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Polygonal and Polyhedral Contour Reconstruction
in Computed Tomography

Charles Soussen and Ali Mohammad-Djafari

Abstract—This paper is about three-dimensional (3-D) recon-
struction of a binary image from its X-ray tomographic data. We
study the special case of a compact uniform polyhedron totally in-
cluded in a uniform background and directly perform the polyhe-
dral surface estimation. We formulate this problem as a nonlinear
inverse problem using the Bayesian framework. Vertice estimation
is done without using a voxel approximation of the 3-D image. It is
based on the construction and optimization of a regularized crite-
rion that accounts for surface smoothness. We investigate original
deterministic local algorithms, based on the exact computation of
the line projections, their update, and their derivatives with respect
to the vertice coordinates. Results are first derived in the two-di-
mensional (2-D) case, which consists of reconstructing a 2-D object
of deformable polygonal contour from its tomographic data. Then,
we investigate the 3-D extension that requires technical adapta-
tions. Simulation results illustrate the performance of polygonal
and polyhedral reconstruction algorithms in terms of quality and
computation time.

Index Terms—Block relaxation algorithms, closed contour and
surface reconstruction, deformable template, global and local it-
erative descent algorithms, polygonal and polyhedral modeling,
two-dimensional and three-dimensional binary image reconstruc-
tion from projections, X-ray tomography.

I. INTRODUCTION

I N THE LAST decade, image reconstruction from X-ray
data has been intensively studied to produce high-resolution

two-dimensional (2-D) and three-dimensional (3-D) maps of
densities. However, 3-D reconstruction methods often involve
a large number of parameters, thus implying a significant
time of computation. In many applications, such as medical
imaging or nondestructive evaluation (NDE) of materials, the
reconstructed image is utilized to compute the characteristics
(position, volume, and shape) of an intersected object (organ
or air bubble inside a metal) by the means of a further image
transformation, for example, an image segmentation task. For
those issues, it is of great interest to directly model the only
contour of the shapes of interest, hence significantly decreasing
both number of parameters and computation burden. In this
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paper, we consider the reconstruction of a 3-D binary image
composed of a uniform compact object totally included in a
uniform background. By compact object, we refer to a closed
volume of uniform density that does not contain inclusions.
The 3-D map of density is then characterized by
the closed surface embedding the object: if

lays inside ; 0, otherwise. 3-D reconstruction is then
equivalent to the estimation of from the X-ray data. Although
compact object images are particular, their reconstruction is a
first step toward that of more general images, parameterized
by their local attributes. Moreover, NDE applications involve
and aim to reconstruct such images, which represent a fault, for
example, an air occlusion included in a homogeneous metallic
material [1], [2].

Classic methods to reconstruct a 3-D map of densities from
its projections are based on the volume discretization into a set
of voxels. The reconstruction is then equivalent to the estima-
tion of the density of all the voxels [3], [4]. Those methods
are fairly simple due to the linearity of the projection operator.
However, they appear consuming, both in memory storage and
computation burden for high resolution images. On the other
hand, the direct use of deformable contours in image recon-
struction has been very limited because of the nonlinearity of
the direct model, relating the surface parameters and the pro-
jection values. For those applications, explicit contour models
are mostly parametric, and often involve a very few parameters
[5]–[8].

More generally, closed deformable contours have been
mainly used in the literature of computer vision and image
segmentation. The former applications involve contour and
surface reconstruction from silhouettes, giving rise to specific
surface modeling [9], [10]. In both application fields, explicit
contours, defined by their position vector, are either directly
described by their arc lengths [11], [12] or by a deformable
(parametric) function of a reference contour to define a
class of homogeneous shapes sharing common topologic
characteristics [13]. In image segmentation, nonparametric
deformable templates have received a considerable attention,
either in their explicit or implicit form. The former mainly
refer to active contours, or snakes, defined as continuous
functions of their arc length(s) [12], whereas the latter involve
level-set contours of great use to efficiently cope with changes
of topology [14].

The problem of shape reconstruction from X-ray projections
was first encountered in medical imaging applications. The pi-
oneering contributions involve very simple shapes, as a set of
2-D parallel ellipses for 3-D vascular tree modeling in angio-
graphic images [5]–[7]. Handling an image formed of elliptic
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objects is a simple task, since computation of its 2-D projec-
tions is direct and analytic [15]. In emission tomography, simple
parametric shapes were also studied for brain tumor reconstruc-
tion using an affine transformation of a reference object of el-
liptic shape [16]. For the aforementioned models, the shape pa-
rameters correspond to the geometric characteristics of the el-
lipses (center and moments of inertia) and the affine transfor-
mation parameters, respectively. More general shape models
mainly include 2-D deformable spline templates parameterized
by the position of their control points. This modeling engenders
local contours in the sense that each parameter only controls
a local part of the surface [17]–[19]. In particular, first-order
splines, i.e., polygonal shapes parameterized by their vertice
positions, are of interest since their reconstruction from noise-
less projections is exact [20]. However, the reconstruction algo-
rithm, which requires estimation of the geometric moments of
the polygonal image, is not of great use for noisy data, and was
only performed on polygons with less than five vertices. Higher
order spline contours, as cubic splines, have been considered
for efficiently modeling 2-D shapes that are differentiable with
respect to (w.r.t.) their arc lengths [17]. However, their recon-
struction as well as those of polyhedral and cubic spline surfaces
[21], [22] require implicit voxel representation for technical pur-
poses. Among nonparametric shape models, the level-set ap-
proach has been investigated in the 2-D case but suffers from
a huge computation cost due to the storage and update of a 3-D
image [14]. This technique is however very attractive to simul-
taneously model multiple closed contours, whose number is not
known a priori [23], [24].

In this paper, we focus on a parametric explicit representation
of the contour with no need of voxel modeling. Among all finite
parameterizations, we consider that an efficient model is a good
compromise between the number of parameters and the variety
of the generated surfaces. In particular, local models, like spline
contours, are well adapted to generate heterogeneous surfaces.
Moreover, the choice of model is subject to the following tech-
nical difficulties:

1) the direct and exact calculation of the projections of the
binary image and of their derivative w.r.t. the parameters;

2) the verification, with a low computation cost, that the sur-
face does not self intersect.

