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Abstract: An important problem in statistics is determining a joint probability distribution from its marginals. In 2D
case, the marginal probability density functionsf1(x) and f2(y) are related to their joint distributionf (x,y)
via the horizontal and vertical line integrals. So, the problem of determiningf (x,y) from f1(x) and f2(y) is
an ill-posed inverse problem. In statistics the notion ofcopulais exactly introduced to obtain a solution to this
problem. Interestingly, this is also a problem encounteredin X ray tomography image reconstruction where
f (x,y) is an image representing the distribution of the material density and f1(x) and f2(y) are the horizontal
and vertical line integrals. In this paper, we try to link thenotion of copula to X ray Computed Tomography
(CT) and to see if we can use the methods used in each domain to the other one.

1 Introduction

The wordcopulaoriginates from the Latin mean-
ing link, chain, union. In statistical literature, ac-
cording to the seminal result in the copula’s theory
stated by Abe Sklar (Sklar, 1959) in 1959; A cop-
ula is a function that connects a multivariate distribu-
tion function to its given univariate marginal distribu-
tions. There is an increasing interest concerning cop-
ulas, widely used in Financial Mathematics (kallen-
berg, 2008), in modelling of Environmental Data (Joe,
1994). Recently, in Computational Biology, copulas
are used for the reconstruction of accurate cellular
networks (JM et al., 2008). Copula appeared to be
a new powerful tool to model the structure of depen-
dence. Copulas are useful for constructing joint dis-
tributions, particularly with nonnormal random vari-
ables (JM et al., 2008; Yan, 2007; Genest and Favre,
2007; Mikosch, 2006; Genest and Rémillard, 2006;
Zhang et al., 2006; Kolesárová et al., 2006; Durrle-
man et al., 2000).

In 2D case, the marginal probability density func-
tions f1(x) and f2(y) are related to their joint proba-
bility density function f (x,y) via the horizontal and

vertical line integrals:

f1(x) =
Z

f (x,y) dy (1)

f2(y) =

Z

f (x,y) dx (2)

Given f (x,y) computing f1(x) and f2(y) is a well-
posed (forward) problem. The problem of determin-
ing f (x,y) from f1(x) and f2(y) is an ill-posed (in-
verse) problem (Hadamard, 1902). As we will see
later all functions in the form of

f (x,y) = f1(x) f2(y)c(x,y) (3)

wherec(x,y) is anycopuladensity function, is a so-
lution of this problem. Later in detail a copulac(x,y)
will be a function such that its marginals are uniform
and thus we have
Z

f (x,y) dy =

Z

[ f1(x) f2(y)c(x,y)] dy = f1(x) (4)
Z

f (x,y) dx =

Z

[ f1(x) f2(y)c(x,y)] dx = f2(y) (5)

In 1917, Johann Radon introduced the Radon
transform (Radon, 1917) which is used in 1963 by
Allan MacLeod Cormack for application in the con-



Forward problem: Inverse problem:
Given f (u,v) compute Givenf1(u) and f2(v)
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Figure 1: Forward and inverse problems

text of tomographic image reconstruction. He pro-
posed to reconstruct the spatial variation of the ma-
terial density of the body from X-Ray radiographies
for different directions. He implemented this method
and made a prototype CT scanner (Cormack, 1963).
Independently, Godfrey Newbold Hounsfield derived
an algorithm and built the first medical CT scanner.
This was a great achievement for the twentieth cen-
tury, because one could see inside of an object with-
out opening it up. Cormack and Hounsfield won the
Nobel Prize of Medicine in 1979.

Interestingly, if we represent byf (x,y) the spatial
distribution of the material density in a section of the
body, a very simple model to relate a line of the radio-
graphy imagepθ(r) at directionθ to f (x,y) is given
by the Radon transform:

pθ(r) =

Z

Lr,θ
f (x,y) dl

=

ZZ

R 2
f (x,y)δ(r −xcosθ−ysinθ) dx dy

The mathematical problem is then determining the
multivariate function f (x,y) from its line integrals
pθ(r). Radon has shown that this problem has a
unique solution if we knowpθ(r) for all θ ∈ [0,π] and
all r ∈ R and can be computed by

f (x,y) =
1
2π

Z π

0

Z ∞

0

∂pθ(r)
∂r

r −xcosθ−ysinθ
dr dθ (6)

However, if the number of projections is limited, then
the problem is ill-posed and the problem has an infi-
nite number of solutions.

If now, we consider only two projections: hori-
zontalθ = 0 and verticalθ = π/2, we see easily the
link between these two problems. The main objective
of this paper is to show in more details these relations.
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Figure 2: X ray Computed Tomography: forward and in-
verse problems in 2D parallel geometry.

