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Abstract. In this paper we present an application of Bayesian non-negative source separation
to the analysis of spectral mixtures obtained from the analysis of multicomponent substances.
The processing aims are formalized as a non-negative sourceseparation problem. The proposed
Bayesian inference for the analysis is introduced and the main steps of the estimation algorithm are
outlined. Some results obtained with simulated and experimental data are presented.

PROBLEM STATEMENT

The analysis of multicomponent chemical substances using spectroscopic techniques
yields data which are mixtures of the pure component spectra. The processing aims
at identifying the unknown pure components and determiningtheir concentrations [1].
According to Beer-Lambert-Bouguer law [2], the mixing model is linear instantaneous

Xi(νk) =
n

∑
j=1

A(i, j)Sj(νk)+Ei(νk), for k = 1, ...,N, (1)

whereXi(νk), Sj(νk) represent respectively thei-th observation and thej-th pure com-
ponent absorption at wavelengthνk (this measurement variable can also correspond to
a wavenumber, chemical shift, etc.) and

{

A(i, j)
}n

j=1
represent the mixing coefficients

which are proportional to the concentration of then pure components in thei-th mixture.
The additive noise termEi(νk) represents measurement errors and model uncertainties.
By varying a chemical or physical parameter, the amount of each pure component in
the substance changes due to chemical reaction or molecularinteractions. Form differ-
ent values of the physical parameter, the observation spectra are expressed using matrix
notations as

X = AS+E, (2)



whereX is the m× N data matrix withm observation spectra ofN wavelengths in
its rows andA is the m× n mixing matrix whose columns are proportional to the
concentration profiles of then components.S is an×N matrix of then spectra of then
pure components, in its rows, andE is am×N matrix of the additive noise sequences.
The problem of mixture analysis in spectroscopy is then stated as follows: knowing the
number of components and having all the observations, estimate the pure component
spectra and their concentrations. These objectives are formalized as a particular source
separation problem in which the sources are identified as thepure component spectra
and the concentration profiles are deduced from the mixing coefficients.

Two main constraints are associated to this problem: all thesource signals are non-
negatives

Sj(νk) ≥ 0, ∀ j,k, (3)

and all the mixing coefficients are non-negatives

A(i, j) ≥ 0, ∀ i, j. (4)

So, mixture analysis in spectroscopy corresponds to a non-negative source separation
problem. In chemometrics the problem is termed by self-modeling curve resolution [3]
and the mostly used methods consist in minimizing the mean squares error criterion un-
der the non-negativity constraint, leading to algorithms differing on the manner how the
non-negativity is introduced. In particular, alternatingleast squares (ALS) method [4]
performs an estimation where the non-negativity is hardly imposed between succes-
sive iterations by setting to zero the negative estimates orby performing a non-negative
least squares estimation [5]. The second method named non-negative matrix factoriza-
tion (NMF), which has been presented recently [6], achievesthe decomposition by con-
structing a gradient descent algorithm over the objective function and updates iteratively
sources and mixing coefficients by considering a particularmultiplicative learning rule
that ensures the estimates to be non-negatives.

In this paper we address the problem of non-negative source separation in a Bayesian
framework. We present an approach that we proposed in [7, 8] and discuss some results
obtained when applying these methods to the separation of a simulated non-negative
mixture and to the analysis of spectral data obtained from aninfrared (IR) spectroscopy
experiment.

BAYESIAN NON-NEGATIVE SOURCE SEPARATION

The main idea of a Bayesian approach for source separation is to formalize any available
knowledge on the source signals and the mixing coefficients through the assignment
of prior distributionsp(S) and p(A). According to Bayes’ theorem and considering
the likelihood p(X|S,A) and these prior distribution, we obtain the posterior density
expressed as

p(S,A|X) ∝ p(X|S,A)× p(S)× p(A). (5)

From this posterior density, joint estimation ofSandA can be achieved by using various
Bayesian estimators. However, the main task of the inferenceis to encode the available
knowledge by appropriate probability distribution functions.