The second condition (nondegeneracy) is not specific to the re-
construction problem but inherent in dealing with deformable
shapes. The nonlinearity of the shape projection operator and
the difficulty to satisfy both conditions justify the lack of con-
tributions in contour reconstruction from computed tomography
data, especially in the 3-D case.

Specific models, as spherical harmonics, can lead to non-
convex star-shaped surfaces [25], [26]. Consequently, they
structurally fulfill the nondegeneracy constraint. However,
those models are not local w.r.t. their parameters, and, hence,
hardly generate surfaces with local irregularities. Within
local models, we focus on low-order spline surfaces, which
enable the modeling of complex shapes with spatial inho-
mogeneities. If efficient verification of the second property
raises technical difficulties [17], [21], low-order splines allow
the exact calculation of the contour projection. In particular,
first-order splines, i.e., 2-D polygons and 3-D polyhedra, lead

to very simple projection algorithms with no use of a voxel
parameterization [27]. Indeed, projection values only depend
on the intersections of the projection rays with the polygon or
polyhedron faces.

The rest of the paper is dedicated to first-order spline sur-
face reconstruction. We first develop polygonal reconstruction
schemes in the 2-D case, and then extend those results to poly-
hedral reconstruction. Both cases share similarities, although
the latter raises additional technical difficulties. Section II in-
troduces the reconstruction problem, which consists of the di-
rect estimation of the contour parameters from the computed
tomography data. In Section III, we investigate polygonal con-
tour reconstruction, and perform the estimation of vertices in the
Bayesian framework, leading to the minimization of a -di-
mensional functional, where is the number of vertices. We
implement original local optimization algorithms (gradient and
block coordinate descent), which require the update of the pro-
jection values and the exact calculation of their derivatives w.r.t.
the vertice positions. In Section IV, we examine the polyhedron
case and still put the stress on the algorithmic aspects of the
vertice estimation. We design first-order descent algorithms that
satisfy properties 1) and 2), and require technical adaptations of
the 2-D procedures. Finally, Section V illustrates the polygon
and polyhedron reconstruction methods on a set of synthetic
limited angle data. Simulations afford comparisons between the
gradient and the block coordinate-based algorithms in terms of
quality and computation burden.

II. PROBLEM STATEMENT

In this section, we formulate the reconstruction of a polyhe-
dral contour from its X-ray projections. We first define the bi-
nary parametric surface modeling and the X-ray projection op-
erator, and then state the parameter estimation problem. The 2-D
case, which is very similar, will be briefly formulated at the be-
ginning of Section III.

A. Closed-Surface Modeling

Considering the uniformity and compacity assumptions, the
density function is binary, and only characterized by
the object closed surface

if lays inside
otherwise

(1)

where and are two known gray levels, respectively set to 1
and 0, without loss of generality. To reconstruct the 3-D image

, we model surface by its approximate parametric
form . Then, reconstruction identifies with the estimation of
parameters . For simplicity, we will substitute by when
no ambiguity is possible.

In the case of a polyhedron of fixed faces, the parameters are
the coordinates of the vertices . Up to the ordering
of vertices, we define the parameter vector by ap-
pending all vertice positions: , where de-
notes vector transposition. This model and the subset of
formed of unintersected closed polyhedra will be precisely de-
fined in Section IV.
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Fig. 1. Definition of spherical coordinates ��� = [�; '] 2 [0; 2�) � [0; �]
for projection line parameterization. All projection measurements are done on a
single horizontal plane. The kth projection image is yielded by projection values
along L (t) for discrete values of t 2 IR .

Fig. 2. Two-dimensional line projection parameterization. Projection lines
L (t) are described by their angle � 2 [0; 2�) and detector position t 2 IR .
In the case of a binary compact object, a projection value p (t) is equal to the
length of the intersection between the object volume and projection ray L (t).

B. X-Ray Projection Operator

X-ray projections of the 3-D image are defined as its line in-
tegrals. Denoting the line oriented by spherical angle
and passing through the detector pixel of center (see Fig. 1),
the projection along that ray is modeled by

(2)

For the density function (1) yielded by surface , a projection
corresponds to the length of the intersection between the object
volume and the projection ray: . See Fig. 2
for illustration.

We now form the parallel projection of the image
at a fixed direction . It is yielded by
the set of discrete values , ,
on a parallel grid of the detector plane, and represented by one-
dimensional vector of size .1 Then, the “global” projection
vector , corresponding to all angles , is the result of the
concatenation of those vectors: . The surface

1The choice of parallel projection is done for the sake of simplicity. All algo-
rithms stated below are extendable to the cone beam projection modality.

Fig. 3. Acceptability condition for polygons. (a) Acceptable polygon, (b) non-
acceptable polygon yielded by (a), and a displacement of vertice vvv .

projection operators are finally defined by and
.

C. Parameter Estimation From Noisy Projections

In both the fields of medical radiography imaging and nonde-
structive evaluation, the line projection modeling is often justi-
fied by the high resolution of the detector pixels. The data then
correspond to the noisy projections of the sought image, where
the noise accounts for both errors of projection modeling and
measurement. Data formation finally writes

(3)

where is the noise vector, assumed to be additive, indepen-
dent identically distributed (i.i.d.), white and Gaussian for the
sake of simplicity. For compact object reconstruction, we also
need to assume that the set of the radiograph positions totally
includes the object projection supports.

Given the above modeling and assumptions, the surface re-
construction problem becomes the estimation of from the data

, which can be done by any classic statistical estimation tech-
nique, e.g., maximum likelihood (ML) or Bayesian maximum a
posteriori (MAP).

III. POLYGONAL SHAPE RECONSTRUCTION

A. Acceptable Polygon Modeling

Polygonal reconstruction from 2-D projections is very similar
to the polyhedron reconstruction problem stated above. We con-
sider a direct polygon , where

denote the position of the vertices, indexed in the coun-
terclockwise order. Two-dimensional line projections write

(4)

where the circular projection parameters
are illustrated in Fig. 2.

