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Abstract9

This paper is a synthetic overview of regularization, maximum entropy and probabilistic methods for some inverse problems
such as deconvolution and Fourier synthesis problems which arise in mass spectrometry. First we present a unified description
of such problems and discuss the reasons why simple naı̈ve methods cannot give satisfactory results. Then we briefly present
the main classical deterministic regularization methods, maximum entropy-based methods and the probabilistic Bayesian
estimation framework for such problems. The main idea is to show how all these different frameworks converge to the
optimization of a compound criterion with a data adequation part and an a priori part. We will however see that the Bayesian
inference framework gives naturally more tools for inferring the uncertainty of the computed solutions, for the estimation of
the hyperparameters or for handling the myopic or blind inversion problems. Finally, based on Bayesian inference, we present
a few advanced methods particularly designed for some mass spectrometry data processing problems. Some simulation results
illustrate mainly the effect of the prior laws or equivalently the regularization functionals on the results one can obtain in
typical deconvolution or Fourier synthesis problems arising in different mass spectrometry technique. (Int J Mass Spectrom,
in press) © 2002 Published by Elsevier Science B.V.
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1. Introduction23

1.1. Data processing problems in mass spectrometry24

In mass spectrometry, the data acquisition and25

processing is an essential part of the final measure-26

ment process. Even if, in some cases, only some27

pre-processing is done during the acquisition process,28

the post-acquisition data processing is a vital part of29

many new mass spectrometry instruments. The main30

reason is that the raw data do not, in general, directly31

represent the parameters of interest. These raw data32

∗ Corresponding author. E-mail: djafari@lss.supelec.fr

are, in general, transformed and distorted version of33

the ideal physical quantity of interest which is the34

mass distribution of the object under the test. 35

Some distortions are related directly to the measure-36

ment system, for example the blurring effect of the37

time-of-flight (TOF) [1] mass spectrometry data can38

be written as a simple one-dimensional convolution39

equation: 40

g(τ) =
∫

f (t)h(τ − t)dt, (1)
41

whereh(t) is the point spread function (psf) of blur- 42

ring effect,f (t) the desired mass distribution andg(t) 43

the data. Fig. 1 shows an example where in place of44

1 1387-3806/02/$20.00 © 2002 Published by Elsevier Science B.V.
2 PII S1387-3806(01)00562-0



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

2 A. Mohammad-Djafari et al. / International Journal of Mass Spectrometry 12013 (2002) 1–19

Fig. 1. Blurring effect in TOF mass spectrometry data: (a) desired spectra; (b) observed data.

observing the signalf (t) in (a) the signalg(t) in (b)45

has been observed.46

Some others are due to the output parts of the instru-47

ment, for example the interaction and coupling effect48

of focal plane detectors (FPD) [2] or non-uniformity49

of ion conversion devices (electron multipliers) in gen-50

eral and in matrix-assisted laser desorption ionization51

(MALDI) techniques in particular. These distortions52

can be written as a two-dimensional convolution equa-53

tion:54

g(x′, y′) =
∫∫

f (x, y)h(x′ − x, y′ − y)dx dy. (2)
55

In some other mass spectrometry techniques such as56

Fourier transform ion cyclotron resonance (FT-ICR),57

the observed data are related to the Fourier transform58

(FT) or Laplace transform (LT) of the mass distribu-59

tion: 6061

g(τ) =
∫

f (s)exp{−sτ } dω,
62

with s = jω or s = jω + α, (3) 63

whereα is an attenuation factor. Fig. 2 shows an ex-64

ample of the theoretical spectrumf (s) in (a) and the 65

corresponding observed datag(τ) in (b). We may ob- 66

serve that, due to the attenuation and the noise in the67

data, a simple inversion by inverse FT (c) may not68

give satisfactory result. 69

In this paper we try to give a unified approach to70

deal with all these problems. For this purpose, first we71
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Fig. 2. The reference spectrum (a), its corresponding simulated data in FT-ICR (b) and the inverse FT of the data (c).

note that all these problems are special cases of72

g(sss) =
∫

f (rrr)h(rrr, sss)drrr. (4)
73

Then, we assume that the unknown functionf (rrr) can74

be described by a finite number of parametersxxx =75

[x1, . . . , xn]: 76

f (rrr) =
n∑

j=1

xjbj (rrr), (5)
77

wherebj (rrr) are known basis functions. With this as-78

sumption the raw datay(i) = g(sssi), i = 1, . . . , m are 79
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related to the unknown parametersxxx by8081

