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ABSTRACT Many image processing problems can be presented as inverse prob-
lems by modeling the relation of the observed image to the unknown desired features
explicitly. Some of these problems are naturally presented as inverse problems such
as restoration of blurred images (deconvolution) or image reconstruction in computed
tomography. For some others, we need to translate the original problem as an inverse
one. For example, image de-noising, image segmentation or even image compression
can also be presented as inverse problems. The main advantage of doing so is that
we can then use probabilistic modeling of the images and use the Bayesian estima-
tion approach to propose mew methods for them. In this paper, we present a very
general forward modeling for the observations and a very general probabilistic mod-
eling of images through a hidden Markov modeling (HMM) which can be used as the
main basis for many image processing problems such as: 1) simple or multi channel
image restoration, 2) simple or joint image segmentation, 3) multi-sensor data and
image fusion and 4) Principal Component Analysis (PCA), Factor Analysis (FA),
Independent Component Analysis (ICA) and blind source separation.

KEYWORDS Inverse problems, Image Restoration, Image reconstruction, Im-
age segmentation, Image registration and Multi-sensor image fusion, 3D image
reconstruction, Tomography, Shape from shadows,

1 Introduction

A great number of image processing problems can be presented as inverse
problems. The first step for this purpose is to model the relation of the observed
image g(r) to the unknown desired feature f(r) explicitly. A very general form
for such a relation is

g(r) = [Hf](r) +e(r), reR (1)

where r represents the pixel position, R represents the whole surface of the
observed images, H is an operator representing the forward problem and e(r)
represents the errors (modeling uncertainty and observation errors). When the
operator H is linear we can write

g(r) = - F@h(r,r")dr’ + €(r) (2)
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and when h(r,r’) is translation invariant, the relation becomes a convolution

g(r) = - fOR(r, v\’ + e(r) = h(r) « f(r) + €(r) (3)

and the corresponding inverse problem becomes image deblurring. When this
relation is discretized, we can write it in a vector-matrix form

g=Hf +e (4)

where g = {g(r), r € R}, f = {f(r), » € R} and € = {e(r), r € R} are
vectors containing respectively the observed blurred image pixel values, the
unknown original image pixel values and the observation errors and H is a
huge dimensional matrix whose elements are defined from the system response
function h(r,r’).

In case of a multi sensor observation data, a more general model is
gi:Hifi—i_Gi, 22177M (5)

and finally, we propose two more general models:

e General multi input multi output (MIMO) system

N
gi=>» Hifj+e, i=1--,M (6)

j=1
where H;; are assumed to be known, and

e General unknown mixing gain MIMO system

N
gi=> A H;fj+e, i=1-- M (7)

j=1

where A = {4;;,i =1,--- ,M, j=1,---,N} is a known or unknown
mixing matrix.

As we will see in the following, this forward modeling associated with a hidden
Markov modeling (HMM) for the unknown images f; can be used for modeling
many image processing problems such as image de-noising or image segmen-
tation, (M = N = 1 and A = 1,H = 1), single or multi channel image
restoration (M = N and A = 1 and H; known), image fusion (M > 2 and
N =1, A known) or PCA, FA, ICA and BSS (M # N and A unknown).
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2 Bayesian estimation framework

To illustrate the basics of the Bayesian estimation framework, we consider
the general unknown mixing gain MIMO system (eq. 7) of the previous section
where we assume that H; and A are known. In what follows, we use the
following notations: g = {g;,i=1,--- , M} and f ={f;,j=1,--- ,N}.

In a general Bayesian estimation framework, the forward model is used to
define the likelihood function p(g|f,8;) and we have to translate our prior
knowledge about the unknowns f through a prior probability law p(f|,) and
then use the Bayes rule to find an expression for p(f|g,8) N

p(flg, 0) < p(g|f,0:) p(£|6>) (8)

where 8 = (64, 0,) represents all the hyperparameters (parameters of the like-
lihood and priors) of the problem.