We define the set of direct polygons that do not self inter-
sect (acceptable polygons) by

is direct and

(5)

where, by circular extension, we denote . The ac-
ceptability condition is illustrated in Fig. 3.
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Remark 1: The polygon parameterization is invariant by any
circular permutation of the vertices. Consider a polygon

, and a circular permutation of its vertices,
e.g., vector . Clearly, and repre-
sent the same polygon, whose vertices are ordered in a different
fashion. In consequence, there are distinct parameterizations
of a closed direct polygon.

B. Direct Statistical Estimation

We now focus on polygons with a large number of vertices.
This number being fixed, reconstruction is done by the direct
estimation of vertices from the tomographic data by the
means of statistical techniques [28], [29].

1) Maximum Likelihood: First, ML estimation was used to
reconstruct a polygon with a very low number of vertices

[8]. Considering the assumptions on the errors of the data
model , the ML estimator is equal to the least-
square estimator

(6)

where denotes the th data value for projection . A minimum
description length (MDL) approach was also studied to estimate
a polygon whose number of vertices is variable [8].

Remark 2: Criterion is multimodal, hence
nonconvex. More precisely, there are at least global mini-
mizers of , since polygon can be parameterized
by distinct vectors.

Remark 3: Operator is not differentiable at some partic-
ular polygons, for which left and right derivatives are however
defined. See Appendix I for the case of a triangle.

2) Maximum a posteriori: Setting aside the difficulty of
optimization related to the above remarks, the accuracy of the
ML estimator largely depends on the number of parameters
and the number and angles of projection. It is well known that
general image reconstruction from incomplete projections is
an ill-posed inverse problem, as well as the reconstruction of a
polygon with a large number of vertices [8], [28]. Regulariza-
tion is then relevant to provide a stable solution w.r.t. the data.
The MAP estimator is defined by

(7)

where hyperparameter controls the tradeoff between the
fidelity of the model to the data and the shape regularization
term . As in image segmentation applications, we refer to
the latter term as prior information on the spatial smoothness of
the polygon.

For continuous active contours, smoothness basically in-
volves the curvature, yielded by the second-order derivative of
the contour w.r.t. its arc length [12], [30]. Because polygons are
not twice differentiable shapes, we need to define an approxi-
mate curvature at a vertice , based on either the distance from

to the middle of its neighbors or the angle at , or on both
criteria [28], [31]. then rewrites as the sum of local terms
related to vertices . The purpose of the paper, however, is not
to discuss their expression.

C. Optimization Algorithms

We now consider the optimization of criterion , which
is multimodal and nondifferentiable at some points. There are
mainly two classes of methods for such optimization, as follows:

1) stochastic methods, e.g., simulated annealing for ad-
dressing nonconvex optimization;

2) deterministic iterative local methods [32].
Because criterion has several global minimizers that repre-
sent the same shape (see Remark 2) and to limit the compu-
tation burden, we select the latter methods and, particularly,
first-order descent methods, based on the knowledge of the gra-
dient . Among them, we distinguish direct (on all com-
ponents simultaneously) and block relaxation methods, where
blocks are composed of the coordinates of each vertice (two
scalar variables).

In the following, we summarize those methods and then em-
phasize their underlying difficulties for polygonal reconstruc-
tion. We denote by the th iteration
estimate of the vertices, its projections, and

for . Calculation of those
quantities will be discussed in Section III-D.

1) Gradient Descent: The unconstrained gradient descent
method to optimize on can be summarized by the
following iterative scheme:

(8)

where is the descent step at iteration . For instance,
can be selected as the minimizer of
on and performed using a cubic approximation of . The
approximate line minimization is thus done analytically and in-
volves additional calculation of at two points and
to evaluate the cubic function, since and

are already known.
Except for the computation of and , the difficulty is

due to the optimization domain , which is most often non-
convex. Thus, classic constrained versions of the gradient de-
scent are not applicable [32]. However, the heuristic algorithm
that links the unconstrained version and a test of acceptability
of estimates turns out to be efficient. Testing (5) involves
the search for the intersection of all couples of edges of .

2) Block Relaxation: Also known as Gauss Seidel (GS) in
numerical analysis or iterated conditional descent in statistical
tomography [4], [32], the block relaxation algorithm is well
adapted since the update of the projections , and, hence, of

is very straightforward when only one vertice is displaced
(see Section III-D). The algorithm, summarized on Table I, is
based on the alternate optimizations of
w.r.t. . Practically, we use a hybrid version of the GS
algorithm, replacing marginal optimizations of by the cor-
responding gradient-based iterations, for all in

(9)
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TABLE I
BLOCK RELAXATION PROCEDURE: ITERATION k. FOR SIMPLICITY REASONS, WE SUCCESSIVELY VISIT vvv ; . . . ; vvv

where is the gradient
of w.r.t. and the visiting order of vertices is chosen
randomly uniform. Optimization steps are selected simi-
larly to the gradient descent case, as the minimizers on of

. Their computation is done by
the same cubic approximation.

The projection update, which motivates the use of the block
algorithm, is also the leading point to the calculation of ;
see Section III-D.

3) Chosen Algorithm: Both algorithms are local and then
lead to similar results. Block relaxation is known to be more
efficient on flat valleys of , but is more expensive. Although
the computation cost is not a drastic factor in the 2-D case, we
favored gradient descent in practice. Another possibility would
be to first use the gradient algorithm to get a rough estimate of

and then the relaxation algorithm.
The choice of initialization is crucial since the mini-

mization scheme is local. In [26], we have shown that prior
reconstruction of a parametric shape with a low number
of parameters (super-ellipse, harmonic contour, etc.) is a good
compromise between the quality and rapidity of reconstruction.
We estimate the contour parameters in the least square sense
and then approximate by a polygon to obtain . Most
often, an arc length description is available, thus uni-
form sampling of the arc length provides

. For both optimization algo-
rithms, the maximum number of iterations is fixed (
for ) and we terminate the algorithm if

for some arbitrary threshold .
4) Computation Difficulties: The direct calculation of the

projections and their derivatives w.r.t. are the least
requirements to the use of first-order descent methods. Among
existing works on polygonal reconstruction, and more gen-
erally parametric contour reconstruction, we distinguish the
following:

Fig. 4. Exact and approximate calculation of a closed-shape projection in
the 2-D case. (a) Exact calculation based on the calculus of distances between
intersections of the shape with the projection ray. (b) Approximate numerical
calculation by pixel discretization of the 2-D image.