y(i) = g(sssi) =
n∑

j=1

Ai,j xj ,
82

withAi,j =
∫

bj (rrr)h(rrr, sssi)drrr, (6)
83

which can be written in the simple matrix formyyy =84

AxAxAx. The inversion problem can then be simplified to85

the estimation ofxxx givenAAA andyyy. Two approaches86

are then in competition: (a) the dimensional control87

approach which consists in an appropriate choice of88

the basis functionsbj (rrr) andn ≤ m in such a way89

that the equationyyy = AxAxAx be well conditioned; (b) the90

more general regularization approach where a classical91

sampling basis forbj (rrr) with desired resolution is92

choose no matter ifn > m or if AAA is ill-conditioned.93

In the following, we follow the second approach94

which is more flexible for adding more general prior95

information onxxx. We must also remark that, in gen-96

eral, it is very hard to give a very fine mathematical97

model to take account for all the different steps of the98

measurement process. However, very often, we can99

find a rough linear model for the relation between the100

data and the unknowns (one- or two-dimension con-101

volution or FT or any other linear transformation). But102

this model may depend on some unknown parame-103

tersθθθ , for example the amplitude and the width of the104

Gaussian shape psf. It is then usual to write105

yyy = AAAθθθxxx + εεε, (7)106

whereεεε is a random vector accounting for the remain-107

ing uncertainties of the model and the measurement108

noise process.109

When the direct model is perfectly known, the main110

objective of the data processing step is to obtain an111

estimatex̂xx of the xxx such thatx̂xx optimizes some op-112

timality criteria. We will see that, very often, a data113

matching criterion such as a least square (LS) criterion114

J (xxx) = ‖yyy − AxAxAx‖2 does not give satisfactory results.115

This is, in general due toill-posednessof the prob-116

lem which, in the case of linear problems, results in117

ill-conditionedlinear systems of equations [3]. To ob-118

tain a satisfactory result, we need to introduce some119

prior information about the errors and about the un-120

knownsxxx. This can be done through the generalreg- 121

ularization theoryor in a more general way through122

the probabilistic inference and statistical estimation. 123

In probabilistic methods, the rough prior informations124

about the errorsεεε and the unknownsxxx are used to 125

assign the prior probability distributionp(εεε|φφφ1) and 126

p(xxx|φφφ2) whereφφφ1 andφφφ2 are their respective param-127

eters. 128

Thus, the first steps of solving the problem are to129

clearly identifyxxx, AAA, θθθ andyyy and to define an opti-130

mality criterion forx̂xx which may also depends on the131

hyperparametersφφφ = [φφφ1,φφφ2]. The next step is to find132

an efficient algorithm to optimize it, and finally, the133

third step is to characterize the obtained solution. We134

will however see that these steps are forcibly depen-135

dent to each other. 136

In this paper we focus on this general problem. We137

first consider the case where the model is assumed138

to be perfectly known (AAA andθθθ known). This is the 139

simpleinversion problem. Then we consider the more140

general case where we have also to infer aboutθθθ . This 141

is themyopicor blind inversionproblem. We may also142

want to infer on the hyperparametersφφφ from the data 143

(unsupervised inversion). In some cases, we may have144

two sets of data, one with known input (for calibration145

or point spread function estimation purposes) and one146

with unknown input. Finding an optimal solution for147

the psf and the unknown input from the two sets of148

data can be considered asmulti-channel blind decon-149

volution. 150

1.2. Why simple na¨ıve methods do not give 151

satisfaction? 152

When the degradation model is assumed to be per-153

fectly known, we are face to a simple inversion prob-154

lem. However, even in this case 155

• the operatorAAA may not be invertible (AAA−1 does not 156

exists); 157

• it may admit more than one inverse (∃BBB1 and 158

BBB2|BBB1(AAA) = BBB2(AAA) = III whereIII is the identity 159

operator); 160
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• it may be ill-posed or ill-conditioned meaning that161

there existsxxx andxxx + αδxxx for which ‖AAA−1(xxx) −162

AAA−1(xxx + αδxxx)‖ never vanishes even ifα �→ 0.163

These are the three necessary conditions ofexis-164

tence, uniquenessand stability of Hadamard for the165

well-posedness of an inversion problem [4–6]. This166

explains the reason for which, in general, even in this167

simple case, many naı̈ve methods based on general-168

ized inversion or on least squares may not give sat-169

isfactory results. Fig. 3 shows, in a simple way, the170

ill-posedness of a deconvolution problem. In this fig-171

ure, we see that three different input signals can re-172

sult three outputs which are practically indistinguish-173

able from each other. This means that, data adequation174

alone cannot distinguish between any of these inputs.175

As a conclusion, we see that, apart from the data,176

we need extra information. The art ofinversion in177

a particular inverse problem is how to includejust178

enough prior informationto obtain a satisfactory re-179

sult. In the following, we will see that, to do this,180

there are, at least, three approaches: (i) classical deter-181

minist regularization approach; (ii) information theory182

and entropy-based approach; and (iii) probabilistic and183

more specifically the Bayesian estimation approach.184

The main idea of this paper is to show how all these185

different frameworks converge to the optimization of186

a compound criterion: a data adequation part (likeli-187

hood) and an a priori part (or penalization). We will188

see however that the Bayesian framework gives more189

tools, for example, for inferring the uncertainty of the190

computed solutions, for accounting for more specific191

knowledge of the errors and noise and for the estima-192

tion of the hyperparameters and for handling myopic193

and blind inversion problems.194

2. Regularization methods195

Conceptually, regularization means finding a unique196

and stable solution to an ill-posed inverse problem.197

A review of the regularization theory and its different198

presentations is out of the scope of this paper. Here,199

we adopt a practical discrete approach, i.e., when the200

problem is discretized and we are faced to a linear201

system of equationsyyy = AxAxAxwhich may be either under202

or over-determined. 203

In the first case the equationyyy = AxAxAx has more than 204

one solution and one way to obtain a unique solution205

is to define a criterion, for example∆(x,mx,mx,m) to choose 206

that unique solution by 207

x̂xx = arg min{xxx;AxAxAx=yyy}∆(x,mx,mx,m), (8) 208

wheremmm is an a priori solution and∆ a distance mea-209

sure. 210

The solution to this constrained optimization can211

be obtained via Lagrangian techniques [7] which con-212

sists of defining the LagrangianLLL(xxx,λλλ) = ∆(x,mx,mx,m)+ 213

λλλt(yyy − AxAxAx) and searching for(λ̂λλ, x̂xx) through 214{
λ̂λλ = arg minλλλ{DDD(λλλ) = infxxx LLL(xxx,λλλ)},
x̂xx = arg minxxx{LLL(xxx, λ̂λλ)}.

(9)
215

As an example, when∆(x,mx,mx,m) = 1/2‖xxx −mmm‖2 then 216

the solution is given by 217

x̂xx = mmm +AAAt(AAAAAAt)−1(yyy − AmAmAm). (10) 218

One can remark that, whenmmm = 000 we havex̂xx = 219

AAAt(AAAAAAt)−1yyy and this is the classical minimum norm220

generalized inverse solution. 221

Another example is the case where∆(x,mx,mx,m) = 222∑
j xj ln (xj /mj ) which is more detailed in Section223