When the expression of p(f|g,8) is obtained, we can use it to define any
estimates for f. Two usual estimators are the maximum a posteriori (MAP)

z = arg mfax{p(ﬂg 0)} and the Mean Square Error (MSE) estimator which

corresponds to the posterior mean z = / f p(flg,8)f. Unfortunately only for

the linear problems and the Gaussian laws where p(f|g, 0) is also Gaussian we
have analytical solutions for these two estimators. For almost all other cases,
the first one needs an optimization algorithm and the second an integration
one. For example, the relaxation methods can be used for the optimization
and the MCMC algorithms can be used for expectation computations. Another
difficult point is that the expressions of p(g|f,8;) and p(f|0,) and thus the
expression of p(f|g,8) depend on the hyperparameters 8 which, in practical
applications, have also to be estimated either in a supervised way using the
training data or in an unsupervised way. In both cases, we need also to translate
our prior knowledge on them through a prior probability p(@). Thus, one of
the main steps in any inversion method for any inverse problem is modeling the
unknowns. In probabilistic methods and in particular in the Bayesian approach,
this step becomes the assignment of the probability law p(f]8;). This point,
as well as the assignment of p(0), are discussed the next two subsections.

2.1 HMM modeling of images

In general, any image f;(r),r € R is composed of a finite set K; of ho-
mogeneous regions R;, with given labels z;(r) = k,k = 1,--- , K; such that
R;, = {r : zj(r) = k}, R; = UyR;, and the corresponding pixel values
fip, = {fi(r) + r € R;;} and f; = Urfj,. The Hidden Markov modeling
(HMM) is a very general and efficient way to model appropriately such images.
The main idea is to assume that all the pixel values f;, = {f;(r),r € R;,} of
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a homogeneous region k follow a given probability law, for example a Gaussian
N(mj, 1,%;,) where 1 is a generic vector of ones of the size n;, the number
of pixels in region k.

In the following, we consider two cases:

e The pixels in a given region are assumed iid:
p(fi(P)|z(r) = k) = N(mjy,03,), k=1,---,K; 9)
and thus
p(fiilzi(r) = k) = p(fi(r),m € Ry) = N(m;, 1,05, 1) (10)
e The pixels in a given region are assumed to be locally dependent:

P(fj;g‘zj(T) =k)= p(fj(r)ﬂ' € Rj/c) = N(mjkL Ejk) (11)

where 3;, is an appropriate covariance matrix.

In both cases, the pixels in different regions are assumed to be independent:

K; K;
p(f) = [ p(fi0) = T[] N(m;,, 1, 25,) (12)
k=1

k=1

2.2 Modeling the labels

Noting that all the models (9), (10) and (11) are conditioned on the value
of zj(r) = k, they can be rewritten in the following general form

p(fi) =Y P(zi(r) = k) N(mj,,, 25,) (13)
k

where either 3;, is a diagonal matrix 3;, = 032- I or not. Now, we need also
to model the vector variables z; = {z;(r),r € R]} Here also, we can consider
two cases:

e Independent Gaussian Mixture model (IGM), where {z;(r), 7 € R} are
assumed to be independent and

P(zj(r) =k) =pg, with Zpk =1 and p(z;) = I_Ip;C (14)
k k
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e Contextual Gaussian Mixture model (CGM), where z; = {z;(r),r € R}
are assumed to be Markovian

p(zj) ocexp |a Y Y 8z(r) = z(s)) (15)

rER seV(r)

which is the Potts Markov random field (PMRF). The parameter « con-
trols the mean value of the regions’ sizes.