1) the ones that use a direct exact calculation of the projec-
tions and their partial derivatives (see [15] for the case of
elliptic shapes);

2) the ones based on a pixel approximation of the binary
image derived from . Formation of the approxi-
mate image then involves, for each pixel element, the cal-
culation of the pixel area enclosed in , and approxima-
tion of is done by an adjoin differentiation tech-
nique [17], [21]. Those techniques are also easily extend-
able to strip band integration.

Fig. 4 illustrates both techniques. Although for pixel approx-
imation, the projection calculation is linear and straightfor-
ward, formation of the approximate image appears consuming
in terms of computation time and memory storage, and espe-
cially in the prospect of 3-D extension. Because for polygons,
a direct and simple calculation of projections is possible [27],
we favor the first class of techniques, at the expense of tech-
nical developments regarding the calculation of the projection
derivatives.
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Fig. 5. (a) Evaluation of projection of a closed-contour C. In the regular case, the number of intersections between the projection ray and C is even. Positions
III ; III ; . . . are the entries of the projection ray into C; III ; III ; . . . are the exits. (b) For a convex shape, there are only two intersection points, and the projection
value is equal to their distance.

Fig. 6. Exterior status of vertice vvv of vvv. (a) Exterior vertice: " = 1, the angle between vvv vvv , and vvv vvv lays in [0; �). (b) Interior vertice: " = �1, the angle
between vvv vvv , and vvv vvv lays in [�; 2�). (c) Singular vertice: " = 0. The angle at vvv is flat and triangle ttt is empty.

D. Manipulation of Polygonal Projections

1) Calculation of Projections: For a fixed ray, the projection
value of a polygon is given by (4). Clearly, rewrites
as the sum of the distances between the intersection points of
the ray with contour (see Fig. 5). If no vertice is located
on the ray, the number of those points is even, and

[27]. The case of a convex polygon
is even easier, yielding either 0 or 2 intersections.

Consequently, the projection calculation works as follows.
We first register all intersection points and then sort those
points by their distance to a fixed position on the ray, e.g., the
source position. If their number is even2, we apply the above
formula. If not, we do not search for the vertice(s) that lays on
the projection ray, but process an approximate calculation using
a parallel ray that is very close to the exact ray.

2) Update of Projections: We now quantify the update of
when a single vertice only, say , is modified to any posi-

tion. We assume that the new position still yields an ac-
ceptable polygon, denoted by .

2That does not necessarily mean that no vertice is located on the projection
ray, although the special case of an even number of vertices laying on the pro-
jection ray is very scarce.

To consider the dependence of upon , we rename the pro-
jection values and , and define the exterior status
of vertices.

Definition 1: Vertice is said exterior (respectively interior)
to if the angle between vectors and lays in
(respectively, ).

Let be the sign of this angle and denote triangle
(see Fig. 6). Since a displacement of only

modifies the edges containing , i.e., and
writes as the sum of plus a function that does not

depend on . Therefore, the projection update simply deduces
from the projection of

(10)

where and are the local characteristics of relative
to the modified polygon . As a triangle projection is ana-
lytic and piecewise affine w.r.t. (see Appendix I), update (10)
appears simple and computationally efficient.

3) Differentiation of Projections: Differentiation of
w.r.t. straightforwardly derives from the
previous paragraph. Indeed, computing
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Fig. 7. Exterior status of vertice vvv . In both cases, initial formation of the faces guarantees that normal vectors vvv vvv ^vvv vvv to the faces andnnn at vertice
vvv are all oriented toward the exterior of the polyhedron. (a) Exterior vertice: " = 1. (b) Interior vertice: " = �1.

is equivalent to updating
following to an infinitesimal displacement of . As the exte-
rior property of is invariant for infinitesimal displacements,
(10) implies . The special case in
which lays on edge , that is , requires specific
care and is illustrated in Fig. 6(c). We introduce a fictive vertice

that is interior to and form triangles
and . The partial derivative then writes

.
Finally, all cases reduce to the calculation of the derivatives

of a triangle projection, which is done in Appendix I. Given
a triangle and a direction of projection ,
we provide analytic expressions of the projection and its
derivative w.r.t. . We show that is defined for
all , except if exactly projects on . However, this case is
practically scarce and allows definition of left and right deriva-
tives. In conclusion, for a vertice polygon , the derivative
of w.r.t. is defined
if no detector point is equal to the geometric projection of

, or onto the detector plane. simply
deduces from the projection derivatives, as the dependence of

on projection values is direct and quadratic, and
functional is generally very simple.

IV. POLYHEDRAL RECONSTRUCTION

In this section, we study the binary polyhedron reconstruc-
tion problem. In image processing literature, deformable mesh
models have been widely used for 3-D segmentation with the
development of the finite element method [33]. However, their
direct use for tomographic reconstruction purposes has been
scarce. In fact, their reconstruction from projections is a diffi-
cult problem, since values of projections are not related to the
vertice positions in a direct manner. For that application, recent
contributions aim to directly estimate the position of vertices by
statistical estimation procedures [21], [34], [35]. Remesh oper-
ations are then often needed [36], [37].

In the following, we only focus on the estimation of a polyhe-
dron vertices, which raises several technical difficulties in itself.
We extend the polygonal reconstruction method by introducing

the MAP estimator of the vertices. We then focus on the poste-
rior energy optimization and its algorithmic counterparts, based
on the manipulation of the polyhedron projections: their calcu-
lation, their update following to a vertice displacement, and their
differentiation w.r.t. the vertices.

A. Acceptable Polyhedron Modeling

The primary difference between the 2-D and 3-D models is
that a polyhedron is not fully specified by its vertices

, . Not only is there no natural or-
dering of vertices, but the shape description also requires a set
of faces . For simplicity reasons, we assume
the following.

1) The number of vertices is fixed.
2) Faces are triangular.
3) the topology, i.e., the formation of faces is fixed by initial

conditions; no remeshing is allowed.
4) The ordering of vertices is relative to the exterior of the

polyhedron. If a face, say , is composed of vertices ,
, and , the normal vector to this face is defined by

the cross product , and is oriented toward
the exterior of the polyhedron.