3.1. 224

The main issue here is that, this approach provides a225

unique solution to the inverse problem, but in general,226

this solution remains sensitive to error on the data.227

In the second case the equationyyy = AxAxAx may not 228

even has a solution. One then can try to define a so-229

lution by 230

x̂xx = arg minxxx{∆(yyy,AxAxAx)}, (11) 231

where∆(y, zy, zy, z) is a distance measure betweenyyy andzzz. 232

The case where∆(y, zy, zy, z) = ‖yyy − zzz‖2 is the 233

well-known least squares (LS) method. In this case,234

it is easy to see that anŷxxx which satisfies the normal235

equationAAAtAAAx̂xx = AAAtyyy is a LS solution. IfAAAtAAA is in- 236

vertible and well-conditioned then̂xxx = (AAAtAAA)−1AAAtyyy 237

is again the unique generalized inverse solution. But,238
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Fig. 3. Ill-posedness of a deconvolution problem: inputs on the left give practically indistinguishable outputs.

in general, this is not the case:AAAtAAA is rank deficient239

or ill-conditioned and we need to constrain the space240

of the admissible solutions. The constraint LS is then241

defined as242

x̂xx = arg minxxx∈CCC{‖yyy − AxAxAx‖2}, (12)243

whereCCC is a convex set. The choice of the setCCC is pri-244

mordial to satisfy the three conditions of a well-posed245

solution. An example is the positivity constraint:CCC =246

{xxx : ∀j, xj > 0}. Another example isCCC = {xxx : ‖xxx‖2 ≤ 247

α} where the solution can be computed via the opti-248

mization of 249

J (xxx) = ‖yyy −AAA(xxx)‖2 + λ‖xxx‖2. (13) 250

The main technical difficulty is the relation between251

α and λ. The minimum norm LS solution can also252

be computed using the singular values decomposi-253

tion, where there is a link between the choice of the254
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threshold for truncation of the singular values andα255

or λ.256

In the general case, it is always possible to define a257

unique solution as the optimizer of a compound crite-258

rion J (xxx) = ‖yyy − AxAxAx‖2 + λFFF(xxx) or the more general259

criterion260

J (xxx) = ∆1(yyy,AxAxAx) + λ∆2(x,mx,mx,m), (14)261

where∆1 and∆2 are two distances or discrepancy262

measures,λ a regularization parameter andmmm is an a263

priori solution. The main questions here are: (i) how264

to choose∆1 and∆2 and (ii) how to determineλ and265

mmm. For the first question, many choices exist:266

• Quadratic orL2 distance:∆(x, zx, zx, z) = ‖xxx − zzz‖2 =267 ∑
j (xj − zj )

2;268

• Lp distance:∆(x, zx, zx, z) = ‖xxx−zzz‖p = ∑
j |xj − zj |p;269

• Kullback distance:∆(x, zx, zx, z) = ∑
j xj ln (xj /zj ) −270

(xj − zj );271

• roughness distance:∆(x, zx, zx, z) any of the previous dis-272

tances withzj = xj−1 or zj = (xj−1 + xj−1)/2 or273

any linear functionzj = ψ(xk, k ∈ NNN (j)) where274

NNN (j) stands for the neighborhood ofj . (One can275

see the link between this last case and the Gibbsian276

energies in the Markovian modeling of signals and277

images).278

The second difficulty in this approach is determination279

of the regularization parameterλ which is discussed280

at the end of this paper, but its description is out of281

the scope of this paper.282

As a simple example, we consider the case where283

both∆1 and∆2 are quadratic:J (xxx) = ‖yyy − AxAxAx‖2
WWW

+284

λ‖xxx−mmm‖2
QQQ

with the notation‖zzz‖2
WWW

= zzztWzWzWz. The opti-285

mization problem, in this case, has an analytic solution286

x̂xx = (AAAtWAWAWA+ λQQQ)−1(AAAtWyWyWy− QmQmQm), (15)287

which is a linear function of the a priori solutionmmm288

and the datayyy. Note also that whenmmm = 000, QQQ = III289

andWWW = III we havex̂xx = (AAAtAAA+λIII)−1AAAtyyy and when290

λ = 0 we obtain the generalized inverse solutionsx̂xx =291

(AAAtAAA)−1AAAtyyy.292

As we mentioned before, the main practical diffi-293

culties in this approach are the choice of∆1 and∆2294

and determination of the hyperparametersλ and the295

inverse covariance matricesWWW andQQQ.

3. Maximum entropy methods 296

3.1. Classical ME methods 297

The notion of entropy has been used in different298

ways in inversion problems. The classical approach299

is consideringxxx as a distribution and the datayyy as 300

linear constraints on them. Then, assuming that the301

data constraints are satisfied by a non-empty set of302

solutions, a unique solution is chosen by maximizing303

the entropy 304

S(xxx) = −
∑
j

xj ln xj , (16)
305

or by minimizing the cross-entropy or the Kullback–306

Leibler distance betweenxxx and a default solutionmmm 307

KL (x,mx,mx,m) =
∑
j

xj ln
xj

mj

− (xj − mj), (17)
308

subject to the linear constraintsyyy = AxAxAx. This method 309

can be considered as a special case of the regular-310

ization technique described in previous section for311

the under-determined case. Here, we have∆(x,mx,mx,m) = 312

KL (x,mx,mx,m) and the solution is given by 313314

x̂j = mj exp[−[AAAtλ̂λλ]j ], 315

with λ̂λλ = arg minλλλ{DDD(λλλ) = λλλtyyy −GGG(AAAtλλλ,mmm)}, (18) 316

whereGGG(s,ms,ms,m) = ∑
j mj (1 − exp[−sj ]). Unfortu- 317

nately hereDDD(λλλ) is not a quadratic function ofλλλ and 318

thus there is not an analytic expression forλ̂λλ. However, 319

it can be computed numerically and many algorithms320

have been proposed for its efficient computation. See321

for example [8,9] and the cited references for more322

discussions on the computational issues and algorithm323

implementation. 324

For other choices of entropy expressions and the325

presentation of the optimization problem in continuous326

case (functions and operators in place of vectors and327

matrices) see [10]. 328

However, even if in these methods, thanks to329

convex analysis and Lagrangian techniques, the con-330

strained optimization of (16) or (17) can be replaced331

by an equivalent unconstrained optimization, the ob-332
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tained solutions satisfy the uniqueness condition of333

well-posedness but not always the stability one [5,6].334

3.2. Entropy as a regularization functional335

Entropy (16) or cross-entropy (17) has also been336

used as a regularization functional∆2(x,mx,mx,m) in (14).337

The main difficulty in this approach is the determina-338

tion and proper signification of the regularization pa-339

rameterλ. Note that the criterion340

J (xxx) = ‖yyy − AxAxAx‖2 + λKL (x,mx,mx,m), (19)341

is convex onRn+ and the solution, when exists, is342

unique and can be obtained either by any simple343

gradient-based algorithm or by using the same La-344

grangian technique giving:345

x̂j = mj exp[−[AAAtλ̂λλ]j ],346

with347348

λ̂λλ = arg minλλλ

{
DDD(λλλ) = λλλtyyy −GGG(AAAtλλλ,mmm) + 1

λ
‖λλλ‖2

}
.

