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Abstract. In this contribution, we present two new algorithms

for unsupervised learning and source separation for the case of

noisy instantaneous linear mixture, within the Bayesian inference

framework. The source distribution prior is modeled by a mixture

of Gaussians [10] and the mixing matrix elements distributions by

a Gaussian. We model the mixture of Gaussians hierarchically by

mean of hidden variables representing the labels of the mixture.

Then, we consider the joint a posteriori distribution of sources,

mixingmatrix elements, labels of the mixture and other parameters

of the mixture with appropriate prior probability laws to eliminate

degeneracy of the likelihood function of variance parameters and

we propose two algorithms to estimate sources, mixing matrix and

hyperparameters: Joint MAP (Maximum a posteriori) algorithm

and penalized EM-type algorithm. The performances of these two

algorithms are compared through an illustrative example taken in

[8].

PROBLEM DESCRIPTION

We consider the following linear instantaneous mixture of n sources:

x(t) = As(t) + �(t); t = 1; ::; T (1)

where x(t) is the (m�1) measurement vector, s(t) is the (n�1) source vector

which components have to be separated, A is the mixing matrix of dimension

(m � n) and �(t) represents noise a�ecting the measurements. We assume

that the (m � T ) noise matrix �(t) is statistically independant of sources,

centered, white and Gaussian with covariance matrix R�. We note s1::T the

matrix n� T of sources and x1::T the matrix m� T of data.



Source separation problem consists of two sub-problems: Sources restora-

tion and mixing matrix identi�cation. Therefore, three directions can be

followed:

1. Supervised learning: Identify A knowing a training sequence of sources

s, then use it to reconstruct the sources.

2. Unsupervised learning: Identify A directly from a part or the whole

observations and then use it to recover s.

3. Unsupervised joint estimation: Estimate jointly s and A

In the following, we investigate the second and third directions. This choice is

motivated by practical cases where sources and mixing matrix are unknown.

This paper is organised as follows: We begin in section II by proposing

a Bayesian approach to source separation. We set up the notations, present

the prior laws of the sources and the mixing matrix elements. We introduce,

in section III, a hierarchical modelisation of the sources by mean of hidden

variables representing the labels of the mixture of Gaussians in the prior

modeling and present the hierarchical JMAP algorithm including estimation

of hyperparameters. Since EM algorithm [6] has been used extensively in

source separation [3], [1], [2], we considered this algorithm and propose, in

section V, a penalized version of the EM algorithm for source separation.

This penalization of the likelihood function is necessary to eliminate its de-

generacy when some variances of Gaussian mixture approche zero [14], [13],

[11]. We will modify the EM algorithm by introducing a classi�cation step

and a relaxation strategy to reduce the computational cost. Simulation re-

sults are presented in section VI to test and compare the two algorithms

performances.

BAYESIAN APPROACH TO SOURCE SEPARATION

Given the observations x1::T , the joint a posteriori distribution of unknown

variables s1::T and A is:

p (A; s1::T ;�jx1::T ) / p (x1::T jA; s1::T ;�1) p(A j�2) p(s1::T j�3) p(�) (2)

where p(A j�2) and p(s1::T j�3) are the prior distributions through which

we model our a priori information about mixing matrix A and sources s.

p (x1::T jA; s1::T ;�1) is the joint likelihood distribution. � = (�1;�2;�3) are

the hyperparameters. From here, we have two directions for unsupervised

learning and separation:

1. First, estimate jointly s1::T , A and �:

( bA; bs1::T ; b�) = argmax
(A;s1::T ;�)

fJ(A; s1::T ;�) = ln p (A; s1::T ;�jx1::T )g (3)



2. Second, integrate (2) with respect to s1::T to obtain the marginal in

(A;�) and estimate them by:

( bA; b�) = argmax
(A;�)

fJ(A;�) = ln p (A;�jx1::T )g (4)

Then estimate bs1::T using the posterior p(s1::T jx1::T ; bA; b�).
The two algorithms we propose follow these two shemes.

Choice of a priori distributions

Noise a priori : We consider a Gaussian white noise with zero mean and

covariance matrix R� (�1 = R�).

Sources a priori : For sources s, we choose a mixture of Gaussians [10]:

p(sj) =

q
jX

i=1

�jiN (mji; �
2
ji
); j = 1::n (5)

Hyperparameters qj are supposed to be known.

