priors case already presented, it isalso different entropy expressions for the 528
easy to see that, the posterior law is also Gaussian and When, a priori we know that; are not independent s29
the both estimates are the same and can be computedor example when they represents the pixels of e

would be a better choice. 518
In some other cases we may know thatare dis- s19
crete positive values. Then a Poisson prior law 520

521

by minimizing image, we may use a Markovian modeling 531
J@x) = —Inpxly) = lly = AX|* + A|lx —m|?, p(xjlxi, k € 8) = p(x;lxe. k € N())), (29) s32
with A = o _ é_ (25) whereS = {1,..., N} stands for the whole set oks3
¢ o pixels andN (j) = {k : |k — j| < r} stands forrth s34
We may note here the analogy with the quadratic order neighborhood of. 535
regularization criterion (14) with the emphasis that  With some assumptions about the border limits [23hs
the choiceA1(y, AX) = ||y — AX||? and Ax(x, m) = such models again result to the optimization of ther
lx — m|? are the direct consequences of Gaus- same criterion with 538
sian choices for prior laws of the noise and the un-
knownsx. F@) = 4o(x.2) =) 0. 2)
The Gaussian choice for; (x ;) may not always be j >40
a pertinent one. For example, we may a priori know ~ Wherez; = v (x, k € N (), (30) sa1

that the distribution of; around their means ; are
more concentrated but great deviations from them are
also more likely than a Gaussian distribution [22]. This
knowledge can be translated by choosing a generalized
Gaussian law

with different potential functiong (x;, z;). 542
A simple example is the case wherg= x;_1 and s43
¢ (x;, z;) any function in between the following: 54

X X
{lxj_Zj|a, aln=L 4+ =L
1 p Zj  zj 546
p(xj) o exp —Plxj—mﬂ ., l<p=<2
X

(26)

In 4 )
xjln—+(x; —z;
J Zj J J 547

In some cases we may know more, for example we See [24-26] for some more discussion and properties
may know thatx; are positive values. Then a Gamma of these potential functions.
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5. Main conclusion and unifying viewpoint this prior knowledge is to imagine a binary valuegbo

random vectog with p(z; = 1) = e andp(z; = 0) = 590

As one of the main conclusions here, we see that, a 1 — ¢, and describe the distribution efhierarchically so1
common tool between the three previous approaches

(31) 592

is defining the solution as the optimizer of a com- PXil2j) = 2;jPo(x;).
pound criterion: a data dependent part(y, AX) and with po(x;) being either a Gaussiap(x;) = s93
an a priori partAz(x, m). In all cases, the expression A7, 52) or a Gamma lawp(x;) = G(a.b). The so4
of A1(y, AX) depends on the direct model and the hy- second choice is more appropriate while the first s
pothesis on the noise and the expressioaptx, m) sults on simpler estimation algorithms. The inferense

depends on our prior knowledgenfThe only differ- can then be done through the joint posterior 597
ence between the three approaches is the arguments

leading to these choices. In classical regularization, P> 21y) « p(y[x)p(x|z)p(@).

the arguments are based on notion of energy, in maxi- The estimation of is then calleddetectionand that see

mum entropy approach they are based on information 4 , estimation The case where we assumez) = 600

theory, and in Bayesian approach, they are based ON[T. p(z;) = o™ (1 — )@= with ny the number so1
. . - J

the choice of the prior probability laws. of ones andr the length of the vectog, is called so2

However, the Bayesian approach has some more ex-gernoulli process and this modelization fois called sos

tra features: it gives naturally the tools to account for garnoulli—Gaussiaror Bernoulli-Gammaas a func- sos
uncertainties and errors of modeling and data through {5, of the choice forpo(x;). 605

the likelihood p(ylx). It also gives natural tools to The difficult step in this approach is the detectiamns
account for any prior information about the unknown step which needs the computation of

signal through the prior probability lay(x). We also

have access to the whole posteriax y) from which, ply) « p(z) / p(ylx)p(x|z) dx (33)
not only we can define an estimate but also, we can

quantify its corresponding uncertainty. For example, and then the optimization ovg0, 1} wheren is the 609
in the Gaussian case, we can use the diagonal ele-length of the vectog. The cost of the computation ok1o
ments of posterior covariance matrix to put error bars the exact solution is huge (a combinatorial problengr.
on the computed solution. We can also compare pos- Many approximations to this optimization haver2
terior and prior laws of the unknowns to measure the been proposed which result to different algorithms fers
amount of information contained in the observed data. this detection—estimation problem [27]. To avoid coraz4
Finally, as we will see in the last section, we have finer plex and costly algorithms of detection—estimatians
tools for hyperparameters estimation and for handling and still be able to catch the mass spectrometry puise
myopic or blind deconvolution problems. In the fol- shape prior information, there is a simpler modelingx?
lowing we keep this approach and present methods generalized Gaussian modelinghich consist of as- 618
with finer prior modeling more appropriate for mass suming p(x) oc exp[—6 Zj [x;1], 1 < < 2 0r 619