349

(20)350

Note that the only difference between (18) and (20)351

is the extra term 1/λ‖λλλ‖2 in DDD(λλλ). Note also that352

the solution is not a linear function of the datayyy,353

but a linear approximation to it can be obtained by354

replacing KL(x,mx,mx,m) by its Taylor series expansion up355

to the second order which writes356

J (xxx) = ‖yyy − AxAxAx‖2 + λ(xxx −mmm)tdiag[mmm]−1(xxx −mmm),357

which gives358

x̂xx = mmm + diag[mmm](AAAdiag[mmm]AAAt + λ−1III )−1(yyy − AmAmAm).359

3.3. Maximum entropy in the mean360

The following summarizes the different steps of the361

approach:362

• Considerxxx as the mean value of a quantityXXX ∈ CCC,363

whereCCC is a compact set on which a probability law364

P is defined:xxx = EP {XXX}, and the datayyy as exact365

equality constraints on it:yyy = AxAxAx = AAAEP {XXX}.366

• Determine P by minimizing KL(P ;µ) subject 367

to the data constraints. Hereµ(xxx) is a reference 368

measure corresponding to the prior information369

on the solution. The solution is obtained via the370

Lagrangian and is given by 371372

dP(xxx,λλλ) = exp[λλλt[AxAxAx] − lnZ(λλλ)] dµ(xxx), 373

whereZ(λλλ) =
∫
CCC

exp[λλλt[AxAxAx]] dµ(xxx).
374

The Lagrange parameters are obtained by search-375

ing the unique solution of∂ lnZ(λλλ)/∂λi = yi, i = 376

1, · · · ,M. 377

• The solution to the inverse problem is then defined378

as the expected value of this distribution:x̂xx(λλλ) = 379

EP {XXX} = ∫
xxx dP(xxx,λλλ). 380

These steps are very formal. In fact, it is possible381

to show that the solution̂xxx(λ̂λλ) can be computed in382

two ways: 383

• Via optimization of a dual criterion: the solution̂xxx 384

is expressed as a function of the dual variableŝss = 385

AAAtλ̂λλ by x̂(ŝss) = ∇sssG(ŝss,mmm) where 386387

G(sss,mmm) = lnZ(sss,mmm) = ln
∫
CCC

exp[ssstxxx] dµ(xxx),
388

mmm = Eµ{XXX} =
∫
CCC
xxx dµ(xxx)andλ̂λλ

389

= arg maxλλλ{D(λλλ) = λλλtyyy − G(AAAtλλλ)}. 390

• Via optimization of a primal or direct criterion: 391392

x̂xx = arg minxxx∈CCC{H(xxx,mmm)} 393

s.t., yyy = AxAxAxwhereH(xxx,mmm) 394

= supsss{ssstxxx − G(sss,mmm)}. 395

What is interesting here is the link between these396

two options. Note that 397

• FunctionsG andH depend on the reference mea-398

sureµ(xxx). 399

• The dual criterionD(λλλ) depends on the data and400

the functionG. 401

• The primal criterionH(xxx,mmm) is a distance measure402

betweenxxx andmmm which means:H(xxx,mmm) ≥ 0 and 403

H(xxx,mmm) = 0 iff xxx = mmm; H(xxx,mmm) is differentiable 404

and convex onCCC andH(xxx,mmm) = ∞ if xxx /∈ CCC. 405
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• If the reference measure is separable:µ(xxx) =406 ∏N
j=1µj (xj ) then P is too: dP(xxx,λλλ) = ∏N

j=1407

dPj (xj ,λλλ) and we have408409

G(sss,mmm) =
∑
j

gj (sj ,mj ),
410

H(xxx,mmm) =
∑
j

hj (xj ,mj ), x̂j = g′
j (sj ,mj ),

411

wheregj is the logarithmic Laplace transform of412

µj : gj (s) = ln
∫

exp[sx] dµj (x); and hj is the413

convex conjugate ofgj : hj (x) = maxsss{sx−gj (s)}.414

The following table gives three examples of choices415

for µj and the resulting expressions forgj andhj :416

µj (x) gj (s) hj (x,m)