Bayesian Separation Model

The noise sequences are assumed independent and identically distributed (i.i.d), in-
dependent of the source signals, stationary and Gaussian with zero mean and variances
{

σ2
i

}m
i=1. Therefore, the likelihood is given as

p(X|A,S,θ1) =
N

∏
k=1

m

∏
i=1

N

(

Xi(νk);
n

∑
ℓ=1

A(i,ℓ)Sℓ(νk),σ2
i

)

, (6)

whereθ 1 =
{

σ2
i

}m
i=1 andN

(

z; µ,σ2
)

refers to a normal distribution of the variable
z with meanµ and varianceσ2. The sources are assumed mutually statistically inde-
pendent and eachj-th source signal is supposed i.i.d and distributed as a Gamma dis-
tribution of parameters

(

α j ,β j
)

. The Gamma density is used to take into account the
non-negativity and its parameters allow to fit the spectra distribution that may present
some sparsity and possibly a background. To incorporate themixing coefficient non-
negativity, each columnj of the mixing matrix is also assumed distributed as a Gamma
distribution of parameters

(

γ j ,λ j
)

. The two-parameter Gamma density is expressed by

G (z;a,b) =
ba

Γ(a)
za−1 exp[−bz] I[0,+∞](z). (7)

whereΓ(a) is the Gamma function. The prior densities of the source signals and the
mixing matrix are then given by

p(S|θ2) =
N

∏
k=1

n

∏
j=1

G (Sj(νk);α j ,β j), (8)

p(A|θ3) =
m

∏
i=1

n

∏
j=1

G (A(i, j);γ j ,λ j), (9)

whereθ 2 =
{

αi,β j
}n

j=1 andθ 3 =
{

γ j ,λ j
}n

j=1. Using Bayes’ theorem and noting byθ
the vector containing the hyperparametersθ = {θ 1,θ2,θ3}, the posterior law is given
as

p(S,A|X,θ) ∝

N

∏
k=1

m

∏
i=1

N

(

Xi(νk);
n

∑
j=1

A(i, j)Sj(νk),σ2
i

)

×
N

∏
k=1

n

∏
j=1

G (Sj(νk);α j ,β j)×
m

∏
i=1

n

∏
j=1

G (A(i, j);γ j ,λ j). (10)

For an unsupervised learning, the hyperparametersθ have also to be inferred. The
joint posterior distribution including the hyperparameters is expressed as

p(S,A,θ |X) ∝ p(S,A|X,θ)× p(θ) , (11)

in which prior densities are assigned to the hyperparameters θ .



MCMC Sampling and Estimation

The estimation of the source signals and the mixing coefficients is performed by
sampling the joint posterior distribution and constructing the estimator from the samples
of the Markov chain. The estimation is achieved using the marginal posterior mean
(MPM) estimator

(

Â, Ŝ
)

= Ep(S,A|X,θ) {S,A} , (12)

and the simulation of the posterior densityp(S,A,θ |X) is performed using an hybrid
Metropolis-Hastings-Gibbs sampling algorithm. The main steps of the sampling scheme
are firstly outlined and then the conditional posterior densities are given.

To samplep(S,A,θ |X), at each new iterationr of the algorithm, the main steps
consists in sampling the

1. source signalsS(r+1) from p
(

S|X,A(r),θ (r)
)

,

2. mixing coefficientsA(r+1) from p
(

A
∣

∣X,S(r+1),θ (r)
)

,

3. noise variancesθ (r+1)
1 from p

(

θ 1

∣

∣X,S(r+1),A(r+1)
)

,

4. source hyperparametersθ (r+1)
2 from p

(

θ 2

∣

∣S(r+1)
)

,

5. mixing coefficient hyperparametersθ (r+1)
3 from p

(

θ 3

∣

∣A(r+1)
)

.

All the variable are randomly initialized at the first iteration of the sampler and the MPM
estimator is implemented by averaging the retained samplesof the Markov chain (the
first samples corresponding to the burn-in run are discarded).

Conditional Posterior Densities

The scalar version of the sampling scheme is implemented andeach component ofS,
A andθ is sampled conditionally to the most recent other components. All the required
conditional posterior densities for MCMC sampling are detailed below. Firstly priors are
assigned to source signalsSj(νk), secondly to mixing coefficientsA(i, j) and finally to the
hyperparameters.