This leads to the introduction of hierarchical modelisation p(sj jzj) =

N (mji; �
2
ji
) by considering the hidden variable zj taking its values in the dis-

crete set Zj = (1; : : : ; qj) with �ji = p (zj = i). �3 = (�ji;mji; �
2
ji
)j=1::n;i=1::q

j

.

Mixing matrix a priori : To account for some model uncertainty, we assign

a Gaussian prior law to each element of the mixing matrix A:

p(Aij) = N (Mji; �
2
a;ij

) (6)

which can be interpreted as knowing every element (Mji) with some uncer-

tainty (�2
a;ij

). We underline here the advantage of estimating the mixing

matrix A and not a separating matrix B (inverse of A) which is the case of

almost all the existing methods for source separation (see for example [5]).

This approach has at least two advantages: (i) A does not need to be invert-

ible (n 6= m), (ii) naturally, we have some a priori information on the mixing

matrix not on its inverse which may not exist.

Hyperparameters a priori : We propose to assign an inverted Gamma

prior IG(a; b) (a > 0 et b > 1) to mixture variances. This prior is necessary to

avoid the posterior distribution degeneracy when some variances �2
ij
approche

to zero together with noise variance. A more complete study of degeneracies

in source separation problem is presented in [14].

HIERARCHICAL JMAP ALGORITHM

The a posteriori distribution of s is a mixture of
Q
n

j=1 qj Gaussians. This

leads to a high computational cost. To obtain a more reasonable algorithm,



we propose an iterative scalar algorithm by introducing a relaxation proce-

dure: Knowing sl6=j , the a posteriori distribution of sj is a mixture of qj
Gaussians. Including the estimation of hyperparameters, the proposed hier-

archical JMAP algorithm follows the following steps in each iteration:

1. Estimate hidden variables (bzj)1::T by:

(bzj)1::T = (argmax
z
j

p(zj jx(t); bA; bsl6=j ; b�))1::T (7)

which permits to estimate partitions:

bTjz = ft j (bzj)(t) = zg (8)

This corresponds to the classi�cation step.

2. Given the estimate of partitions, hyperparameters bmjz and b�2
jz

are

means and variances of Gaussian distributions so the expressions of

their posterior estimates are easily derived [15]. Variances are supposed

to follow an inverted Gamma prior IG(a; b). The hyperparameter b�jz
is updated as:

b�jz = Card(bTjz)=T (9)

3. Estimation of sources using bs1::T = argmax
s1::T

fp(s1::T jx1::T ; bA; b�)g.
4. Estimation of mixing matrix using b

A = argmax
A

fp(Ajx1::T ; bs1::T ; b�)g.
Penalized EM-type Algorithm

The EM algorithm has been used extensively in data analysis to �nd the

maximum likelihood estimation of a set of parameters from given data [12],

[6], [7]. Considering both the mixing matrix A and hyperparameters �, at

the same level, being unknown parameters and complete data being x1::T and

s1::T , the EM algorithm writes: (i) E-step (expectation) consists in forming

the logarithm of the joint distribution of observed data x and hidden data

s conditionally to parameters A and � and then compute its expectation

conditionally to x and estimated parameters A
0

and �
0

(evaluated in the

previous iteration), (ii) M-step (maximization) consists of the maximization

of the obtained functional with respect to the parameters A and �.

Recently, in [3], [1] an EM algorithm has been used in source separation

with mixture of Gaussians as sources prior. In this work, we show that:

1. This algorithm fails in estimating jointly variances of Gaussian mixture

and noise covariance matrix. We proved that this is due to the degen-

eracy of the estimated variance to zero and a problem of identi�ability.

2. The computational cost of this algorithm is very high.



3. The algorithm is very sensitive to initial conditions.

4. In [3], there's neither an a priori distribution on the mixing matrix A

nor on the hyperparameters �.

Here, we propose to extend this algorithm in two ways by:

1. Introducing an a priori distribution for � to eliminate degeneracy. This

a priori contributes in reducing the problem of non identi�ability but

doesn't eliminate it completely.

2. Introducing an a priori distribution for A to express our previous

knowledge on the mixing matrix.

3. Taking advantage of our hierarchical model and the idea of classi�cation

to reduce the computational cost.