Gaussian exp[−(1/2)(x − m)2] 1/2(s − m)2 1/2(x − m)2

Poisson mx/x! exp[−m] exp[m − s] −x ln (x/m) + m − x

Gamma xα−1 exp[−x/m] ln (s − m) − ln (x/m) + (x/m) − 1417

We may remark that the two famous expressions of418

Burg and Shannon entropies are obtained as special419

cases. For more details see [11–21].420

As a conclusion, we see that the maximum entropy421

in mean extends in some way the classical ME ap-422

proach by giving other expressions for the criterion to423

optimize. Indeed, it can be shown that where ever we424

optimize a convex criterion subject to the data con-425

straints we are optimizing the entropy of some quan-426

tity related to the unknowns and vise versa. As a fi-427

nal remark, we see that even if this information the-428

ory approach gives some more insights for the choice429

of criteria to optimize, it is more difficult to account430

for the errors on the data and there is no tools for the431

determination of the hyperparameters.432

4. Bayesian estimation approach433

In Bayesian approach, the main idea is to translate434

our prior knowledge about the errors and about the435

unknowns to prior probability laws. Then, using the436

Bayes rule the posterior law of the unknowns is ob-437

tained from which we deduce an estimate for them.438

To illustrate this, let consider the case of linear in-439

verse problemsyyy = AxAxAx+ εεε. The first step is to write 440

down explicitly our hypothesis: starting by the hy-441

pothesis thatεεε is zero-mean (no systematic error),442

white (no correlation for the errors) and assuming that443

we may only have some idea about its energyσ 2
ε = 444

1/(2φ), and using either the intuition or the maximum445

entropy principle (MEP) lead to a Gaussian prior law:446

εεε ∼NNN (000,1/(2φ)III ). Then, using the direct modelyyy = 447

AxAxAx+ εεε with this assumption leads to 448

p(yyy|xxx, φ) ∝ exp[−φ‖yyy − AxAxAx‖2]. (21) 449

The next step is to assign a prior law to the unknowns450

xxx. This step is more difficult and needs more caution.451

452

Again here, let illustrate it through a few examples. In453

the first example, we assume that, a priori we do not454

have (or we do not want or we are not able to account455

for) any knowledge about the correlation between the456

components ofxxx. This leads us to 457

p(xxx) =
∏
j

pj (xj ). (22)
458

Now, we have to assignpj (xj ). For this, we may 459

assume to know the mean valuesmj and some idea460

about the dispersions around these mean values. This461

again leads us to Gaussian lawsNNN (mj , σ
2
xj
), and if 462

we assumeσ 2
xj

= 1/(2θ),∀j , we obtain 463
464

p(xxx) ∝ exp[−θ
∑
j

|xj − mj |2] = exp[−θ‖xxx −mmm‖2].
465

(23) 466

With these assumptions, using the Bayes rule, we ob-467

tain 468

p(xxx|yyy) ∝ exp[−φ‖yyy − AxAxAx‖2 − θ‖xxx −mmm‖2]. (24) 469

This posterior law contains all the information we470

can have onxxx (combination of our prior knowledge471
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and data). Ifxxx was a scalar or a vector of only two472

components, we could plot the probability distribu-473

tion and look at it. But, in practical applications,xxx474

may be a vector with huge number of components.475

For this reason, in general, we may choose apoint476

estimatorto summarize it (best representing value).477

For example, we can choose the valuex̂xx which cor-478

responds to the maximum ofp(xxx|yyy)—the maximum479

a posteriori (MAP) estimate, or the valuêxxx which480

corresponds to the mean of this posterior—thepos-481

terior mean (PM) estimate. We can also generate482

samples (using any Monte Carlo method) from this483

posterior and just look at them as a movie or use484

them to compute the PM estimate. We can also use485

it to compute the posterior covariance matrix from486

which we can infer on the uncertainty of the proposed487

solutions.488

In the Gaussian priors case already presented, it is489

easy to see that, the posterior law is also Gaussian and490

the both estimates are the same and can be computed491

by minimizing492493

J (xxx) = − lnp(xxx|yyy) = ‖yyy − AxAxAx‖2 + λ‖xxx −mmm‖2,494

with λ = θ

φ
= σ 2

ε

σ 2
x

. (25)
495

We may note here the analogy with the quadratic496

regularization criterion (14) with the emphasis that497

the choice∆1(yyy,AxAxAx) = ‖yyy − AxAxAx‖2 and∆2(xxx,mmm) =498

‖xxx − mmm‖2 are the direct consequences of Gaus-499

sian choices for prior laws of the noise and the un-500

knownsxxx.501

The Gaussian choice forpj (xj ) may not always be502

a pertinent one. For example, we may a priori know503

that the distribution ofxj around their meansmj are504

more concentrated but great deviations from them are505

also more likely than a Gaussian distribution [22]. This506

knowledge can be translated by choosing a generalized507

Gaussian law508509

p(xj ) ∝ exp

[
− 1

2σ 2
x

|xj − mj |p
]
, 1 ≤ p ≤ 2.

510

(26)511

In some cases we may know more, for example we512

may know thatxj are positive values. Then a Gamma513

prior law 514515

p(xj ) = GGG(α,mj ) ∝ (xj /mj )
−α exp[−xj /mj ], 516

(27) 517

would be a better choice. 518

In some other cases we may know thatxj are dis- 519

crete positive values. Then a Poisson prior law 520

p(xj ) ∝
m
xj
j

xj !
exp[−mj ] (28)

521

is a better choice. 522

In all these cases, the MAP estimates are al-523

ways obtained by minimizing the criterionJ (xxx) = 524

− lnp(xxx|yyy) = ‖yyy − AxAxAx‖2 + λFFF(xxx) whereFFF(xxx) = 525

− lnp(xxx). It is interesting to note the different expres-526

sions we obtain forFFF(xxx) for these choices contain527

also different entropy expressions for thexxx. 528

When, a priori we know thatxj are not independent,529

for example when they represents the pixels of an530

image, we may use a Markovian modeling 531

p(xj |xk, k ∈ SSS) = p(xj |xk, k ∈NNN (j)), (29) 532

whereSSS = {1, . . . , N} stands for the whole set of533

pixels andNNN (j) = {k : |k − j | ≤ r} stands forrth 534

order neighborhood ofj . 535

With some assumptions about the border limits [23],536

such models again result to the optimization of the537

same criterion with 538539

FFF(xxx) = ∆2(xxx,zzz) =
∑
j

φ(xj , zj )
540

wherezj = ψ(xk, k ∈NNN (j)), (30) 541

with different potential functionsφ(xj , zj ). 542

A simple example is the case wherezj = xj−1 and 543

φ(xj , zj ) any function in between the following: 544545{
|xj − zj |α, α ln

xj

zj
+ xj

zj
,

546

xj ln
xj

zj
+ (xj − zj )

}
547

See [24–26] for some more discussion and properties548

of these potential functions.
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5. Main conclusion and unifying viewpoint549