Source Signals. At the r-th iteration of the sampler, the conditional posterior density
of each source signal is given as

p
(

Sj(νk)
∣

∣X(1:n)(νk),S
(r+1)
(1: j−1)

(νk),S
(r)
( j+1:n)

(νk),A
(r)
(1:m,1:n)

,θ (r)
1 ,α(r)

j ,β (r)
j

)

∝ Sj(νk)
α(r)

j −1exp






−

1

2
[

σ post
Sj

]2

(

Sj(νk)−µ post
Sj

(νk)
)2






I[0,+∞]

(

Sj(νk)
)

(13)



whereµ post
Sj

(νk) = µ likel
Sj

(νk)−β (r)
j

[

σ post
Sj

]2
, and























































[

σ post
Sj

]2
=







m

∑
i=1

[

A(r)
(i, j)

]2

[

σ (r)
i

]2







−1

,

µ likel
S( j,t)

=
1

[

σ likel
Sj

]2

m

∑
i=1

A(r)
(i, j) ε− j

i (νk)
[

σ (r)
i

]2 ,

ε− j
i (νk) = Xi(νk)−

j−1
∑

ℓ=1
A(r)

(i,ℓ)S
(r+1)
ℓ (νk)−

n
∑

ℓ= j+1
A(r)

(i,ℓ)S
(r)
ℓ (νk).

This distribution is not usual, so its sampling is achieved using a Metropolis-Hastings
algorithm. An instrumental density is derived from this posterior law as a truncated nor-
mal distribution of variance set toσ post

Sj
and mean equal to the mode of this posterior

law. The sampling from the truncated normal distribution can be achieved by cumula-
tive distribution function inversion technique or by usingan accept-reject method [9].
An interesting point with this instrumental distribution is that constrainingα j = 1 cor-
responds to taking an exponential prior for thej-th source distribution. The use of the
Metropolis-Hastings algorithm is avoided since the conditional posterior density is a
truncated normal of parameters equal to those of the proposed instrumental density.

Mixing Coefficients. The conditional posterior density of each mixing coefficient is

p
(

A(i, j)

∣

∣Xi(ν1:N),A(r+1)
(i,1: j−1)

,A(r)
(i, j+1:n)

,S(r+1),θ (r)
1 ,γ(r)

j ,λ (r)
j

)

∝ A
γ(r)

j −1

(i, j) exp











−
1

2
[

σ post
A(i, j)

]2

(

A(i, j)−µ post
A(i, j)

)2











I[0,+∞]

(

A(i, j)
)

(14)

whereµ post
A(i, j)

= µ likel
A(i, j)

−λ (r)
j

[

σ likel
A(i, j)

]2
, and























































[

σ post
A(i, j)

]2
=

[

σ (r)
A(i, j)

]2

N
∑

k=1
S(r+1)

j (νk)

,

µ likel
A(i, j)

=
1

[

σ likel
A(i, j)

]2

N
∑

k=1
S(r+1)

j (νk)ε
− j
i (νk),

ε− j
i (νk) =

(

Xi(νk)−
j−1
∑

ℓ=1
A(r+1)

(i,ℓ) S(r+1)
ℓ (νk)−

n
∑

ℓ= j+1
A(r)

(i,ℓ)S
(r+1)
ℓ (νk)

)

.

The simulation of this distribution is achieved using a Metropolis-Hastings algorithm
and the same derivation of the instrumental density as for the source signals.



Noise Variances. The conditional posterior conditional density of each noise vari-
anceσ2

i is expressed by

p

(

1

σ2
i

∣

∣

∣
Xi

(

ν(1:N)

)

,A(r+1)
(i,1:N)

,S(r+1)

)

∝

(

1

σ2
i

)

N
2



−
1

2σ2
i

N

∑
t=1

(

Xi(νk)−
n

∑
ℓ=1

A(r+1)
(i,ℓ) S(r+1)

ℓ (νk)

)2


× p

(

1

σ2
i

)

. (15)

The conjugate prior ofσ−2
i is a Gamma distribution of parameters

(

α prior
σ2

i
,β prior

σ2
i

)

.

Therefore, its conditional posterior density is also of Gamma distribution of parameters

α post
σ2

i
=

N
2

+α prior
σ2

i
andβ post

σ2
i

=
1
2

N

∑
k=1

(

Xi(νk)−
n

∑
ℓ=1

A(r+1)
(i,ℓ) S(r+1)

ℓ (νk)

)2

+β prior
σ2

i
.