The rest of this paper is organized as follows: In
section 2, we present a summary of all the neces-
sary definitions and properties of copulas and high-
light methods to generate a copula. In section 3, we
present a summary of the main tomographic image
reconstruction methods based on the Radon inversion
formula. In section 4, we will be in the heart of the
new material of this paper which is the link and rela-
tions between the notions of these two previous sec-
tions. Finally, in section 5, we show some preliminary
results from our Copula-Tomography Matlab pack-
age.

2 Copula

In this section, we give a few definitions and prop-
erties of copulas that we need in the rest of the paper.
First, we note byF(u,v) a bivariate cumulative distri-
bution function (cdf), byf (u,v) its bivariate probabil-
ity density function (pdf), byF1(u), F2(v) its marginal
cdf’s and f1(u), f2(v) their corresponding pdf’s with
their classical relations:

F1(u) =
Z u

−∞
f1(x) dx = F(u,∞), (7)

F2(v) =

Z v

−∞
f2(y) dy = F(∞,v), (8)

F(u,v) =

Z u

−∞

Z v

−∞
f (x,y) dx dy, (9)

f1(u) =
∂F1(u)

∂u
=

Z

f (u,v) dv, (10)

f2(v) =
∂F2(v)

∂v
=

Z

f (u,v) du, (11)

f (u,v) =
∂2F(u,v)

∂u∂v
. (12)

Definition 1 Bivariate Copula: A bivariate copula,
or shortly a copula is a function from[0,1]2 to [0,1]
with the following properties:

• ∀u,v∈ [0,1] , C(u,0) = 0 = C(0,v);



• ∀u,v∈ [0,1] , C(u,1) = u and C(1,v) = v;
• ∀u1,u2,v1,v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤

v2,
VC ([u1,u2]× [v1,v2]) = C(u2,v2) − C(u2,v1) −
C(u1,v2)+C(u1,v1) ≥ 0.

Theorem 1 Sklar’s Theorem: Let F be a two-
dimensional distribution function with marginal dis-
tributions functions F1 and F2. Then thereexists a
copula C such that:

F(u,v) = C(F1(x1),F2(x2)). (13)

Conversely, for any univariate distribution functions
F1 and F2 and any copula C, the function F is a two-
dimensional distribution function with marginals F1
and F2, given by (13). Furthermore, if the marginal
functions are continuous, then the copulaC isunique,
and is given by

C(u,v) = F(F−1
1 (u),F−1

2 (v)). (14)

Definition 2 Copula Density: From (12) and differ-
entiating (14) gives the density of a copula

c(u,v) =
∂2C
∂u∂v

=
f
(
F−1

1 (u),F−1
2 (v)

)

f1
(
F−1

1 (u)
)

f2
(
F−1

2 (v)
) , (15)

and thus

f (x,y) = f1(x) f2(y)c(x,y) (16)

Usual copulas:
Theproduct copula Π(u,v) (or independent copula)
is the simplest copula, has the form

Π(u,v) = uv (u,v) ∈ [0,1]2 , (17)

corresponds to independence.
The Fr échet-Hoeffding upper bound copula
M(u,v) (or comonotonicity copula) is :

M(u,v) = min(u,v) (u,v) ∈ [0,1]2 . (18)

The Fr échet-Hoeffding lower bound W(u,v) (or
countermonotonicity copula) is:

W(u,v) = max{u+v−1,0} (u,v) ∈ [0,1]2 . (19)

Property 1 Any copula C(u,v), satisfies the inequal-
ity called the Fŕechet-Hoeffding bound inequality

W(u,v) ≤C(u,v) ≤ M(u,v). (20)

Generating Copulas by the Inversion Method: A
straight forward method is based directly on Sklar’s
theorem. GivenF(x1,x2) the joint cdf of two vari-
ablesX1 andX2 andF1(x1) andF2(x2) their marginal

cdf’s, all assumed to be continuous. The corre-
sponding copula can be constructed using the unique
inverse transformations (Quantile transform)X1 =
F−1

1 (u), X2 = F−1
2 (v), whereU andV are uniformly

distributed on[0,1]:

C(u,v) = F(F−1
1 (u),F−1

2 (v)), (21)

whereu,v are uniform on[0,1].

Archimedean Copulas: The Archimedean copulas
form an important class of copulas ((Nelsen, 1999)
page 89) which generalise the usual copulas.

Theorem 2 Let ϕ be a continuous, strictly decreas-
ing function from[0,1] to [0,∞] such thatϕ(1) = 0,
and letϕ[−1] be the pseudo-inverse ofϕ. Let C be the
function from[0,1]2 to [0,1] given by

C(u1,u2) = ϕ[−1] (ϕ(u1)+ ϕ(u2)) . (22)

Then C is a copula if and only ifϕ is convex.