2.8 Hyperparameters prior law

The final point before obtaining an expression for the posterior probability
law of all the unknowns, i.e, p(f,8|g) is to assign a prior probability law p()
to the hyperparameters 8. Even if this point has been one of the main dis-
cussing points between Bayesian and classical statistical research community,
and still there are many open problems, we choose here to use the conjugate
priors for simplicity. The conjugate priors have at least two advantages: 1)
they can be considered as a particular family of a differential geometry based
family of priors [1,2] and 2) they are easy to use because the prior and the
posterior probability laws stay in the same family. In our case, we need to
assign prior probability laws to the means m;,, to the variances 0]2- , Or to the
covariance matrices 3;, and also to the covariance matrices of the noises €; of
the likelihood functions. The conjugate priors for the means m;, are in general
the Gaussians N (m;, af—ko) those of variances ajk are the inverse Gamma’s
ZG(ayp, o) and those for the covariance matrices X, are the inverse Wishart’s
IW(ao, Ao).

2.4 Expressions of likelihood, prior and posterior laws

We now have all the elements for writing the expressions of the posterior
laws. We are going to summarizes them here:

e Likelihood:  p(g|f,0) = I[;, plglf. Bei) = [[11, N(g — £, Zcs)
where we assumed that the noises €; are independent, centered and Gaus-
sian with covariance matrices ¥.; which, hereafter, are also assumed to
be diagonal ¥.; = 0.21.

e HMM for the images: (flz,0) = va:l p(filzj,mj, X;)
where we used z = {z;,j =1,--- , N} and where we assumed that f;|z;
are independent.

e PMRF for the labels: p(z) H _, €xp [ O rer 2sevr) 0(2(T) — 2 (s))}
where we used the simplified notation p(z;) = P(Z;(r) = z(r),r € R)
and where we assumed {z;,j =1,--- , N} are independent.
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e Conjugate priors for the hyperparameters:
p(mjk) :N(mjko’a‘?ko% p( ]k) Ig(a]())ﬁjo)
p(Ejk) = IW(ajo,Njo),  ploe;) = ZG (o, Bio)-

e Joint posterior law of f, z and 8

p(f,z,0lg) < p(g|f,01) p(f|z, 02) p(2|62) p(6)

The general MCMC algorithm we propose to estimate f, z and @ by their
MSE estimators is a Gibbs sampling scheme where we first separate the un-
knowns in two sets p(f,z|g,0) and p(8|f,z,g). Then, we separate again
the first set in two subsets p(f|z,0,g) and p(z|@,g). Finally, when possi-
ble, using the separability along the channels, separate these two last terms
in p(f;|z;,0;,9;) and p(z;|0;,g9;). The general scheme is then, using these
expressions, to generates samples f("),g(”),Q(”) from the joint posterior law
p(f,z,0|g) and after the convergence of the Gibbs samplers, to compute their
mean and to use them as the posterior estimates.

In the following section we examine some particular cases.

3 Particular examples
8.1 Single channel image restoration

The forward model and the priors for this case can be summarized as follows:

g(r) =h(r)* f(r)+er), reR or g=Hf +e

p(glf) = N(Hf, 2c) with X =0T

p(f(r)|2(r) = k) = N(my,07), k=1,--- K

( |Z(’I’) ) N(mklk,Ek) with Ek:UzIk

p(2) = p(2(r), 7 € R) x exp [a Xy Dyevr S(2(r) — 2(5))]
p(flz) = Hk: N(mply, 3By) = N(m., %) with

m, =[m1}, - ,mgl%k]) and X, =diag[Z1, -, Xk]

p(mk) :N(mkoﬁio)a p(cr,%) = Ig(akOaﬁkO)a p(o'ez) = Zg(agvﬂé)

and the posterior probability laws are:

p(f|z,0,9) = N(£,3) with o
S=(H'ETH+E, )" and f=3% (S 'Hig+ 2. 'm,)
p(z|g,0) < p(g|z,0) p(z) with
p(glz,0) = N(m.,By) with X, =HS.H'+ 3,
—1
(mklz f) (/’Lkhvk) with ’U]% = (% + ﬁ) and M = vl% (m:o + n;];k)
. : -
(Uk|f57 ) - Zg(ak,ﬂk) Wlth Q. = Qg —+ % and /Bk — ﬂk% ’rLkQSk
where fj, = i Yower, filr) and s, =37 cp (f(r) —my)

p(o2|f,g) = ZG(ac, B°) with af = 5+af and 3= %Hg —Hf|*+ 38§
ng = number of pixels in Ry and n = total number of pixels.