Source signal hyperparameters.The posterior density of each hyperparameterα j is
given as

p
(

α j
∣

∣S(r+1)
j

(

ν(1:N)

)

,β (r)
j

)

∝

1
Γ(α j)N exp

[(

N logβ (r)
j +

N

∑
t=1

logS(r+1)
j (νk)

)

α j

]

× p(α j). (16)

An exponential distribution of parameterλ prior
α j is considered as prior forα j , which leads

to

p
(

α j |S
(r+1)
j

(

ν(1:N)

)

,β (r)
j

)

∝

(

1
Γ(α j)

exp
[

λ post
α j α j

]

)N

I[0,+∞](α j), (17)

whereλ post
α j = logβ (r)

j −
1
N

λ prior
α j +

1
N

N
∑

k=1
logS(r+1)

j (νk). The sampling from this distri-

bution is achieved using a Metropolis-Hastings algorithm where an instrumental distri-
bution is derived as a Gamma distribution with parameters calculated from the mode and
the superior inflexion point of this distribution [8]. Concerning the hyperparameterβ j ,
its conditional posterior distribution is given as

p
(

β j
∣

∣S(r+1)
j

(

ν(1:N)

)

,α(r+1)
j

)

∝ β
Nα(r+1)

j
j exp

[

−β j

N

∑
k=1

S(r+1)
j (νk)

]

× p(β j). (18)

The conjugate prior assigned toβ j is a Gamma density of parameters
(

α prior
β j

,β prior
β j

)

.

Therefore, its conditional posterior density is also a Gamma distribution with parameters

α post
β j

=
(

Nα(r+1)
j +α prior

β j
+1

)

andβ post
β j

=

(

N
∑

k=1
S(r+1)

j

(

ν(1:N)

)

+β prior
β j

)

.

Mixing coefficient hyperparameters.The mixing coefficient hyperparameters are
sampled using the same manner as the hyperparameters of the source signals.



EXPERIMENTS

We present two results obtained with numerical and experimental mixtures. The first
data set is obtained by mixing three simulated non-negativesignals that are similar to
real spectra. The mixing coefficients are also chosen in sucha way to get an evolution
similar to what we get in chemical reactions. Figure 1 shows the source signals, the
mixing coefficients and the resulting mixtures for an SNR of 20 dB.
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FIGURE 1. (a) Source signals, (b) mixing coefficients and (c) resulting mixtures for SNR = 20 dB

The second experiment consists in mixing three known chemical species (cyclopen-
tane, cyclohexane and n–pentane) and the mixture data are obtained by near infrared
(NIR) spectroscopy measurements. These species have been chosen because their spec-
tra in the NIR frequency band are highly overlapping which makes the separation diffi-
cult and they do not interact when they are mixed, guaranteing that no new component
appears. The pure spectra and concentration are shown in figure 2.
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FIGURE 2. (a) Constituent spectra, (b) concentration profiles and (c)measured mixture data

The separation accuracy is evaluated using the performanceindex (PI), and the cross-
talk (CT), which are defined by

PI =
1
2

n

∑
i=1

{(

n

∑
k=1

|G(i,k)|
2

max
ℓ

|G(i,ℓ)|
2 −1

)

+

(

n

∑
k=1

|G(k,i)|
2

max
ℓ

|G(ℓ,i)|
2 −1

)}

(19)

CTSj =
1
N

N

∑
k=1

(

Sj(νk)− Ŝj(νk)
)2

, (20)

whereG(i, j) are elements of the matrixG= Â
#
Aand # represents the pseudo-inverse. The

PI measures the overall separation performances and indicates mainly the mixing ma-



TABLE 1. Comparison of the separation performances using differentmethods

Simulated data Experimental data

NNICA NMF ALS BPSS NNICA NMF ALS BPSS

CTSource 1 -12.95 -13.64 -17.65 -20.99 -4.82 -14.20 -15.18 -33.23
CTSource 2 -10.70 -11.70 -11.11 -19.94 -5.64 -17.50 -23.43 -24.98
CTSource 3 -19.93 -19.83 -21.76 -19.11 -4.77 -17.88 -14.01 -26.05

PI -10.03 -9.60 -12.01 -18.41 -1.02 -11.60 -8.10 -19.22

trix estimation quality, while the cross-talk assesses thesignal reconstruction accuracy.
Table 1 summarizes the performances of different methods when applied to the analysis
of the two data sets, where the performance indexes are exprressed in dB. NNICA is
the non-negative independent component analysis method [10] and BPSS (for Bayesian
positive source separation) refers to the proposed approach. These results show the su-
perior performances of the Bayesian approach.

CONCLUSION

An application of Bayesian non-negative source separation to mixture analysis has been
addressed in this paper. The Bayesian inference allows to consider the non-negativity
of the spectral sources as prior information which is encoded through the assignment of
Gamma distribution priors. The presented results illustrate that such prior is very suitable
for the separation. The proposed approach can be straightforwardly extended to a more
general model consisting in mixtures of Gamma or truncated normal distributions.
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