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Abstract. Fourier synthesis (FS) inverse problem consists in reconstructing a multi-variable
function from the measured data which correspond to partial and uncertain knowledge of its Fourier
Transform (FT). By partial knowledge we mean either partial support and/or the knowledge of
only the module and by uncertain we mean both uncertainty of the model and noisy data. This
inverse problem arises in many applications such as : optical imaging, radio astronomy, magnetic
resonance imaging (MRI) and diffraction scattering (ultrasounds or microwave imaging).
Most classical methods of inversion are based on interpolation of the data and fast inverse FT. But
when the data do not fill uniformly the Fourier domain or when the phase of the signal is lacking as
in optical interferometry, the results obtained by such methods are not satisfactory, because these
inverse problems are ill-posed. The Bayesian estimation approach, via an appropriate modeling of
the unknown functions gives the possibility of compensating the lack of information in the data,
thus giving satisfactory results.
In this paper we study the case where the observations are a part of the FT modulus of objects
which are composed of a few number of homogeneous materials. To model such objects we use a
Hierarchical Hidden Markov Modeling (HMM) and propose a Bayesian inversion method using
appropriate Markov Chain Monte Carlo (MCMC) algorithms.
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INTRODUCTION

In many applications of optical interferometry, X-ray crystallography ([5]), astronomy
([6]) or electron microscopy ([7]), one of the main mathematical part of the inversion
problems, when linearized, become a Fourier synthesis one, where only partial infor-
mation in image space and in Fourier domain are available. In astronomy and electron
microscopy the problem of recovering a finite-support signal from its Fourier Trans-
form magnitude arises. In optical astronomy, interferometric imaging techniques are
employed. This yields to the magnitude of the Fourier Transform of the image with ad-
ditional knowledge as non negative values and bounded spatial extent (finite-support).
In many cases it can be shown that Fourier phase is significantly more relevant in repre-
senting a signal. Moreover in some situations it is possible to fully reconstruct a signal
from its Fourier phase-only information. Specific conditions for unique representation
and methods for signal reconstruction were introduced and tested in [4, 3, 8]. Most of
these algorithms are iterative, alternating between the spatial and Fourier domains. One



of the most successful algorithm is the Input-Output (I/O) algorithm of Fienup ([2]).
In this paper we study the case where only the magnitude, or a part of the magnitude,
is observed, and we know the support of the 2D-object. The mathematical problem be-
comes the estimation of an image f (r), r ∈ S ⊂ R 2, from noisy and partial knowledge
of its Fourier Transform magnitude g(ω), ω ∈ Ω ⊂ R 2 :

g(ω) = G(F(ω))+ ε(ω) = [H f ] (ω)+ ε(ω)

F(ω) =
Z

f (r)e− jωrdr

G(.) = | . |

(1)

Note that if we consider images, the pixels r of the spatial domain belong to a finite
lattice S and we will note S the number of pixels of this lattice. With the same idea we
consider Ω as a discrete lattice, whose length is noted by L. In the following we use the
vectorial notation :

g = H(f)+ ε, (2)

where g = {g(ω),ω ∈ Ω}, ε = {ε(ω),ω ∈ Ω}, f = { f (r),r ∈ S}, and H : R S −→ R L
+

represents the truncation of the magnitude of the Fourier Transform of the image f . In
this paper we propose a Bayesian approach and compare the results with the Fienup
algorithm.

BAYESIAN APPROACH

Within the observation model (2) and assuming ε centered, white and Gaussian p(ε) =
N (0,σ2

εI), and L the size of the observation g, we have :

p(g|f) = N (H(f),σ2
εI) =

(

1

2πσ2
ε

)
L
2

exp

{

−
1

2σ2
ε
||g−H(f)||2

}

(3)

Gaussian mixture model for homogeneous modeling

Now we consider the case where we want a reconstructed image with statisti-
cally homogeneous regions. This can be modeled by introducing a new variable
z = {z(1), · · · ,z(S)}, S being the number of pixels of f , where each z(r) takes a discrete
value k ∈ 1, . . . ,K corresponding to the index of the region. Then defining the following
notations

Rk = {r : z(r) = k}, |Rk| = nk, and fk = { f (r) : z(r) = k}



and assuming that all the pixels with the same value z(r) = k are inside a homogeneous
region with mean value mk and variances σ2

k , we can write

p(fk) = N
(

mk1k,σ2
kIk
)

=

(

1

2πσ2
k

)

nk
2

exp

{

−
1

2σ2
k
∑

j
( f j −mk)

2

}

=

(

1

2πσ2
k

)

nk
2

exp

{

−
1

2σ2
k

‖fk −mk1k‖
2
}

and

p(f) = ∏
k

N
(

mk1k,σ2
kIk
)

= ∏
k

(

1

2πσ2
k

)

nk
2

exp

{

−
1

2σ2
k

‖fk −mk1k‖
2
}

(4)

where 1k is a vector of nk elements all equal to one.

Different modelings on the labels z

To include more explicitly this classification, we write this dependence :

p( f (r)|z(r) = k) = N
(

mk,σ2
k

)

We assume then that, given the labels, the pixels f (r) are independent and we can go in
different directions on the modeling of the labels z.