Condition 4) allows, for any vertice , the definition of the
ordered set of its neighbors w.r.t. the exte-
rior, where is the number of neighbors (see Fig. 7). The
faces that are adjacent to are then defined by triangles

for , where is set
to . Conditions 3) and 4) imply that whatever the dis-
placements of vertices, a face is always composed of the same
vertices, and its normal vector remains oriented toward the
exterior.

The shape parameterization finally reduces to the vertice po-
sitions , and polyhedron reconstruction from projec-
tions is equivalent to the estimation of the vertices .
Similarly to the 2-D case, we define the set of unintersected,
or acceptable closed polyhedra of faces

(11)
where states that faces and are not adjacent.
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In the literature of mesh segmentation, wider acceptability
conditions have been derived, allowing a minimum distance
between the faces [37]. In the field of surface reconstruction
from projections, Battle et al. used a deformable polyhedron
with a voxel approximation of the binary image [21], hence
affording a heuristic check of acceptability conditions. For
each voxel, they register the faces that intersect the voxel
volume, and verify that any pair of intersecting faces
are neighbors. Although this test is practically efficient, it is not
a sufficient condition to guarantee that , and, besides,
the registration of intersections between all voxels and faces is
a huge computation burden.

B. MAP Estimation

We estimate the vertice coordinates using the MAP estimator
(7). With similar notation, the posterior energy is the sum
of a fidelity to data term

(12)

and a penalization term , often selected to enhance the
surface smoothness. Classic choices are based on the distance
from vertices to the mass center of their neighbors, or their solid
angle [21], [36], [38]. As in the 2-D case, criterion is gen-
erally multimodal and may have several global minimizers de-
pending on the formation of the faces. We select local determin-
istic first-order descent schemes, as follows:

1) the gradient-based approach (8), optimizing w.r.t. all
vertices simultaneously;

2) the block relaxation approach (9), in which blocks are
composed of the vertice positions .

Initialization also affords the formation of the faces, which re-
main fixed during the iterations. Contrary to the 2-D case,
the computation time is a drastic factor because of the
large number of unknowns. Clearly, the relaxation scheme
is greedier (see Section V for evaluation), and we then favor
gradient descent. Nevertheless, a combination of both would
be possible to successively explore tight then large valleys of
criterion .

To carry out the optimization, we specify the direct calcu-
lation, update and differentiation of , which directly deduce
from polyhedron projection calculation and differentiation
algorithms. As those tools are extensions of polygon projection
algorithms, we briefly summarize their outlines and focus on
the special difficulties raised by the extension. For gradient
descent, the acceptability test (11) can be done by checking
that all couples of faces do not intersect. Instead, we choose to
take advantage of the exact calculation of (valid for

) to propose a heuristic acceptability test. This test
relies on the computation of the first-order finite differences

, and their comparison with the components of
. If the difference between both vectors is greater

than an arbitrary threshold, set to , we
detect a self intersection of the shape. Although this test is not a
sufficient condition to guarantee that , it yields very
accurate results in practice.

C. Calculation and Update of Projections

Let us consider the projection of parameters of a poly-
hedron and rename the projection value. Similarly to the
2-D case, the direct calculation of is based on the search
of intersection points between the projection ray and
the polyhedron faces [27]. Since faces are triangular, this task
is straightforward; for a face , one simply
needs to intersect the projection ray and the plane supporting
and then check if the intersection point lays inside the triangle

.
For regular configurations, in which the ray does not inter-

sect one of the edges of , the number of intersection points
is even. Up to the sort of these points by their dis-

tance to a fixed location on the ray, e.g., the source position, the
projection value is given by . As in
the 2-D case, singular configurations are handled using a par-
allel ray that is very close to the exact ray.

The projection update, which leads to projection differentia-
tion, considers as a function of a particular vertice, say .
We, hereafter, quantify , where is the
modified polyhedron composed of , .

1) Local Vertice Attributes: The exterior status of vertice
relies on the exterior normal vector to the surface at .
As a polyhedral surface is not twice differentiable w.r.t. its arc
lengths, we cannot properly define . A good approximation is
based on the connected neighbors of , and
their mass center [36]

(13)

where stands for the cross product, and is chosen
such that (see Fig. 7). The polyhedron construction
guarantees that the sequence of vertices is ordered relative
to the exterior (see Section IV-A), and that is also oriented
toward the exterior.

Definition 2: Vertice is said exterior (respectively interior)
to polyhedron if and only if (respectively,
0), where denotes the Euclidean dot product.

In the following, the sign of is denoted by .
2) Update of Projections: As a displacement of yields the

modification of the only faces containing , we extract a local
polyhedron containing , its neighbors , and a fictive
vertice for enclosure. This task is illustrated in Fig. 8, and the
selection of is discussed in Appendix III. As in the 2-D case,
the difference between and does not depend on

, and the projection update writes

(14)

where notation refers to polyhedron . We perform an-
alytic calculation of the projection of a local polyhedron, say

, using its partition into the set
of the tetrahedra formed of and the faces that are adjacent
to . is then equal to the sum of their projections:

. Update (14) is finally very simple,
since it only involves tetrahedra, whose projections are analytic;
we refer the reader to Appendix II for the detailed presentation
of their properties and calculation.
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Fig. 8. Extraction of local polyhedron vvv containing vvv and its neighbors.
Fictive vertice eee is used as an enclosure ofvvv . Analytic calculation of the local
polyhedron projections requires partition of vvv into the set of n tetrahedra
ttt = fvvv ; vvv ; vvv ; eee g.

D. Differentiation of Projections

Differentiation of projections is a direct consequence of their
update. Indeed, an infinitesimal displacement of vertice does
not modify its exterior status , and (14) yields

(15)

where partial derivatives are the vectors of formed of the
derivatives w.r.t. the coordinates , , of . In conse-
quence, the differentiation task reduces to the case where is a
tetrahedron. In Appendix II, we provide the analytic expression
of a tetrahedron projection, and then study its derivability w.r.t.
its vertices. For a tetrahedron , we show that

is defined for all , provided that the detector
position does not lay on a set of closed intervals de-
limited by the geometric projections of vertices onto the
detector plane (see Theorem 2).

In conclusion, the above conditions must be satisfied for all
detector positions and all tetrahedra to define the
derivative of , and hence w.r.t. .