(32) 598

607

608

spectrometry signal processing applications. p(x) ocexp[=6 3 ; |x; — x;-1|*] or still a combina- 620
tion of them 622
6. Advanced methods p(x) o exp[—6o Z X190 — 6 Z lxj — xj_1]%].
j j 623
6.1. Bernoulli-Gamma and generalized Gaussian (34) 624
modeling

The first one translates the fact that, if we plot thes
In mass spectrometry, the unknown quanstys histogram of a typical spectrum, we see that great
mainly composed of positive pulses. One way to model number of samples are near to zero, but there are
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628 samples which can go very far from this axis. The andp(z) = N(0, R,) with R, = 02(D'D)~* which ee2
629 second expression translates the same fact but onleads to 663
630 the differences between two consecutive samples

631 and the third choice combines the two facts. The —INp&.zly) = lly — AX|® + Allx — z||” + p|DZ|*. 5
632 more interesting fact of such a choice as a prior (37) ee6
633 law for x is that the corresponding MAP criterion

634 is convex and the computation of the solutions can !ts joint optimization can be obtained through the fode

635 be done easily by any gradient-based type algo- lowing relaxation iterations: 608
636  rithm. £ =(AA+ D) 1Al +12),

. in o A\ (38)
637 6.2. A mixed background and impulsive signal ¢=x1\DD+ ﬁl * 669

638 modeling
A better choice forp(x|z) is p(x|z) o exp[-0 670

639 In some techniques of mass spectrometry, a better 2_; 1*j — 2;|“] which leads to £73
640 model forx is to assume it as the sum of two compo-

641 nentst — x1+x: a smooth background; and pulse  — N p(x. zly) = Ily —AXI® + 1 Y Ix; — 2,1

642 shapex,. To catch the smoothnessxof we can assign J 673
643 a Gaussian distributiop(x1) = N (x1,, Ry;) and to +1Dz|12. (39) 674

644 catch the pulse shape b we can again either use _ ) )
e45 the Bernoulli-Gamma or Bernoulli-Gaussian models The main drawback of this model is thain p(x, zly) 675

sas  of the previous section or use a generalized Gaussian!S Neither quadratic iz nor in x. However, the so- 676

647 prior lution can be obtained via an iterative gradient-based
algorithm. 678
p(x2) o expl=0 Y |xz,|°]. (35)
648 j
7. Numerical experiment 679

649 The inference can then be done through the joint pos-

terior p(x1, x2|y) o« p(y|x) p(x1) p(x2) which writes . o ) o .
6ot u ) PYRPLIP The main objective of this section is to illustrateso

652 Inp(x1,x2ly)=|ly — A(x1+x2)° some of the points we discussed in previous sectioss.
As we discussed, one of the main critical points #a2
inverse problems is the choice of appropriate prieus
—0 Z 2, 1% (36) laws. In this paper, we only focus on this point and vess

J give a very brief comparison of results obtained witlas
some of the aforementioned prior law choices. Wes
have limited ourselves to the prior laws which resutz
to concave MAP criteria to avoid the difficult task odss

653 +(x1 —xlo)tR;ll(xl —X1)

655 One possible way to estimaig andx; is the joint
656 Optimization of this posterior through the following
657 relaxation iterations:

global optimization problems. 689
{31 = (A'"A + MR H LAY, + aam), We also limit ourselves to two inverse problemsgo
658 | X2 =argmax,{In p(x1, x2|y)}. deconvolution and Fourier synthesis. This comparisen
can be done objectively on simulated data. However;
659 6.3. Hierarchical modeling we must generate data representing some real andedif-

ficult situations to be able to see the differences lpes
660 Another approach is a hierarchical modeling. As an tween different methods. For this reason, we simulatee
661 appropriate example, we proposéx|z) = N (z, UZZI ) two spectra: 696
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Fig. 4. Simple deconvolution results for the first reference spectrum. The original spectrum and data are those of Fig. 1. (a) Quadratic
regularization (QR); (b) QR with positivity constraint; (c) MAP estimation with generalized Gaussian prior; (d) MAP estimation with
—x Inx prior; () MAP estimation with Inx prior.
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Fig. 5. Deconvolution results of Fig. 4 showed in logarithmic scale: (a) Gaussian prior; (b) truncated Gaussian prior; (c) truncated
generalized Gaussian prior; (d) entropitn x — x prior; (e) entropic Inc + x prior.
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() a simple case where the background is flat
(Fig. 1a) and

(i) a more complicated case where the background
is not flat (Fig. 2a).