For an application see [3].
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3.2 Registered images fusion and joint segmentation

Here, each observed image g;(r) (or equivalently g;) is assumed to be a
noisy version of the unobserved real image f;(r) (or equivalently f;) and all
the unobserved real images f;(r), i =1,--- , M are assumed to have a common
segmentation z(r) (or equivalently z) which is modeled by a discrete value Potts
Random Markov Field (PRMF):

gi(r) = filr) +e(r), re€R, or gi=fit+e, i=1--- M
g|.f) H p(gilfi) with
) =N(fi,2e;) with B¢, = 02T
pfi(r)‘ (7‘)—]4}) N<mik’0-i2k) k_lv"'vK
(r)=k) = N(m; 1k, 2;;) with 3, = a?ka
z) =p(z(r),r € R) x exp {a Dorer 2sev(m 0(2(1) — z(s))}
filz) = N(m.;,X.;) with
m; = [mi 1y, migly] and X.; = diag[Xir, -+, Zik]
p(mik):N(mikO’az'Qko)v p(az'Qk):Ig(aiOaﬂiO)7 p(gq) ZG(asy, Bio)
p(f|z) =1L p(filz)

and we have

(.fz|z azagz) = (fza Ai) with

Bi= (B '+ 3. and £ =5 (3¢ gi + 327 'mey)
p(zlg,0) o< (I[; p(gilz,0:)) p(z(r),r € R) with

( |Z 0) ./\/'(mZ“z]gz) Wlth Eg = Ezi+25i
(m”it‘f’mz Uz k:) N(:“’Hc?v?k) Wlth

,uzk — UZk. (m10 _|_ n;fu) and Uzk; — (nk + >7
’LO —
p(o ikUi“ z) = IG (i, Biy) with o, = a0 + 5= and Gy, :2 Big + %7
where fip = =30, cp, fi(r) and & = 3, cp, (fz( ) — M)
p(o| fi,9i) = IG(as, B5) with of = § +afy and 5f = 3llgi — fill®> + B
ng = number of pixels in R, n = total number of pixels.

For more details on this model and its application in medical image fusion
as well as in image fusion for security systems see [4].

8.8 Joint segmentation of hyper-spectral images

The proposed model is the same as the model of the previous section except
for the last equation of the forward model which assumes that the pixels in
similar regions of different images are independent. For hyper-spectral images,
this hypothesis is not valid and we have to account for their correlations. This
work is under consideration.
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8.4 Segmentation of a video sequence of images

Here, we can not assume that all the images in the video sequence have the
same segmentation labels. However, we may use the segmentation obtained
in an image as an initialization for the segmentation of next image. For more
details on this model and to see a typical result see [5].

8.5 Joint segmentation and separation of instantaneous mized images

Here, the additional difficulty is that we also have to estimate the mixing
matrix A. For more details on this model and to see some typical result in
joint segmentation and separation of images see [2].

4 Conclusion

In this paper we first showed that many image processing problems can
be presented as inverse problems by modeling the relation of the observed
image to the unknown desired features explicitly. Then, we presented a very
general forward modeling for the observations and a very general probabilistic
modeling of images through a hidden Markov modeling (HMM) which can be
used as the main basis for many image processing problems such as: 1) simple
or multi channel image restoration, 2) simple or joint image segmentation, 3)
multi-sensor data and image fusion, 4) joint segmentation of color or hyper-
spectral images and v) joint blind source separation (BSS) and segmentation.
Finally, we presented detailed forward models, prior and posterior probability
law expressions for the implementation of MCMC algorithms for a few of those
problems.
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