V. SIMULATION RESULTS

We display 2-D and 3-D reconstructions obtained on a set
of limited angle simulated data. Both experiments aim to re-
construct a synthetic shape from a limited number of noisy
projections. The synthetic shape is a polygon of 40 vertices in
the 2-D case and a polyhedron of 95 vertices and 186 trian-
gular faces in the 3-D case. The simulated data are obtained
according to (3) by first computing the exact direct projection

of the synthetic shape and then adding an i.i.d.-centered,
white and Gaussian noise to the noiseless projections. The
signal to noise ratio, defined by SNR , where
and are the empirical variances of the projection signal and
the noise, is set to 20 dB.

A. Polygonal Reconstruction

This simulation illustrates the polygonal reconstruction
method on a simple example. The data set represented in Fig. 9(a)
is composed of noisy projections of the synthetic shape

. The projection angles are uniformly distributed on [0, ]
and each projection is formed from 64 detector positions.

The reconstructed polygons involve vertices and are
obtained using the LS and MAP estimators. The regularization
term corresponding to the MAP criterion is defined by

(16)

where stands for the oriented angle between
vectors and . This choice affords penalization of
sharp angles (high values of ), hence favoring local
smoothness of . Vertice estimates are computed using the gra-
dient descent scheme, and initialized by an elliptic shape, whose
parameters are directly estimated from the data. Fig. 9(b) re-
spectively displays estimates and , where hyperparam-
eter is empirically chosen . The quality of the ML
solution is acceptable for but deteriorates as grows
larger. For high values of , the polygonal shape lays closer
to the initial ellipse, while presenting local irregularities [38].
MAP reconstructions appear accurate, and stable w.r.t. , as
is lower than 100. For , Fig. 9(c) shows that solution

yields similar shapes for . Higher values of
produce over-smoothed curved and do not allow the forma-

tion of nonconvex shapes.

B. Polyhedral Reconstruction

Polyhedral reconstruction is processed from a set of nine lim-
ited angle projections . The unknown surface

and the projection geometry are represented in Fig. 10(a),
whereas the projection images , formed of 64 64 pixels,
are plotted in Fig. 10(b). The projection angles ,
printed in Table II, are limited in the sense that all angles are
lower than . Therefore, the data suffer from a lack of infor-
mation in the directions that are orthogonal to the vertical axis

. Moreover, surface is highly nonconvex, making its recon-
struction by a deformable parametric surface very difficult.

Polyhedron vertices are estimated using the MAP estimator
and the following penalization:

(17)

where stands for the solid angle at vertice .
This functional penalizes sharp vertices of , for which
is close to either 0 or [38]. Fig. 10(d) displays the polyhe-
dron reconstruction ( vertices, triangular faces,
and ), obtained with the gradient descent scheme and the
spherical harmonic surface (c) as initialization. The 16 param-
eters of the harmonic surface are directly estimated from the
data in the LS sense. Hyperparameter is empirically chosen,
in order to avoid self intersected polyhedra while preserving
the surface smoothness. Under- and over-regularized solutions
( and ) are illustrated in Fig. 11. For , the
optimization algorithm yields an “almost” degenerate solution

. More precisely, at iteration , the gradient descent algo-
rithm yields a vertice estimate , which does not fulfill the
self intersection test. Consequently, the descent algorithm ter-
minates, and the solution is set to the th vertice estimate .
Setting forbids the formation of highly nonconvex parts
in the reconstructed shape.
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Fig. 9. Polygonal reconstructions. (a) Synthetic data are formed from four noisy projections of the unknown shape C (64 values per projection). The projection
angles � vary from 0 to �=2 and SNR = 20 dB. Reconstructed polygons are formed of n = 20 vertices and obtained using the gradient descent scheme. (b)
Plot of elliptic initial solution vvv (dashed curve) and final reconstructions obtained with � = 0 (vvv , dashdot curve) and � = 100 (vvv , solid curve �). (c)
Reconstructions corresponding to � = 400, 700, 10 000 (solid curve �, dashed curves +, and �, respectively). On plots (b) and (c), the unknown shape C is
represented by the solid curve with no dots.

Fig. 10. Reconstruction results from nine simulated noisy projections. The projection images (b) are put together in a 3 � 3 “matrice,” indexed by the projection
angles (the first row corresponds to angles ��� , ��� , ��� , etc.). The harmonic model (c) depends on 16 parameters, estimated from ddd in the least-square sense. The
reconstructed polyhedron (d) is obtained using the gradient descent scheme with (c) as an initialization. The number of iterations is K = 10. (a) Unknown surface
C and projection geometry. (b) Synthetic data: nine projection images. (c) Harmonic reconstruction. (d) Polyhedral reconstration (n = 95, � = 2).
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TABLE II
THREE-DIMENSIONAL PROJECTIONS: VALUES

OF ANGLES ��� . ANGLE ' = arccos(
p
3=3)

Although both deterministic descent schemes, i.e., gradient
and block relaxation yield similar results, the latter turns out
to be very expensive. In Fig. 12, we plot for each scheme the
time of reconstruction (CPU time), expressed in seconds, as a
function of the number of vertices for the data set of Fig. 10.
In any case, and especially for large , the overall CPU time is
huge for block relaxation, thus favoring the gradient scheme and
direct optimization on .

VI. CONCLUSION

We have studied general schemes for polygonal and polyhe-
dral shape reconstruction from X-ray projection data. The pro-
posed schemes directly estimate the position of the shape ver-
tices using the MAP estimator. Minimization of posterior en-
ergy has been performed using deterministic first-order
descent techniques. Among them, we have shown the interest of
gradient techniques on the whole parameter vector and block
relaxation techniques, where a block corresponds to a single
vertice. Even though those algorithms are classic in numerical
analysis, their use happens to be nontrivial for compact object
reconstruction for two reasons: the nonconvexity of the mini-
mization domain, and the direct computation of . The basis
of our contribution is the direct computation, update, and dif-
ferentiation of the projections with no use of a voxel approxi-
mation. These algorithms yield an efficient calculation method
for , this quantity being required for the descent algorithms.
In the 3-D case, the quality of reconstruction is similar for both
techniques, but the computation burden is far higher for block
relaxation. Therefore, we have selected gradient descent on .
The self intersection test simply consists of the calculation of

and its comparison with its finite difference approximation.
Future work will primarily deal with the application of the

polyhedron reconstruction method on real data in the field of
nondestructive evaluation. On algorithmic parts, we think of
using 2-D binary polygonal image sampling based on Arak fields
[31] to perform stochastic optimization of in the polygonal
case. Improvement of polyhedron reconstruction will aim to
use nondifferentiable gradient techniques for the deterministic
minimization of criterion [39]. Initial conditions can also be
improved by the means of multiresolution techniques [34], [40].
They consist of successive reconstructions of polyhedra with
an increasing number of vertices. First estimates are very quick
and afford initialization of the latter optimization stages.