To distinguish the proposed algorithm from the one proposed in [3], we call

this algorithm the Penalized EM algorithm. The two steps then become:

1. E-step : Q
�
A; � jA0

; �
0
�
= Ex;s[log p(x; s jA; �1;�3)

+ log p(A j�2) + log p(�) jx; A0
; �

0]

2. M-step :
� b
A; b�� = argmax(A;�)Q

�
A; � jA0

; �
0
�

We suppose in the following that (�1;�2) are known (noise variance and

mixing matrix a priori parameters). The joint distribution is factorized as:

p(x; s; A; �) = p(x jA; s;�1) p(A j�2) p(s j�3) p(�3). We can remark that

p(x; s; A; �) as a function of (A; �3) is separable inA and �3. Consequently,

the functional is separated into two factors: one representing an A functional

and the other representing a �3 functional:

Q
�
A; �3 jA

0
; �

0
3

�
= Qa

�
A jA

0
; �

0
3

�
+Qh

�
�3 jA

0
; �

0
3

�
(10)

- Maximization with respect to A: By introducing the Kronecker prod-

uct [4], we can derive an explicit expression of the update of A maximizing

the Qa functional:

Vec(A) =
h
T bR0

ss

O
R
�1
�

+ diag(V ec(�))
i�1

V ec(TR�1
�
b
Rxs + �

K
M)

(11)

where
N

is the Kronecker product,
J

is the element-by-element product

and Vec(.) is the column presentation of a matrix. � is the matrix (1=�2
a;ij

)

and ( bRxs;
b
Rss) are the following statistics:( b

Rxs = 1
T

P
T

t=1E
�
x(t) s(t)T jx; A0

; �
0
�

b
Rss = 1

T

P
T

t=1 E
�
s(t) s(t)T jx; A0

; �
0
� (12)

Evaluation of bRxs and b
Rss requires the computation of the expectations

of x(t) s(t)T and s(t) s(t)T . The main computational cost is due to the fact



that the expectation of any function f (s) is given by:

E
�
f (s) jx; A0

; �
0
�
=

X
z0 2

Q
n

i=1
Z
i

E
�
f (s) jx; z = z0; A0

; �
0
�
p(z0 jx; A0

; �
0):

(13)

which involves a sum of
Q
n

j=1 q (j) terms corresponding to the whole com-

binations of labels. One way to obtain an approximate but fast estimate of

this expression is to limit the summation to only one term corresponding to

the MAP estimate of z:

E
�
f (s) jx; A0

; �
0
�
= E

�
f (s) jx; z = bzMAP

; A
0
; �

0
�
:

Maximisation with respect to �3: With an uniform a priori for the means

and variances, maximisation of the functional Q with respect to �3 gives :

b�jz = P
T

t=1 p(zj(t) jx; A
0
; �

0)

T

bmjz =

P
T

t=1 �jz(t) p(zj(t) jx; A
0
; �

0)P
T

t=1 p(zj(t) jx; A
0; �

0)

b�2
jz

=

P
T

t=1

�
Vjz(t) + �

2
jz
(t)� 2 bmjz�jz(t) + bm2

jz

�
p(zj(t) jx; A

0
; �

0)P
T

t=1 p(zj(t) jx; A
0; �

0)

where:

�jz(t) = E[sj(t) jx(t); z]

Vjz(t) = E[sj(t)
2 jx(t); z]

The computation of p(zj(t) jx; A
0
; �

0) needs a summation over all combina-

tions of labels:

p(zj(t) jx; A
0
; �

0) =
X

z2Zjz(j)=z
j
(t)

p(z jx(t); A0
; �

0) (14)

The relaxation strategy consists on replacing expression (14) by:

p(zj(t) jx; A
0
; �

0
; bsl 6=j)

which is obtained by integrating only with respect to sj , the other components

are �xed and set to their MAP estimates in the previous iteration. Assigning

an Inverted Gamma prior IG (a; b) (a > 0 et b > 1) to the variances, the

re-estimation equations become:

b�jz = P
T

t=1 p(zj(t) jx; bsl6=j)
T

(15)



bmjz =

TX
t=1

�jz(t)p(zj(t)jx(t); bsl6=j)
TX
t=1

p(zj(t)jx; bsl6=j)
(16)

b�2
jz

=

2b+

TX
t=1

(Vjz + �
2
jz
� 2bmjz�jz + bm2

jz
)p(z(t)jx; bsl6=j)P

T

t=1 p(z(t)jx; bsl6=j) + 2(a� 1)
(17)

Summary of the penalized EM-type-type algorithm Based on the

preceeding equations, we propose the following algorithm to estimate sources

and parameters using the following �ve steps:

1. Update of data classi�cation by estimating bz1::T using 7 as in JMAP.

2. Estimate the mixing matrix A according to the re-estimation equation

(11).