As one of the main conclusions here, we see that, a550

common tool between the three previous approaches551

is defining the solution as the optimizer of a com-552

pound criterion: a data dependent part∆1(yyy,AxAxAx) and553

an a priori part∆2(xxx,mmm). In all cases, the expression554

of ∆1(yyy,AxAxAx) depends on the direct model and the hy-555

pothesis on the noise and the expression of∆2(xxx,mmm)556

depends on our prior knowledge ofxxx. The only differ-557

ence between the three approaches is the arguments558

leading to these choices. In classical regularization,559

the arguments are based on notion of energy, in maxi-560

mum entropy approach they are based on information561

theory, and in Bayesian approach, they are based on562

the choice of the prior probability laws.563

However, the Bayesian approach has some more ex-564

tra features: it gives naturally the tools to account for565

uncertainties and errors of modeling and data through566

the likelihoodp(yyy|xxx). It also gives natural tools to567

account for any prior information about the unknown568

signal through the prior probability lawp(xxx). We also569

have access to the whole posteriorp(xxx|yyy) from which,570

not only we can define an estimate but also, we can571

quantify its corresponding uncertainty. For example,572

in the Gaussian case, we can use the diagonal ele-573

ments of posterior covariance matrix to put error bars574

on the computed solution. We can also compare pos-575

terior and prior laws of the unknowns to measure the576

amount of information contained in the observed data.577

Finally, as we will see in the last section, we have finer578

tools for hyperparameters estimation and for handling579

myopic or blind deconvolution problems. In the fol-580

lowing we keep this approach and present methods581

with finer prior modeling more appropriate for mass582

spectrometry signal processing applications.583

6. Advanced methods584

6.1. Bernoulli–Gamma and generalized Gaussian585

modeling586

In mass spectrometry, the unknown quantityxxx is587

mainly composed of positive pulses. One way to model588

this prior knowledge is to imagine a binary valued589

random vectorzzzwithp(zj = 1) = α andp(zj = 0) = 590

1−α, and describe the distribution ofxxx hierarchically 591

p(xj |zj ) = zjp0(xj ), (31) 592

with p0(xj ) being either a Gaussianp(xj ) = 593

NNN (m, σ 2) or a Gamma lawp(xj ) = GGG(a, b). The 594

second choice is more appropriate while the first re-595

sults on simpler estimation algorithms. The inference596

can then be done through the joint posterior 597

p(xxx,zzz|yyy) ∝ p(yyy|xxx)p(xxx|zzz)p(zzz). (32) 598

The estimation ofzzz is then calleddetectionand that 599

of xxx estimation. The case where we assumep(zzz) = 600∏
j p(zj ) = αn1(1 − α)(n−n1) with n1 the number 601

of ones andn the length of the vectorzzz, is called 602

Bernoulli process and this modelization forxxx is called 603

Bernoulli–Gaussianor Bernoulli–Gammaas a func- 604

tion of the choice forp0(xj ). 605

The difficult step in this approach is the detection606

step which needs the computation of 607

p(zzz|yyy) ∝ p(zzz)

∫
p(yyy|xxx)p(xxx|zzz)dxxx (33)

608

and then the optimization over{0,1}n wheren is the 609

length of the vectorzzz. The cost of the computation of610

the exact solution is huge (a combinatorial problem).611

Many approximations to this optimization have612

been proposed which result to different algorithms for613

this detection–estimation problem [27]. To avoid com-614

plex and costly algorithms of detection–estimation615

and still be able to catch the mass spectrometry pulse616

shape prior information, there is a simpler modeling:617

generalized Gaussian modelingwhich consist of as- 618

sumingp(xxx) ∝ exp[−θ
∑

j |xj |α], 1 ≤ α ≤ 2 or 619

p(xxx) ∝ exp[−θ
∑

j |xj − xj−1|α] or still a combina- 620

tion of them 621622

p(xxx) ∝ exp[−θ0

∑
j

|xj |α0 − θ1

∑
j

|xj − xj−1|α1].
623

(34) 624

The first one translates the fact that, if we plot the625

histogram of a typical spectrum, we see that great626

number of samples are near to zero, but there are627
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samples which can go very far from this axis. The628

second expression translates the same fact but on629

the differences between two consecutive samples630

and the third choice combines the two facts. The631

more interesting fact of such a choice as a prior632

law for xxx is that the corresponding MAP criterion633

is convex and the computation of the solutions can634

be done easily by any gradient-based type algo-635

rithm.636

6.2. A mixed background and impulsive signal637

modeling638

In some techniques of mass spectrometry, a better639

model forxxx is to assume it as the sum of two compo-640

nentsxxx = xxx1+xxx2: a smooth backgroundxxx1 and pulse641

shapexxx2. To catch the smoothness ofxxx1 we can assign642

a Gaussian distributionp(xxx1) = NNN (xxx10,RRRx1) and to643

catch the pulse shape ofxxx2 we can again either use644

the Bernoulli–Gamma or Bernoulli–Gaussian models645

of the previous section or use a generalized Gaussian646

prior647

p(xxx2) ∝ exp[−θ
∑
j

|x2j |α]. (35)
648

The inference can then be done through the joint pos-649

terior p(xxx1,xxx2|yyy) ∝ p(yyy|xxx)p(xxx1)p(xxx2) which writes650651

lnp(xxx1,xxx2|yyy)= ‖yyy −AAA(xxx1 + xxx2)‖2
652

+(xxx1 − xxx10)
tRRR−1

x1
(xxx1 − xxx10)653

−θ
∑
j

|x2j |α. (36)
654

One possible way to estimatexxx1 andxxx2 is the joint655

optimization of this posterior through the following656

relaxation iterations:657 {
x̂xx1 = (AAAtAAA + λ1RRR

−1
x1
)−1(AAAtyyy1 + λ1mmm1),

x̂xx2 = arg maxxxx2
{ lnp(x̂xx1,xxx2|yyy)}.658

6.3. Hierarchical modeling659

Another approach is a hierarchical modeling. As an660

appropriate example, we proposep(xxx|zzz) =NNN (zzz, σ 2
z III )661

andp(zzz) = NNN (000,RRRz) with RRRz = σ 2
z (DDD

tDDD)−1 which 662

leads to 663664

− lnp(xxx,zzz|yyy) = ‖yyy − AxAxAx‖2 + λ‖xxx − zzz‖2 + µ‖DzDzDz‖2. 665

(37) 666

Its joint optimization can be obtained through the fol-667

lowing relaxation iterations: 668

x̂xx = (AAAtAAA + λIII)−1(AAAtyyy + λẑzz),

ẑzz = λ

(
DDDtDDD + λ

µ
III

)−1

x̂xx.
(38)

