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Abstract. In this paper we present an application of Bayesian nontivegaource separation
to the analysis of spectral mixtures obtained from the aislgf multicomponent substances.
The processing aims are formalized as a non-negative sseparation problem. The proposed
Bayesian inference for the analysis is introduced and tha staps of the estimation algorithm are
outlined. Some results obtained with simulated and exparial data are presented.

PROBLEM STATEMENT

The analysis of multicomponent chemical substances ugirgtsscopic techniques
yields data which are mixtures of the pure component spettra processing aims
at identifying the unknown pure components and determittieg concentrations [1].
According to Beer-Lambert-Bouguer law [2], the mixing modgelinear instantaneous

n
Xi(w) = z i.)Si(Vk) +Ei(w), for k=1,...,N, (1)

whereX;(vx), Sj(vk) represent respectively thieh observation and thgth pure com-
ponent absorption at wavelength (this measurement variable can also correspond to
a wavenumber, chemical shift, etc.) a{lél(m}?:l represent the mixing coefficients

which are proportional to the concentration of theure components in theth mixture.
The additive noise terrg;(vx) represents measurement errors and model uncertainties.
By varying a chemical or physical parameter, the amount of gage component in
the substance changes due to chemical reaction or molectdeaictions. Fom differ-
ent values of the physical parameter, the observationigpact expressed using matrix
notations as

X=AS+E, 2)



where X is them x N data matrix withm observation spectra dfl wavelengths in
its rows andA is the m x n mixing matrix whose columns are proportional to the
concentration profiles of thecomponentsSis an x N matrix of then spectra of then
pure components, in its rows, aidis amx N matrix of the additive noise sequences.
The problem of mixture analysis in spectroscopy is theredtas follows: knowing the
number of components and having all the observations, astithe pure component
spectra and their concentrations. These objectives amafared as a particular source
separation problem in which the sources are identified aptihne component spectra
and the concentration profiles are deduced from the mixiedficents.

Two main constraints are associated to this problem: alsthece signals are non-
negatives

Sj(Vk) > O,V j7k7 (3)
and all the mixing coefficients are non-negatives

So, mixture analysis in spectroscopy corresponds to a Bgative source separation
problem. In chemometrics the problem is termed by self-rogeurve resolution [3]
and the mostly used methods consist in minimizing the meaarsg error criterion un-
der the non-negativity constraint, leading to algorithrffedng on the manner how the
non-negativity is introduced. In particular, alternatiegst squares (ALS) method [4]
performs an estimation where the non-negativity is hardipased between succes-
sive iterations by setting to zero the negative estimatéy @erforming a non-negative
least squares estimation [5]. The second method named egative matrix factoriza-
tion (NMF), which has been presented recently [6], achi¢veslecomposition by con-
structing a gradient descent algorithm over the objectimetion and updates iteratively
sources and mixing coefficients by considering a particoaltiplicative learning rule
that ensures the estimates to be non-negatives.

In this paper we address the problem of non-negative soegaation in a Bayesian
framework. We present an approach that we proposed in [fi@Bfisscuss some results
obtained when applying these methods to the separation mh#aged non-negative
mixture and to the analysis of spectral data obtained fromfaared (IR) spectroscopy
experiment.

BAYESIAN NON-NEGATIVE SOURCE SEPARATION

The main idea of a Bayesian approach for source separatiofasmnalize any available
knowledge on the source signals and the mixing coefficidmsugh the assignment
of prior distributionsp(S) and p(A). According to Bayes’ theorem and considering
the likelihood p(X|S A) and these prior distribution, we obtain the posterior dgnsi
expressed as

P(SAIX) o p(X|SA) x p(S) x p(A). (5)
From this posterior density, joint estimation®andA can be achieved by using various
Bayesian estimators. However, the main task of the inferentmeencode the available
knowledge by appropriate probability distribution furcts.



Bayesian Separation M odel

The noise sequences are assumed independent and idgrdistributed (i.i.d), in-
dependent of the source signals, stationary and Gaussiarzero mean and variances
{02}I ,- Therefore, the likelihood is given as

pP(X|A, S 8;) k_llr!«/V (xi(vk);glA(i,é)Sé(Vk)yaiz) ; (6)

wheref, = {oiz}i";l and.# (z u,0?) refers to a normal distribution of the variable

z with meanu and variances®. The sources are assumed mutually statistically inde-
pendent and eaclith source signal is supposed i.i.d and distributed as a Gadism
tribution of parameter$aj,[3]). The Gamma density is used to take into account the
non-negativity and its parameters allow to fit the spectstrithution that may present
some sparsity and possibly a background. To incorporateniking coefficient non-
negativity, each columm of the mixing matrix is also assumed distributed as a Gamma
distribution of parametere/J, ) The two-parameter Gamma density is expressed by

ba
¢ (za,b) = f@ 21 exp[—bZ Ijg 1« (2). (7)

wherel (a) is the Gamma function. The prior densities of the sourceadggand the
mixing matrix are then given by