APPENDIX I
PROJECTION OF A TRIANGLE: CALCULATION

AND DIFFERENTIATION

The aim of this section is to provide analytic expressions of
the projection of angle of a triangle and

its derivative w.r.t. in the case it is defined. The projection
is denoted by to express the dependence upon and
(Section I-A and I-E), or simply when .

A. Change of Basis

First, we show that all cases reduce to that of the vertical
direction by the means of a change of basis.

We consider the projection of angle and denote by
the direction of detector and by

the direction of projection. Let
be the rotation matrix of angle , which maps basis
onto the standard basis . The related change of basis
writes , where

(18)

and represents the coordinates of a point w.r.t. to
basis . Applying the change of basis to (4), the projec-
tion of angle rereads

(19)

where denotes triangle .
In consequence, it is sufficient to study a triangle projection
and its derivability in the case where . If
is defined, then also exists, and is equal to

.

B. Vertical Projection of a Triangle

We now formulate the vertical projection
of triangle and distinguish two cases, whether contains a
vertical edge (singular case) or not (regular case); see Fig. 13.

In the regular case, function is continuous and
piecewise affine. Up to a reordering of the vertices, we can as-
sume that are such that . The max-
imum of is then reached at , and

if
if
if

(20)

where . Denoting by the angle
, we have , where stands for the

distance from to line .
In the singular case, one of the edges, say is vertical,

and then . Function is piecewise affine, but not
continuous at . However, (20) still holds for all .

We now study the differentiation of w.r.t. in the reg-
ular case, and then generalize the result to the singular case.

C. Differentiation of Projections (Regular Case)

Differentiation of w.r.t. gives rise to three cases, de-
pending on the relative positions of , , and . The first
case is plotted in Fig. 13(a), whereas the other
two cases reduce to the study of and

in the first case, up to a permutation of the vertices.
Therefore, we assume that and then study the dif-
ferentiation of w.r.t. each vertice separately. In particular,
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Fig. 11. Influence of � on the reconstructed polyhedra. MAP reconstructions (n = 95 vertices) obtained with the gradient scheme, and the harmonic surface
[Fig. 10(c)] as initialization.

Fig. 12. Polyhedral reconstruction. Evaluation of the CPU time as a function
of the number n of vertices for both local iterative algorithms: direct gradient
descent on vvv and block relaxation descent (GS). Reconstructions correspond
to the data set plotted in Fig. 10(b), � is empirically chosen, depending on n.
Evaluation is expressed in seconds, and the number of iteration is K = 10.

we put the stress on the differentiation of w.r.t. ver-
tices , which directly leads to that of according to (20).

1) Differentiation w.r.t. : We can easily show that is dif-
ferentiable w.r.t. , and that and

if lays above the line , and 1 otherwise. Conse-
quently, is differentiable for all and (20) yields

if

if

if

(21)

This formulation allows the definition of left and right deriva-
tives for by considering the limits of as
tends to and .

2) Differentiation w.r.t. and : As is equal
to , simple trigonometric calculation leads to

Fig. 13. Projection of a triangle fvvv ; vvv ; vvv g along vertical direction (x
x x ). Function t ! p (t) is continuous on IR in (a) the regular case and
continuous on IR n fx g in (b) the singular case.

, where stands for the 2 2 ma-
trice determinant operator. The latter determinant corresponds
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to the half area of triangle . Hence, it is not equal to zero for
nonflat triangles, and is differentiable w.r.t. and

(22)

(23)

where is equal to 1 if lays below the line and 1,
otherwise. From these expressions, one can analytically com-
pute and on the intervals and

, as is done in (21). In particular, ( ,
3) is uniquely defined for all . At , left and right
derivatives are, however, defined.

D. Differentiation of Projections (Singular Case)

Assuming that , the singular case implies
or . Then, function is continuous on
and the differentiation study done in Section I-C still

holds for . In particular, the computation of and its
derivatives w.r.t. , as well as those of , are all valid for

and . If belongs to the vertical edge, and
are identical. In the alternative case, one can easily check that

does not depend on . Hence, the extension of
at is possible by setting .

Finally, even in the singular case, differentiation of w.r.t.
is possible for all .

E. Conclusion

As a conclusion, the following theorem states the necessary
and sufficient conditions for the differentiation of a triangle pro-
jection. The expression of the derivatives can be straightfor-
wardly deduced from (19) –(23).

Theorem 1: Consider a nonflat triangle and
its projection of angle . Let be the geometric projections of
vertices onto the detector line .

1) In the regular case (no edge is parallel to the direction
of projection ), function is piecewise affine,
continuous on , and differentiable w.r.t. on .

2) In the singular case, let be the geometric
projection of the edge that is parallel to . Function

is piecewise affine, and continuous on .
It is differentiable w.r.t. on . If , the
partial derivative is extendable by continuity at .

At location , “left” and “right” derivatives of w.r.t.
can, however, be defined by computing the limit values of

function when tends to and .

APPENDIX II
PROJECTION OF A TETRAHEDRON: CALCULATION

AND DIFFERENTIATION

We consider a tetrahedron and its pro-
jection of angle . We study the computation of

and its derivability w.r.t. a single vertice, say . As for
the 2-D projection of a triangle, function is piece-
wise affine and continuous on , provided that no face of

is parallel to the direction of projection.3 The support of
is then equal to the convex hull of the geometric projections ,

, , and of vertices onto the detector plane (see Fig. 14).
The support is then either triangular or quadrangular, depending
on the relative positions of . We now handle the calculation
and differentiation of in both cases. We provide an ana-
lytic expression of and the necessary results to compute
its derivatives.