Archimedean copulas are in the form (22) and the
functionϕ is called the generator of the copula.ϕ is a
strict generator ifϕ(0) = ∞, thenϕ[−1] = ϕ−1 and

C(u,v) = ϕ−1 (ϕ(u)+ ϕ(v)) . (23)

Property 2 The following algebraic properties are
satisfied by any Archimedean copula C, those prop-
erties distinguish this class of copula from all other
copula.

1. C(u1,u2) =C(u2,u1) meaning that C is symmetric
∀u1,u2 ∈ [0,1] ;

2. C is associative ∀u1,u2,u3 ∈ [0,1] i.e.
C(C(u1,u2),u3) = C(u1,C(u2,u3));

3. If a > 0 is any constant then aϕ is again a gener-
ator of C.

Theorem 3 Let C be an Archimedean copula with
generatorϕ in Ω. Then for almost all u1 and u2 in
[0,1],

ϕ
′
(u1)

∂C(u1,u2)

∂u2
= ϕ

′
(u2)

∂C(u1,u2)

∂u1
. (24)

Definition 3 If F (x1,x2, · · · ,xn), and Fi(xi) denoted
respectively the multivariate distribution and its
marginal functions, one particularly simple form of
a n−dimensional Archimedean is

F(x1,x2, · · · ,xn) = ϕ−1

(
n

∑
i=1

ϕ(Fi(xi))

)
, (25)

whereϕ is the generator function such thatϕ(1) =
0, ϕ(0) = ∞; and satisfies the convexity properties
ϕ′

(x) < 0, ϕ′′
(x) > 0.
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Figure 3: Cubic copula: different presentations

Property 3 One easy way to compute the bivari-
ate copula density function c(u1,u2) of the copula
C(u1,u2), using the generator functionϕ under some
conditions is given by:

c(u1,u2) = −
ϕ′′

(C(u1,u2))ϕ
′
(u1)ϕ

′
(u2)[

ϕ′(C(u1,u2))
]3 . (26)

Property 4 Other rigorous mathematics way to de-
fine the Archimedean copula is related to the Laplace
transform (for details and beauty of this method, we
refer to (Marshall and Olkin, 1988)).
Let Λ be a distribution function with supportR+ and
ϕ its Laplace transform,

ϕ(t) =

Z ∞

0
exp(−tx)Λ(dx), (27)

ϕ is strictly nondecreasing function,ϕ(0) =
1, ϕ(+∞) = 0, then the following relation define a
copula

C(u1, . . . ,un) = ϕ

(
n

∑
i=1

ϕ−1
i (ui))

)
. (28)

F(u,v) andF1(u) andF2(v) f (u,v) and f1(u) and f2(v)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F(u,v) contours plot f (u,v) contours plot

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

2000

4000

6000

8000

10000

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

7

F(u,v) mesh plot f (u,v) mesh plot

Figure 4: A Gaussian copula: different presentations
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Figure 5: Franck copula: different presentations



3 Tomography

In X ray CT, the Radon Transform (RT) and its
inverse:

p(r,θ) =

ZZ

R 2
f (x,y)δ(r −xcosθ−ysinθ) dx dy

f (x,y) =
1
2π

Z π

0

Z ∞

0

∂p(r,θ)

∂r
r −xcosθ−ysinθ

dr dθ

are the main relations. Decomposing the inverse RT
in the following parts:

D: pθ(r) =
∂p(r,θ)

∂r

H : p̃(r ′,θ) =
1
π

Z ∞

0

p(r,θ)

(r − r ′)
dr

B : f (x,y) =
1
2π

Z π

0
p̃(xcosθ+ysinθ,θ) dθ

and using the properties of the FT of the derivation
and the relations between HT and FT, we obtain easily
the following relations:

f (x,y) = B H D g(r,θ) = B F −1
1 |Ω|F1g(r,θ) (29)

and the following classical method of filtered back-
projection commonly used in X ray CT:

g(r,θ)
−→

FT
F1

−→
Filter
|Ω|

−→
IFT
F −1

1

g1(r,θ)
−→

Backproj.
B

f (x,y)
−→

Also, if we define

b(x,y) =
1
2π

Z π

0
p(xcosθ+ysinθ,θ) dθ (30)

then, it is shown that

b(x,y) = f (x,y)∗h(x,y) (31)

where∗ stands for a 2D convolution andh(x,y) =

1/
√

x2 +y2 = (x2 +y2)−1/2.
In X-ray CT, if we have a great number of projec-

tions uniformly distributed over the[0,π] angles, the
filtered backprojection (FBP) image obtained by (29)
or even the simple backprojection (BP) image by (30)
are good solutions to the inverse CT problem as it is
shown on the Figure 6 a). But, when we have only
2 projections, the FBP or BP images are not so good
solutions as it is shown on the Figure 6 b).