669

A better choice forp(xxx|zzz) is p(xxx|zzz) ∝ exp[−θ 670∑
j |xj − zj |α] which leads to 671

672

− lnp(xxx,zzz|yyy)= ‖yyy − AxAxAx‖2 + µ
∑
j

|xj − zj |α
673

+λ‖DzDzDz‖2. (39) 674

The main drawback of this model is that− lnp(xxx,zzz|yyy) 675

is neither quadratic inzzz nor in xxx. However, the so- 676

lution can be obtained via an iterative gradient-based677

algorithm. 678

7. Numerical experiment 679

The main objective of this section is to illustrate680

some of the points we discussed in previous sections.681

As we discussed, one of the main critical points in682

inverse problems is the choice of appropriate prior683

laws. In this paper, we only focus on this point and we684

give a very brief comparison of results obtained with685

some of the aforementioned prior law choices. We686

have limited ourselves to the prior laws which result687

to concave MAP criteria to avoid the difficult task of688

global optimization problems. 689

We also limit ourselves to two inverse problems:690

deconvolution and Fourier synthesis. This comparison691

can be done objectively on simulated data. However,692

we must generate data representing some real and dif-693

ficult situations to be able to see the differences be-694

tween different methods. For this reason, we simulated695

two spectra: 696
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Fig. 4. Simple deconvolution results for the first reference spectrum. The original spectrum and data are those of Fig. 1. (a) Quadratic
regularization (QR); (b) QR with positivity constraint; (c) MAP estimation with generalized Gaussian prior; (d) MAP estimation with
−x ln x prior; (e) MAP estimation with lnx prior.
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Fig. 5. Deconvolution results of Fig. 4 showed in logarithmic scale: (a) Gaussian prior; (b) truncated Gaussian prior; (c) truncated
generalized Gaussian prior; (d) entropicx ln x − x prior; (e) entropic lnx + x prior.
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(i) a simple case where the background is flat697

(Fig. 1a) and698

(ii) a more complicated case where the background699

is not flat (Fig. 2a).700

We used these spectra as references for measuring the701

performances of the proposed data processing meth-702

ods.703

7.1. Simple deconvolution704

For this case, first we used the first spectrum as705

the reference. Then using it, we simulated data by706

convoluting it with a Gaussian shape psf and added707

some noise (white Gaussian such that SNR= 20 dB).708

Fig. 1 shows this original spectrum and the associated709

simulated data. Then, using these data, we applied710

some of the different methods previously explained.711

Fig. 4 shows these results. All these results are ob-712

tained by optimizing the MAP criterion713

J (xxx) = − lnp(xxx|yyy) ∝ ‖yyy − AxAxAx‖2 + λφ(xxx),714

with different prior lawsp(xxx) ∝ exp[−λφ(xxx)]. The715

main objective of these experiments is to show the716

effects of the prior lawp(xxx) or equivalently the choice717

of the regularization functionalφ(xxx) on the results.718

We limited ourselves here to the following choices:719

(a) Gaussian or equivalently quadratic regularization720

φ(xxx) = α
∑

x2
j , α > 0;721

(b) Gaussian truncated on positive axis or equiv-722

alently quadratic regularization with positivity723

constraintφ(xxx) = α
∑

x2
j , xj > 0, α > 0;724

(c) Generalized Gaussian or equivalentlyLp regu-725

larization withφ(xxx) = α
∑ |xj |p,p = 1.1,xj >726

0, α > 0;727

(d) Shannon (x ln x) entropyφ(xxx) = α(
∑

xj ln xj −728

xj ), xj > 0, α > 0;729

(e) Burg ( lnx) entropy or equivalently Gamma prior730

φ(xxx) = α(
∑

ln xj + xj ), xj > 0, α > 0.731

Fig. 5 shows the same result on a logarithmic scale732

for the amplitudes to show in more detail the low733

amplitude pulses. We used log(1 + y) scale in place734

of y scale which has the advantage of being equal to735

zero fory = 0. 736

As it can be seen from these results, Gaussian prior737

or equivalently quadratic regularization does not give738

satisfactory result, but in almost all the other cases739

the results are satisfactory, because the corresponding740

priors are more in agreement with the nature of the741

unknown input signal. The Gaussian prior (a) is not at742

all appropriate, Gaussian truncated to positive axis (b)743

is a better choice. The generalized Gaussian (c) and744

the −x ln x entropic priors (d) give also practically745

the same results than the truncated Gaussian case. The746

Gamma prior (e) seems to give slightly better result747

(less missing and less artifacts) than all the others. This748

can be explained if we compare the shape of all these749

priors shown in Fig. 6. The Gamma prior is sharper750

near to zero and has longer tail than other priors. It thus751

enforces signals with greater number of samples near752

to zero and still leaves the possibility to have very high753

amplitude pulses. However, we must be careful on this754

interpretation, because all these results depend also755

on the hyperparameterλ whose value may be critical756

for this conclusion. In these experiments, we used the757

same value for all cases. Description and discussion758

of the methods to estimateλ from the data is out of 759

Fig. 6. Plots of the different prior lawsp(x) ∝ exp[−αφ(x)]:
(a) truncated Gaussianφ(x) = x2, α = 3; (b) truncated gen-
eralized Gaussianφ(x) = xp , p = 1.1, α = 4; (c) entropic
φ(x) = x ln x−x, α = 10; (d) entropicφ(x) = ln x+x, α = 0.1.
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Fig. 7. Reconstructed spectra in FT-NMR data: (a) shows the weighted FFT solution; (b), (c) and (d), respectively, givesx̂1, x̂2 and
x̂ = x̂1 + x̂2. The true peaks are given by circles and the true background is given by dashed lines.
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focus of this paper. We can, however, mention that, in760