We used these spectra as references for measuring thé

performances of the proposed data processing meth-
ods.

7.1. Simple deconvolution

nal of Mass Spectrometry 12013 (2002) 1-19 15

of y scale which has the advantage of being equalts
zero fory = 0. 736
As it can be seen from these results, Gaussian priar
or equivalently quadratic regularization does not gives
satisfactory result, but in almost all the other cases
the results are satisfactory, because the correspondiag
priors are more in agreement with the nature of tha
unknown input signal. The Gaussian prior (a) is not at
all appropriate, Gaussian truncated to positive axis (B
is a better choice. The generalized Gaussian (c) and
the —x Inx entropic priors (d) give also practicallyrss

For this case, first we used the first spectrum as the same results than the truncated Gaussian case.74he
the reference. Then using it, we simulated data by Gamma prior (e) seems to give slightly better resuit
convoluting it with a Gaussian shape psf and added (less missing and less artifacts) than all the others. This
some noise (White Gaussian such that SNRO dB). can be explained if we compare the shape of all these
Fig. 1 shows this original spectrum and the associated Priors shown in Fig. 6. The Gamma prior is sharpey,
simulated data. Then, using these data, we appliednearto zero and has longer tail than other priors. It this

some of the different methods previously explained.
Fig. 4 shows these results. All these results are ob-
tained by optimizing the MAP criterion

J(x) = —1In p(x|y) o |y — AXI? + Ao (x),

with different prior lawsp(x) o exp[—x ¢ (x)]. The
main objective of these experiments is to show the
effects of the prior law (x) or equivalently the choice
of the regularization functionap(x) on the results.
We limited ourselves here to the following choices:

(a) Gaussian or equivalently quadratic regularization
o(x) = aZxJZ.,a > 0;

(b) Gaussian truncated on positive axis or equiv-
alently quadratic regularization with positivity
constraintp (x) = OlZX/Z,Xj >0,a > 0;

(c) Generalized Gaussian or equivalently regu-
larization with¢ (x) =« > |x;|?, p = 1.1,x; >
0,a > 0;

(d) ShannonxIn x) entropyg (x) = a(}_x;Inx; —
xj),x; >0,a>0;

(e) Burg (Inx) entropy or equivalently Gamma prior
¢p(x)=aQInx;+x;),x; >0,a>0.

Fig. 5 shows the same result on a logarithmic scale
for the amplitudes to show in more detail the low
amplitude pulses. We used ldg+ y) scale in place

enforces signals with greater number of samples negr
to zero and still leaves the possibility to have very high,
amplitude pulses. However, we must be careful on this
interpretation, because all these results depend algo
on the hyperparameterwhose value may be criticaksg
for this conclusion. In these experiments, we used the
same value for all cases. Description and discussigg
of the methods to estimate from the data is out of 759

08 1

0.6

Fig. 6. Plots of the different prior lawg(x) o exp[—a¢ (x)]:
(a) truncated Gaussiap(x) = x2, « = 3; (b) truncated gen-
eralized Gaussiam(x) = x?, p = 11, « = 4; (c) entropic
¢(x) =xInx —x, a = 10; (d) entropicp(x) = Inx +x, o =0.1.
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Fig. 7. Reconstructed spectra in FT-NMR data: (a) shows the weighted FFT solution; (b), (c) and (d), respectivelfs, giyeand
X = X1 + X2. The true peaks are given by circles and the true background is given by dashed lines.
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focus of this paper. We can, however, mention that, in nave methods cannot give satisfactory results and the
general, the results are not too sensitive to this value need for some prior knowledge about the unknowns7to

when it is fixed to the right scale. obtain satisfactory results. We then presented briefty
the main classical regularization, maximum entropys