N n
p(S8,) = rl 9( SJ Vi); a]»B]) (8)
k=1]=
m n

A| 63 El I:l VJ ) 7 (9)

wheref, = {ai,Bj} Landfs; = {y;,A; }] ,- Using Bayes’ theorem and noting Iy

the vector containing the hyperparametérs: {64, 85,85}, the posterior law is given
as

pP(SAX,0) x |_| ﬂﬂ( iA(|,j)Sj(Vk)7O-i2)

k=11 j
N n
X I_l ﬂg(Sj(Vk);aj,Bj)xr! G (A YirAj)- (210)
i=1]

For an unsupervised learning, the hyperparamdlensve also to be inferred. The
joint posterior distribution including the hyperparanrstis expressed as
P(SA B|X) x p(SAX,0) xp(6), (11)

in which prior densities are assigned to the hyperparaméter



MCM C Sampling and Estimation

The estimation of the source signals and the mixing coeffisiés performed by
sampling the joint posterior distribution and construgtine estimator from the samples
of the Markov chain. The estimation is achieved using thegmat posterior mean

(MPM) estimator o
(A.S) =Epsax.e) {SA} (12)

and the simulation of the posterior densjiyS A, 6|X) is performed using an hybrid
Metropolis-Hastings-Gibbs sampling algorithm. The ma@ps of the sampling scheme
are firstly outlined and then the conditional posterior desare given.

To samplep(S A, 8|X), at each new iteration of the algorithm, the main steps
consists in sampling the

1. source signals" Y from p (gg,ﬂ”,@”),
2. mixing coefficientA" ) from p (A}X,S””,Q(r)),

3. noise variance@&”l) from p (Ql‘x,gfﬂ),p\(wl)),

4. source hyperparametegé”l) from p (Q2‘§<r+1)>,
5. mixing coefficient hyperparameteQérH) from p <Q3}A(f+1)).

All the variable are randomly initialized at the first itacat of the sampler and the MPM
estimator is implemented by averaging the retained sangfldse Markov chain (the
first samples corresponding to the burn-in run are discarded

Conditional Posterior Densities

The scalar version of the sampling scheme is implementeeacil component &,
A and@ is sampled conditionally to the most recent other companéiit the required
conditional posterior densities for MCMC sampling are dethbelow. Firstly priors are
assigned to source signag vk), secondly to mixing coefficient; ;) and finally to the
hyperparameters.

Source Signals. At ther-th iteration of the sampler, the conditional posteriorsign
of each source signal is given as

P (S (% Xy (). 8 3173 (), 84

(r)

o Sj(w)® texp | —
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WhereupOSt( W) = ugjke'(vk)— Bj(r [ Spoﬂ , and
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This distribution is not usual, so its sampling is achievethg a Metropolis-Hastings
algorithm. An instrumental den5|ty |s derlved from this f@o®r law as a truncated nor-
mal distribution of variance set taS Stand mean equal to the mode of this posterior

law. The sampling from the truncated normal distribution ba achieved by cumula-
tive distribution function inversion technique or by usiag accept-reject method [9].
An interesting point with this instrumental distributiogthat constrainingrj = 1 cor-
responds to taking an exponential prior for thth source distribution. The use of the
Metropolis-Hastings algorithm is avoided since the caoddal posterior density is a
truncated normal of parameters equal to those of the prdgosgumental density.

Mixing Coefficients. The conditional posterior density of each mixing coeffitiisn

: (r+1) 1) (r) 3 (1)
p (A X (vin) AT 1) A1y ST, 0111 A1)

(r)_ 2
W1
ccAfj) exp (As = 1) To i (A ) (14)

Y
2 [O_post]
Aij)
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whereupOSt_ A — A" [a,';:‘lej')} , and
( (r) 2
[GEOSt]Z _ [0A<i,j>]
(- N r+1) ’
3 S(- (Vi)
likel _ r+1 :
Ay = [nkeq S( g (),
Aj)
- =
g (w) = (xi(Vk)_ > ASX)SS“)WQ ( Sﬁ; )
L =1 (= J+1

The simulation of this distribution is achieved using a Metlis-Hastings algorithm
and the same derivation of the instrumental density as #stiurce signals.