A. Calculation of Projections for Triangular Support

If a location, say , lays inside the triangle formed
of the other locations, the projection support is equal to the inte-
rior of this triangle; see Fig. 14(a). Function is then equal
to zero for and is maximal at . Denoting
by the maximum value, the projection is piecewise defined in
the three inner triangles included in

if
if

(24)

where denotes the 2 2 matrice determinant operator, and
the bold notation refers to vectors of . The three inner trian-
gles are defined for . Projection value

can be directly computed from the vertices using
, where denotes the angle

between the projection ray and the normal vector to the
plane (see Fig. 15).

B. Calculation of Projections for Quadrangular Support

If the locations form a quadrangle, function is equal
to zero for all positions and is maximal at the quadrangle
center . Without loss of generality, we assume that ,

, , and are oriented w.r.t. in the counterclockwise order.
The projection is then piecewise defined in the four inner trian-
gles , where by circular extension,
we set

if
if

(25)

The quadrangle center can be expressed as a function of lo-
cations , , , and

(26)

and is computed using the tetrahedron volume.
Indeed, the volume of is equal to

(27)

where is the binary density function related
to . The volume also writes as the mixed product

, leading to

(28)

3For simplicity, the case of singular tetrahedra, which is very similar to that
of singular triangles in the 2-D case, will be eluded in the following.
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Fig. 14. Projection of a tetrahedron vvv = fvvv ; vvv ; vvv ; vvv g onto the detector plane (upper figures). Function t! p (t) is piecewise affine and continuous on IR
if no face of vvv is parallel to the projection ray. The support of p (t) is equal to the convex hull of the geometric projections t of vertices vvv onto the detector plane.
Two cases appear, as the support is (a) triangular or (b) quadrangular. In the first case, one of the locations t , say t , lays inside the triangle formed of the other
three locations, and the maximum value P of p (t) is equal to p (t ). In the second case, P is reached at the quadrangle center t .

Fig. 15. Calculation of the projection of angle ��� = (�; ') of tetrahedron vvv in case (a). The projection rays are directed by unit vector uuu =
[cos � sin'; sin � sin'; cos'] , and the projection value P is equal to the distance between vvv and its geometric projection www onto the plane (vvv ; vvv ; vvv )
along uuu . P = jhvvv vvv ; vvv ij= cos , where nnn is the unit normal vector to the plane (vvv ; vvv ; vvv ), oriented toward the detector plane, and  2 [0; �=2) stands
for angle (uuu ;nnn ).

C. Differentiation of Projections

Differentiation of w.r.t. leads to three cases, as fol-
lows, whether

1) has a triangular support, and its maximal value is
reached for ;

2) has a triangular support, and its maximal value cor-
responds to another vertice, say ;

3) has a quadrangular support.

Cases (1) and (3) correspond to Fig. 14(a) and (b) respectively,
whereas case (2) reduces to the differentiation of w.r.t.
in the configuration of Fig. 14(a).

In all cases, differentiation of is done piecewise, on
each inner triangular domain composing the projection support.
Clearly, the partial derivatives of directly depend on those
of and . The positions are directly related to the
corresponding vertices

(29)
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Fig. 16. Enclosure of vvv . Plots of local polyhedron vvv and its orthogonal projection along normal vector nnn . For simplicity, neighbors of vvv are renamed
vvv ; . . . ; vvv . (a) Case where the projections of the neighbors along nnn form a convex polygon. Its triangulation directly yields enclosure of vvv , and formation
of n �2 tetrahedra ttt . (b) Use of fictive vertice eee = vvv to avoid flat tetrahedra, and formation of n tetrahedra ttt . (c,d) If the projected neighbors do not form
a star-shaped polygon around vvv , eee is selected on the line passing through vvv and directed by vvv vvv or�" nnn , whether vvv and vvv are sufficiently distant or not.

where refers to the detector plane. Consequently, the
derivatives of the coordinates of w.r.t. can be easily calcu-
lated. We now focus on the differentiation of .

1) In cases (1) and (2), is equal to ,
where is set to 1 if lays above the plane ,
and 1, otherwise (see Fig. 15). Calculation of
is direct, as both and do not depend on and leads
to . On the contrary, computing

requires the analytic expression of as a func-
tion of

(30)

2) In case (3), can be computed from (28).
We refer the reader to [38] for the complete calculation of the
derivatives of and those of on each triangular domain
composing the projection support. The conditions of derivability
of are now summarized for regular tetrahedra (no face
of is parallel to the direction of projection).

Theorem 2: Consider the projection of angle of a regular
tetrahedron , and let be the geo-
metric projections of vertices onto the detector plane. Then,
the partial derivative of w.r.t. is defined if and only if
is not located on the following projected edges of :

1) for , 3, 4, in case (1);
2) and for , 3, 4, in case (2);
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TABLE III
FORMATION OF FICTIVE VERTICE eee FOR ENCLOSURE OF vvv

3) both quadrangle diagonals and both projected edges that
are adjacent to in case (3).

If lays on one such projected edge, the directional derivative of
w.r.t. the direction of projection is, however, defined.

Remark 4: For a singular tetrahedron, let denote the
geometric projection of the face that is parallel to . Function

is continuous on , and differentiable w.r.t. at
all locations that do not lay on nor on the edges specified
in Theorem 2.

APPENDIX III
GENERATION OF FICTIVE VERTICE FOR LOCAL

POLYHEDRON ENCLOSURE

We hereafter define a heuristic scheme for the enclosure of
a local polyhedron, say . As plotted in Fig. 16(a), enclosure
does not necessarily need formation of a fictive vertice, but tetra-
hedra are then flattened. Consequently, in any case, we de-
cide to create a fictive vertice, denoted by . Tetrahedra are
then formed of , , , and for .
When the orthogonal projections of the neighbors along
normal vector (on any plane) form a convex polygon, se-
lecting as the mass center of vertices is sufficient
[see Fig. 16(b)]. For nonconvex cases, we cannot ensure that the
polygon is star shaped around the projection of . A good al-
ternative is then to select such that with

if and are sufficiently distant, or else such that
, with . The final selection scheme is

detailed in Table III.
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