7.2. Fourier synthesis inversion in NMR mass based and the Bayesian estimation-based metheds.

spectrometry We showed how all these different frameworks coss:

verge to the optimization of a compound criteriomo2

As a second example, we used the second Spectrumwe discussed the Superiority of the Ba.yesia.n franses
as the reference. But here, we simulated the FID dataWork which gives more tools for the estimation of thes

that one could observe using a relaxationrcf 0.2. hyperparameters or for inferring the uncertainty eds
Here also, we added some noise on the data and thenthe computed solutions or for handling the myopic ess
using them, we applied the mixed backgrousad blind inversion problems. Finally, we presented sorse

pulse shape signal model previously explained in this advanced methods based on Bayesian inference @ad
paper. Fig. 7 shows the result which is obtained more Particularly designed for some mass spectrometny

precisely by optimizing the following criterion: data processing problems. We illustrated some mus
merical results simulating deconvolution and Fourier

J(x1,x2)=—In p(x1,x20y) = |y — A(x1 +x2)||° synthesis problems to illustrate the results we can ek
+)~12(X1(j +1)— x1(j))2 tain using some of the presented methods. The main

objective of these numerical experiments was to shew
the effect of different choices for prior laws or equivsis
alently the regularization functional on the result. sis
However, as we have remarked in previous sectioss,
which involves a usual data-based term and two reg- in general, the solution of an inverse problem deperus
ularization terms: the first one addresses the smoothon our prior hypothesis on errogsand onx. In practi- s19
backgroundr; and the second one addresses the im- cal applications, we can only formalize these hypotieo
pulsive component,. The chosen heavy-tailei, — esis either through prior probabilities or through rege1
L, potential function is a hyperbolic cost [28,29]. So ularization functionals depending on some hyperpas
that, J is strictly convex and the estimated object is rameters (regularization parameter for example). Bes
defined as the minimizer of overRR’} . The optimiza- termination of these hyperparameters from the data ke-
tion is achieved by an iterative coordinate descent al- comes then a crucial part of the problem. Descriptiesms
gorithm [7]. The minimizerst;, X2 andx = x1 + X2 of the methods to handle this problem is out of focus @b
are given in Fig. 7(b)—(d). It is to be compared to the this paper. Interested readers can refer to [30] for der
“weighted FFT” solution of Fig. 7(a). The proposed terministic methods such as cross-validation technies
solution accounts for positivity and clearly separates or to [31-42] for Bayesian inference-based methodss
background and peaks. Moreover, the peaks are more Another point we did not discussed is the validityso
accurately identified. of linear model with additive noise¢ = Hx + € and 31
all the hypothesis needed to write down the likelihoaek

p(y|x). For example, we assumedo be additive and 833

8. Conclusions independent of the input. This may not be true, butssa
it simplifies the derivation ofp(y|x) from pc(e). If 835

In this paper we presented a synthetic overview of this hypothesis is correct, then(y|x) = p.(y —HX). 836
regularization, maximum entropy and probabilistic If this is not the case, we have to account for it #37
methods for linear inversion problems arising in mass the expression ofp(y|x). Then, all the other stepsss
spectrometry. We discussed the reasons why simpleof the Bayesian inference do not change. Howevergi$

J

+1o ) Ix2(i)l,
J
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In p(y|x) is not a quadratic function of, the conse- to the following papers [27,43] for a few examplesss
quent computations of the posterior law summaries or We are still working on these points. We have also 4es
its sampling may be more difficult. This is also true for mention that we have not yet applied these methads
the hypothesis that is white. This assumption is also  to real data in spectrometry and we are interested asd
used to simplify the expression pfy|x), but this can prospective to evaluate them on real data. 888
be handled more easily than the previous hypothesis
if it is not true. For example, if we can assume it to
Gaussian and model its covariance maRix we can
use it easily in the expression of the likelihood which [1] R.J.E. Cotter, in: Proceedings of the Oxford ACS Symposiugao
becomesp(y|x) = NM(y — Hx, R.). Also, as men- Series on Time-of-Flight Mass Spectrometry, Vol. 54%91
tioned by one of reviewers of this paper, in some tech- Oxford, UK, 1994. 892
niques of mass spectrometry, the Gaussian assumption [2] gpﬁgtkrg‘;has"; Flugn;%”;‘zgtfésog focal plane detectors, J. Mag:
for € may not be valid, because what is measured is (3] G. bemoment, Image reconstruction and restoration: overviees

proportional to the number of ions. Then, a Poisson of common estimation structure and problems, IEEE Trarsss
distribution for p(y|x) will be a better choice. Acoustics, Speech Signal Proceedings ASSP 37 (12) (1989)
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