Independent case .
In this part we assume the labels independent, which means :

P(z(r) = k) = pk, k = 1, . . . ,K (5)

the prior distribution π(p1, . . . , pK) is chosen uniform. Then the a posteriori values of
pk will be updated computing the number of pixels which belong in each class.

Potts Markov modeling case .
As we introduced the hidden variable z for finding statistically homogeneous regions in
images, it is natural to define a spatial dependency on these labels. The simplest model
to account for this desired local spatial dependency is a Potts Markov Random Field
model :

P(z) =
1

T (α)
exp







α ∑
r∈S

∑
s∈V (r)

δ(z(r)− z(s))







, (6)

where S is the set of pixels, δ(0) = 1, δ(t) = 0 if t 6= 0, V (r) denotes the neighborhood of
the pixel r (here we consider a neighborhood of 4 pixels), T (α) is the partition function
or the normalization constant and α represents the degree of the spatial dependency of



the variable z.
We have now all the necessary prior laws p(g|f), p(f |z), and P(z) and to give an
expression for p(f ,z|g). However these probability laws have in general unknown
parameters such as σ2

ε in p(g|f) or mk and σ2
k in p(f |z). We then have to assign prior

laws to these "hyperparameters".

Conjugate priors for the hyperparameters

Let m = (mk)k=1,...,K and σ2 = (σ2
k)k=1,...,K be the means and the variances of the pixels

in different regions of the images f as defined before. We define θ as the set of all the
parameters which must be estimated :

θ = (σ2
ε ,m,σ2),

The choice of prior laws for the hyperparameters is still an open problem. In [9] the
authors used differential geometry tools to construct particular priors which contain as
particular case the entropic and conjugate priors. In this paper we choose this last one.
When applied the particular priors of ([9]) for our case, we find the following conjugate
priors :

• Inverse Gamma I G(αε
0,β

ε
0) and I G(α0,β0) respectively for the variances σ2

ε and
σ2

k ,

• Gaussian N (m0,σ2
0) for the means mk.

A POSTERIORI CONDITIONAL DISTRIBUTIONS

As we want to use a Gibbs sampling ([1]) for estimating the set (f ,z,θ) following
the joint a posteriori distribution p(f ,z,θ|g), we have to define the conditional a
posteriori distributions p(f |z,θ,g), P(z|f ,θ,g) and p(θ|f ,z,g), in order to sample
these probabilities.
Sampling z using P(z|g,f ,θ) :
For this step we have :

P(z|g,f ,θ) ∝ p(g|f ,z,θ) P(z|f ,θ)

= p(g|f) P(z|f ,θ)

∝ P(z|f ,θ)

and
P(z|f ,θ) ∝ P(z) p(f |z,θ) = P(z) ∏

r∈S
p( f (r)|z(r),θ) (7)

We have two different priors on the labels, as defined before. For the independent case
the probabilities pk are estimated computing the number nk of pixels which belong in
each class k and we have :

pk =
nk

S
(8)



In the case of the Potts Markov Random Field (PMRF), we may note that an exact
sampling of the a posteriori distribution P(z|f ,θ) is impossible. However we may note
that P(z|f ,θ) is still a PMRF where the probabilities are weighted by p(f |z,θ). We use
this fact to propose in the next section a parallel implementation of a Gibbs sampling
for this PMRF.

sampling θ using p(θ|f ,g,z) :
We have the following relation :

p(θ|f ,g,z) ∝ p(m,σ2|f ,z) p(σ2
ε |f ,g)

For the first term p(m,σ2|f ,z) we use the conditional distributions p(m|σ2
,f ,z)

and p(σ2|m,f ,z). Using again the Bayes formula, the a posteriori distributions are
calculated from the prior selection fixed before and we have

• mk|f ,z,σ2
k,m0,σ2

0 ∼ N (µk,v2
k), with

µk = v2
k

(

m0

σ2
0

+
1

σ2
k

∑
r∈Rk

f (r)

)

, v2
k =

(

nk

σ2
k
+

1
σ2

0

)−1

(9)

• σ2
k |f ,z,mk,α0,β0 ∼ I G(αk,βk), with

αk = α0 +
nk

2
, βk = β0 +

1
2 ∑

r∈Rk

( f (r)−mk)
2 (10)

• σ2
ε |f ,g ∼ I G(α,β), with

α =
S
2

+αε
0, β =

1
2
||g−f ||2 +βε

0 (11)

Sampling f using p(f |g,z,θ) :
We can write the a posteriori law p( f (r)|g(r),z(r),θ) as follows :

p(f |g,z,θ) ∝ p(g|f ,z,θ) p(f |z,θ)

∝ exp

{

−
1

2σ2
ε
||g−H(f)||2 −

K

∑
k=1

1

2σ2
k

||fk −mk1k||
2

}

If H(f) was a linear function of f then p(f |g,z,θ) would be Gaussian and generating
samples from it could be done easily. In our case H(f) is not linear and thus an exact
sample of this distribution is impossible. A solution may be to study this distribution and
then implement, at each step, a Hasting-Metropolis algorithm to have an exact sample.
But this solution significantly increases the complexity of the algorithm. For this step
we propose to approximate the algorithm computing the maximum of this a posteriori
law :

f̂ = argmin
f

{

1

2σ2
ε
||g−H(f)||2 +

K

∑
k=1

1

2σ2
k

||fk −mk1k||
2

}

(12)

We can then implement an approximated Gibbs sampling for estimating the set of
variables (f ,z,θ).