Original f (x,y)

a) BP with 128 projections b) BP with only 2 projections

Figure 6: BP and FBP methods with a great number of pro-
jections and with only two projections.

4 Link between Copula and
Tomography

Now, let consider the particular case where we
have only two projectionsθ = 0 andθ = π/2. Then

p0(r) =

ZZ

f (x,y)δ(r −x) dx dy =

Z

f (r,y) dy

pπ/2(r) =

ZZ

f (x,y)δ(r −y) dx dy =

Z

f (x, r) dx

and if we let notef1 = p0 and f2 = pπ/2 we can de-
duce the following new methods for the inverse prob-
lem of determiningf (x,y) from f1(x) and f2(x):

Backprojection:

f (x,y) =
1
2
( f1(x)+ f2(y)). (32)

Filtered Backprojection:

f (x,y) =
1
2




Z ∂ f1
∂x (x′)

x′−x
dx′ +

Z

∂ f2
∂y (y′)

y′−y
dy′


 (33)

which can also be implemented if the Fourier do-
maine.

f (x,y) =
1
2

Z

e+ jux|u|

(
Z

e− jux f1(x) dx

)
du

+
1
2

Z

e+ jvy|v|

(
Z

e− jvy f2(y) dy

)
dv.
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Figure 7: Link between Copulas and X ray tomography
with only 2 projections.

5 How to use Copula in Tomography

The definition and the notion of copula give us the
possibility to propose a new X ray CT method. Let
first consider the case of two projections. In this case,
immediately, we can propose a first use which corre-
sponds to the case of independent copula. We call this
methodMultiplicative Backprojection (MBP).

MBP:
f (x,y) = f1(x) f2(y) (34)

This name comes naturally if we compare the two
equations (32) and (34). In Figure (8) we see a com-
parisons of BP and MBP. As we can see, at least the
image obtained by MBP is better than the one ob-
tained by BP and it satisfies exactly the marginals.

We can do better if we used another copula than
the independent copula by proposing the following
method that we callCopula Backprojection (CBP).

CBP:
f (x,y) = f1(x) f2(y)c(x,y) (35)

wherec(x,y) is a parametrized copula.
Let now, consider more complex images as it is

shown in Figure (10). As we can see, even if the MBP
images are better than BP images and the marginals of
MBP are fitted exactly, these results are not really sat-
isfactory. This is due to the fact that with only 2 pro-
jections we cannot reconstruct complex images and
we need more projections.

As we can see with only two projections, there is
not any hope to reconstruct a complexe shape object.
We need more projections.

We had extended this idea to the general case
which can be described as follows: In practice, we

Original f (x,y)

BP f̂ (x,y) MBP f̂ (x,y)

Figure 8: A comparison between BP and MBP with 2 pro-
jections. MBP image is better than BP image because it
satisfies exactly the marginals.

Original f (x,y)

MBP f̂ (x,y) CBP f̂ (x,y)

Figure 9: A comparison between MBP and CBP.

also need to normalize each projection in such a way
that they can be assimilated to a pdf.

General MBP:

• Normalize each projection in such a way to satisfy
pθ(r) ≥ 0 and

R

pθ(r) dr = 1.



Originals f (x,y)

BP f̂ (x,y)

MBP f̂ (x,y)

Figure 10: A comparison between BP and MBP on two
more complex synthetic examples. Even if the MBP im-
ages are better than BP images and the marginals of MBP
are fitted exactly, these results are not really satisfactory.

• For each projection, compute a backprojected im-
age, and in place of adding them up, just multiply
them poinwise.

In the next figures, we see some examples.

6 Conclusions

The main contribution of this paper is to find a
link between the notion ofcopulasin statistics and
X-ray CT. For this, first we presented briefly the bi-
variate copulas and the image reconstruction problem
in CT. We could make a link between the two prob-
lems of i) determining a joint bivariate pdf from its
two marginals and ii) the CT image reconstruction
from only two horizontal and vertical projections, by
emphasizing that in both cases, we have the same in-

Originals f (x,y)

BP f̂ (x,y)

MBP f̂ (x,y)

Figure 11: A comparison between BP and MBP on two syn-
thetic examples. Here, we have 08 projections.

verse problem of determining a bivariate function (an
image) from the line integrals.
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