3. Given this classi�cation, sources estimate is the mean of the Gaussian

a posteriori law.

4. Estimate the hyperparameters according to (15), (16) and (17).

SIMULATION RESULTS

To be able to compare the results obtained by the two proposed algorithms

with the results obtained by some other classical methods, we generated data

according to the example described in [8].

Data generation: 2 sources, each component a priori is a mixture of two

Gaussians (�1),  = 1=�2 = 100 for all Gaussians. These original sources

are mixed with the mixing matrix A =

�
1 �0:6

0:4 1

�
. A noise of variance

�
2
�
= 0:03 is added (SNR = 15 dB). Number of observations is 1000.

Parameters: M =

�
1 0

0 1

�
, � = (1=�2

a;ij
) =

�
150 0:009

0:009 150

�
,

� = (�jz) =

�
0:5 0:5

0:5 0:5

�
, a = 200 and b = 2.

Initial conditions: A(0) =

�
1 0

0 1

�
,  (0) =

�
1 1

1 1

�
, m(0) =

�
0 0

0 0

�
and s(0) generated according to s

(0)
j

�
Pq

j

z=1�jzN (m
(0)
jz
;

1

 
(0)

jz

).

Results with JMAP algorithm:. Sources are recovered with negligible

mean quadratic error: MEQ(s1) = 0:0094 and MEQ(s2) = 0:0097. The



non-negative performance index of [9] is used to chacarterize mixing matrix

identi�cation achievement:

ind(S = b
A
�1
A) =

1

2

24X
i

0@X
j

jSij j
2

maxljSilj
2
� 1

1A+
X
j

 X
i

jSij j
2

maxljSlj j
2
� 1

!35
Figure 1a represents the index evolution through iterations. Note the con-

vergence of JMAP algorithm since iteration 30 to a satisfactory value of

�45 dB. For the same SNR, algorithms PWS, NS [8] and EASI [5] reach a

value greater than �35 dB after 6000 observations. Figures 1b and 1c illus-

trate the identi�cation of hyperparameters. We note the convergence of the

parameters to the original values (�1 for m11 and 100 for  11). In order

to validate the idea of data classi�cation before estimating hyperparameters,

we can visualize the evolution of classi�cation error (number of data badly

classi�ed). Figure 1d shows that this error converges to zero at iteration 15.

Then, after this iteration, hyperparameters identi�cation is performed with

the right classi�ed data: estimation of mjz and  jz uses only data which

belong to this class and is not corrupted by other data which bring erroneous

information on these hyperparameters.
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Results with Penalized EM-type algorithm:. The penalized EM-type

algorithm has an optimization cost approximately 2 times higher, per sam-

ple, than the JMAP algorithm. However, both algorithms have a reasonable

computational complexity, linearly increasing with the number of samples.

Sensitivity to initial conditions is inherent to the EM-algorithm even to the

penalized version. In order to illustrate this fact, we simulated the algo-

rithm with the same parameters as above. Note that initial conditions for

hyperparameters are  (0) =

�
1 1

1 1

�
and m(0) =

�
0 0

0 0

�
. However, the

penalized EM-type algorithm fails in separating sources. We note then that

JMAP algorithm is more robust to initial conditions. We modi�ed the initial

condition to have means: m(0) =

�
�0:5 0:5

�0:5 0:5

�
. We noted, in this case,

the convergence of the penalized EM-type algorithm to the correct solution.

Figures 2-a and 2-b illustrate the separation results:
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CONCLUSION

We proposed two new algorithms for unsupervised learning and source sepa-

ration when the sources distributions are modeled to be a mixture of Gaus-

sians. Considering the mixture model as a hierarchical modeling with hidden

variables representing labels, we introduced a classi�cation step before the es-

timation of hyperparameters. This classi�cation step is useful, not only to do

a better job in the estimation of the mixing components parameters, but also

to reduce the computational cost of JMAP and Penalized EM algorithms.

It is also important to mention that the Bayesian estimation framework

we have adopted has speci�c aspects including the introduction of a priori

distribution for the mixing matrix and hyperparameters. This was moti-

vated by two di�erent reasons: Mixing matrix prior should exploit previous

information and variances prior should regularize the log-posterior objective

function.
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