Noise Variances. The conditional posterior conditional density of each aoiari-
anceo? is expressed by

e A5

) [t e )| -o()- oo

The conjugate prior ob; 2 is a Gamma distribution of paramete(srp”or,ﬁp”or).
Therefore, its conditional posterlor density is also of Gaardistribution of parameters

2
N ) |
a(‘;igSt >+ or'o”Or andBpOSt 5 z < (Vk) /z A S(r+ Vi ) +B§i§'°r.

Source signal hyperparametersThe posterior density of each hyperparametgis
given as

p(ails ™ (van) .B")
N

exp[(ngBj(” + Zlogsf”l)(vk)) a,-] « p(aj). (16)
=

1
r(ajN

An exponential distribution of paramet.&efj”or is considered as prior farj, which leads
to

r r 1 0S N
D(aj|5§ = (V) »B,-( )> o (r(aj) exp[/\c?,- tij]) Lo (aj),  (17)

. N
whereA £ = IogBj(r) — %)\é’j”or +% >3 IogSE”rl)(vk). The sampling from this distri-
KE1

bution is achieved using a Metropolis-Hastings algorithhere an instrumental distri-
bution is derived as a Gamma distribution with parametdutated from the mode and
the superior inflexion point of this distribution [8]. Conoerg the hyperparametét;,
its conditional posterior distribution is given as

r+1) N
p<Bi|S§r+l)( any) r+1> x BJ exp [—BJ kz sﬁ'“)(vk)] x p(Bj).  (18)
=1

The conjugate prior assigned 8 is a Gamma density of paramet ragj”or, I?jrior).

Therefore, its conditional posterior density is also a Gandistribution with parameters
post _ (r+1) prior post _ r+1) prior
ag (Na +ag -|—1> andBy (Z S( ( )—1—[3 )

Mixing coefficient hyperparametersThe mixing coefficient hyperparameters are
sampled using the same manner as the hyperparameters otitice signals.



EXPERIMENTS

We present two results obtained with numerical and experiahenixtures. The first

data set is obtained by mixing three simulated non-negateals that are similar to
real spectra. The mixing coefficients are also chosen in aughy to get an evolution
similar to what we get in chemical reactions. Figure 1 shdwesdource signals, the
mixing coefficients and the resulting mixtures for an SNR @tB.
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FIGURE 1. (a) Source signals, (b) mixing coefficients and (c) resgltirixtures for SNR = 20 dB

The second experiment consists in mixing three known charsjpecies (cyclopen-
tane, cyclohexane and n—pentane) and the mixture data tamed by near infrared
(NIR) spectroscopy measurements. These species have esmdiecause their spec-
tra in the NIR frequency band are highly overlapping whictkesathe separation diffi-
cult and they do not interact when they are mixed, guaragtiiat no new component
appears. The pure spectra and concentration are showniia #gu
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FIGURE 2. (a) Constituent spectra, (b) concentration profiles anch@sured mixture data

The separation accuracy is evaluated using the performadeg (Pl), and the cross-
talk (CT), which are defined by

12 [(& 1GuwP " Gy 1)
= _L g 7—1 19
2 Zl kZ max|G( E)’ kz maX|Gé| ‘
1 2

whereG; ;) are elements of the matrx= A Aand # represents the pseudo-inverse. The
Pl measures the overall separation performances and taediozainly the mixing ma-



TABLE 1. Comparison of the separation performances using diffenethods

Simulated data Experimental data

NNICA NMF ALS BPSS NNICA NMF ALS BPSS

CTsource1 -12.95 -13.64 -17.65 -20.99 -4.82 -1420 -1518 -33.23
CTsouwce2 -10.70 -11.70 -11.11 -19.94 -564 -17.50 -23.43 -24.98
CTsources -19.93 -19.83 -21.76 -19.11 -4.77 -17.88 -14.01 -26.05

Pl -10.03 -9.60 -12.01 -1841 -1.02 -11.60 -8.10 -19.22

trix estimation quality, while the cross-talk assessesstgeal reconstruction accuracy.
Table 1 summarizes the performances of different methodswabplied to the analysis
of the two data sets, where the performance indexes areesged in dB. NNICA is
the non-negative independent component analysis meti@paftl BPSS (for Bayesian
positive source separation) refers to the proposed apprdaese results show the su-
perior performances of the Bayesian approach.

CONCLUSION

An application of Bayesian non-negative source separabiomxture analysis has been
addressed in this paper. The Bayesian inference allows tsidemthe non-negativity

of the spectral sources as prior information which is endddeough the assignment of
Gamma distribution priors. The presented results illastitzat such prior is very suitable
for the separation. The proposed approach can be straigiatfily extended to a more
general model consisting in mixtures of Gamma or truncatechal distributions.
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