APPROXIMATED GIBBS SAMPLING

In the case of independent labels the sampling of P(z|f ,θ) is easy. In the case of
the Potts Markov Random Field, as we chose a first order neighborhood system on
the labels, the a posteriori is still a PMRF with the same neighborhood. We can then
decompose the whole set of pixels into two subsets forming a chess board ([1]). In this
case if we fix the black (respectively white) labels, then the white (respectively black)
labels become independent. This decomposition reduces the complexity of the Gibbs
algorithm because we can simulate the whole set of labels in only two steps.

The Gibbs sampling, for both cases, is then the following : given an initial state
(θ̂, ẑ)(0),

Approximate Gibbs sampling
repeat until convergence

1. compute f̂i
(n)

= argmin f

{

1
2σ2

ε
||g−H(f)||2 +∑K

k=1
1

2σ2
k
||fk −mk1k||

2

}

2. simulate ẑ(n) ∼ p
(

z|f̂ (n)
, θ̂(n−1)

)

for the independent case

or simulate ẑB
(n) ∼ p

(

z| ẑW
(n−1)

, f̂ (n)
, θ̂(n)

)

simulate ẑW
(n) ∼ p

(

z| ẑB
(n)

, f̂ (n)
, θ̂(n)

)

for the PMRF case

3. simulate θ̂(n)
∼ p

(

θ|f̂ (n)
, ẑ(n)

,g
)

SIMULATION RESULTS

Here we present some results of our methods in the case of simulated data (figure
(1-a)). We compare then the results of reconstruction with one of the most classical
deterministic methods which if the I/O algorithm of Fienup ([2]). The main idea behind
this algorihtm is using the principle of projections on the convex sets (POCS) which is
described here in summary : Initialize the algorithm by G with the observed magnitude
M inside the Fourier support and zero outside, and the phase equals to zero. Repeat after
convergence :

• 1. Inverse Fourier Transform F = I F (G)

• 2. G = 0 outside the spatial support
• 3. Fourier Transform G = F (F )

• 4. G = M inside the Fourier support

To compare the results with the original data we use the following correlation measure
between two images u and v :

d(u,v) =
∑r∈S u(r)v(r)

||u|| ||v||
(13)



Figure (2) shows the results of the different algorithms when the Signal-to-Noise Ratio
vary. Figure (2-a) represents the case where we know the magnitude in the whole Fourier
domain. In the figure (2-b) we consider the case where only a part of the magnitude
(40%) is observed. These results show that our algorithm gives better reconstructed im-
ages than the Fienup algorithm, particularly when the labels are modeled by the PMRF.
Our algorithms are more robust to the noise and to the restriction of the observations in
the Fourier domain.
Figure (1) shows the performances of the different algorithms in the case where only
40% of the magnitude is observed. Because we have introduced a label variable in our
algorithms we can also obtain a classification result.

(a) Initial image (b) initial segmentation (c) Finite-support (d) Observed data

(e) (f) (g) (h) (i)

FIGURE 1. Results of Fourier Synthesis : (a) original image and (b) the perfect segmentation. (c)
corresponding known spatial support. (d) Observed magnitude of the Fourier Transform. (e) result of the
Fienup algorithm with 100% (up) and 40% (down) of the magnitude. (f) result of our method considering
the labels independent and (g) the corresponding segmentation with 100% (up) and 40% (down) of
the magnitude. (h) result of our method considering the PMRF on the labels (i) the corresponding
segmentation with 100% (up) and 40% (down) of the magnitude.

When the magnitude is known in only a part of the Fourier domain the Fienup’s algo-
rithm becomes not efficient. In this case our methods give largely better results of re-
construction and a satisfactory segmentation. The modelization of the labels by a PMRF
increases the performances of the method and we obtained more than 94% of good clas-
sified labels in the case of high SNR data, versus 82% for the case of independent labels.
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(a) Whole Fourier domain (b) 40% of the magnitude

FIGURE 2. Results of Fourier Synthesis : correlation measure of the three algorithms with (a) the whole
Fourier domain and (b) only 40% of the magnitude

CONCLUSION

We proposed a Bayesian approach for Fourier Synthesis in the case where the obser-
vations are only a part of the magnitude of the Fourier Transform. We proposed an
approximated Gibbs algorithm with a Hidden Markov Model which permits us to obtain
a segmentation and we proposed two different modelings on the labels : independent and
by a PMRF. We showed then that our method gives better results then the classical deter-
ministic method of Fienup. We showed also how we can obtain an efficient segmentation
in the case where only 40% of the magnitude is observed.
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