general, the results are not too sensitive to this value761

when it is fixed to the right scale.762

7.2. Fourier synthesis inversion in NMR mass763

spectrometry764

As a second example, we used the second spectrum765

as the reference. But here, we simulated the FID data766

that one could observe using a relaxation ofτ = 0.2.767

Here also, we added some noise on the data and then,768

using them, we applied the mixed backgroundand769

pulse shape signal model previously explained in this770

paper. Fig. 7 shows the result which is obtained more771

precisely by optimizing the following criterion:772773

J (xxx1,xxx2)= − lnp(xxx1,xxx2|yyy) = ‖yyy −AAA(xxx1 + xxx2)‖2
774

+λ1

∑
j

(x1(j + 1) − x1(j))
2

775

+λ0

∑
j

|x2(j)|,
776

which involves a usual data-based term and two reg-777

ularization terms: the first one addresses the smooth778

backgroundxxx1 and the second one addresses the im-779

pulsive componentxxx2. The chosen heavy-tailedL2 −780

L1 potential function is a hyperbolic cost [28,29]. So781

that, J is strictly convex and the estimated object is782

defined as the minimizer ofJ overRn+. The optimiza-783

tion is achieved by an iterative coordinate descent al-784

gorithm [7]. The minimizerŝxxx1, x̂xx2 andx̂xx = x̂xx1 + x̂xx2785

are given in Fig. 7(b)–(d). It is to be compared to the786

“weighted FFT” solution of Fig. 7(a). The proposed787

solution accounts for positivity and clearly separates788

background and peaks. Moreover, the peaks are more789

accurately identified.790

8. Conclusions791

In this paper we presented a synthetic overview of792

regularization, maximum entropy and probabilistic793

methods for linear inversion problems arising in mass794

spectrometry. We discussed the reasons why simple795

näıve methods cannot give satisfactory results and the796

need for some prior knowledge about the unknowns to797

obtain satisfactory results. We then presented briefly798

the main classical regularization, maximum entropy799

based and the Bayesian estimation-based methods.800

We showed how all these different frameworks con-801

verge to the optimization of a compound criterion.802

We discussed the superiority of the Bayesian frame-803

work which gives more tools for the estimation of the804

hyperparameters or for inferring the uncertainty of805

the computed solutions or for handling the myopic or806

blind inversion problems. Finally, we presented some807

advanced methods based on Bayesian inference and808

particularly designed for some mass spectrometry809

data processing problems. We illustrated some nu-810

merical results simulating deconvolution and Fourier811

synthesis problems to illustrate the results we can ob-812

tain using some of the presented methods. The main813

objective of these numerical experiments was to show814

the effect of different choices for prior laws or equiv-815

alently the regularization functional on the result. 816

However, as we have remarked in previous sections,817

in general, the solution of an inverse problem depends818

on our prior hypothesis on errorsεεε and onxxx. In practi- 819

cal applications, we can only formalize these hypoth-820

esis either through prior probabilities or through reg-821

ularization functionals depending on some hyperpa-822

rameters (regularization parameter for example). De-823

termination of these hyperparameters from the data be-824

comes then a crucial part of the problem. Description825

of the methods to handle this problem is out of focus of826

this paper. Interested readers can refer to [30] for de-827

terministic methods such as cross-validation technics828

or to [31–42] for Bayesian inference-based methods.829

Another point we did not discussed is the validity830

of linear model with additive noiseyyy = HxHxHx + εεε and 831

all the hypothesis needed to write down the likelihood832

p(yyy|xxx). For example, we assumedεεε to be additive and 833

independent of the inputxxx. This may not be true, but834

it simplifies the derivation ofp(yyy|xxx) from pε(εεε). If 835

this hypothesis is correct, thenp(yyy|xxx) = pε(yyy −HxHxHx). 836

If this is not the case, we have to account for it in837

the expression ofp(yyy|xxx). Then, all the other steps838

of the Bayesian inference do not change. However, if839
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lnp(yyy|xxx) is not a quadratic function ofxxx, the conse-840

quent computations of the posterior law summaries or841

its sampling may be more difficult. This is also true for842

the hypothesis thatεεε is white. This assumption is also843

used to simplify the expression ofp(yyy|xxx), but this can844

be handled more easily than the previous hypothesis845

if it is not true. For example, if we can assume it to846

Gaussian and model its covariance matrixRRRε , we can847

use it easily in the expression of the likelihood which848

becomesp(yyy|xxx) = NNN (yyy − HxHxHx,RRRε). Also, as men-849

tioned by one of reviewers of this paper, in some tech-850

niques of mass spectrometry, the Gaussian assumption851

for εεε may not be valid, because what is measured is852

proportional to the number of ions. Then, a Poisson853

distribution forp(yyy|xxx) will be a better choice.854

Other problems we did not consider in this paper855

are myopic or blind inverse problems. As a typical856

example, consider deconvolution problems (1) or (2)857

where the psfsh(t) or h(x, y) are partially known. For858

example, we know that they have a Gaussian shape,859

but the amplitudea and the widthσ of the Gaussian860

are unknown. Noting byθθθ = (a, σ ) the problem then861

becomes the estimation of bothxxx and θθθ from yyy =862

AAAθθθxxx + εεε. The case where we know exactly the shape863

but not the gaina is calledauto-calibrationand the864

case where we only know the support of the psf but not865

its shape is calledblind deconvolution. In the first case866

θθθ = a and in the second caseθθθ = [h(0), . . . , h(p)].867

We must note however that, in general, the blind in-868

verse problems are much harder than the simple in-869

version. Taking the deconvolution problem, we have870

seen in introduction that, the problem even when the871

psf is given is ill-posed. The blind deconvolution then872

is still more ill-posed, because here there are more873

fundamental under determinations. For example, it is874

easy to see that, we can find an infinite number of pairs875

(h, x) which result to the same convolution product876

h×x. This means that, to find satisfactory methods for877

these problems need much more precise prior knowl-878

edge both onx and onh, and in general, the inputs879

must have more structures (be rich in information con-880

tent) to be able to obtain satisfactory results. Concep-881

tually however, the problem is identical to the estima-882

tion of hyperparameters. Interested readers can refer883

to the following papers [27,43] for a few examples.884

We are still working on these points. We have also to885

mention that we have not yet applied these methods886

to real data in spectrometry and we are interested and887

prospective to evaluate them on real data. 888
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